
Martingales, risk neutral probability, and Black-Scholes option pricing 

Supplementary notes for 18.600 

These notes are adapted from the lecture slides used for Course 18.600 at MIT. We will cover 
the same material as the slides but with a few more words of explanation and illustration. 

1 Defining martingales 

Let S be a sample space. Let X0, X1, X2, . . . be a sequence of random variables. Informally, we 
will imagine that we are acquiring information about S in a sequence of stages, and the random 
variable Xn is a quantity that is known to us at the nth stage. If Z is any random variable, let 

E[Z|Fn] 

denote the conditional expectation of Z given all the information that is available to us on the 
nth stage.1 In other words, if you saw all the information you could obtain by stage n, and you 
made a Bayesian update to your probability distribution on S in light of this information, then 
E[Z|Fn] would represent the expected value of Z with respect to this revised probability. This 
definition may seem confusing in the abstract, but it should become clearer as we work through 
some examples. In practice it is often pretty straightforward to say, “Okay, if I were in the shoes 
of somebody who had all of the information available at stage n, what would I expect Z to be?” 
and to come up with an answer. This answer is E[Z|Fn]. 

If we don’t specify otherwise, we assume that the information available at stage n consists 
precisely of the values X0, X1, . . . , Xn, so that 

E[Z|Fn] = E[Z|X0, X1, . . . , Xn]. 

However in some applications, one could imagine there are other things known as well at stage 
n. For example, maybe Xn represents the price of an asset X on the nth day and Yn represents 

1For the purposes of this course, it is enough for the reader to understand that E[Z|Fn] denotes the conditional 
expectation of Z given all the information that is available to us on the nth stage. However, in this footnote we 
briefly describe where this notation comes from and how it would be presented in more advanced treatments of this 
topic. The symbol Fn refers to a collection of subsets of S, which we interpret as the collection of all events A (recall 
that a subset of S is called an event) such that we can determine whether A occurs using only the information 
available at stage n. This Fn is a σ-algebra, which means that any finite or countable union of elements of Fn is 
again in Fn, and that the complement of a set in Fn is again in Fn. We assume F0, F1, . . . is increasing, i.e., that 
F0 ⊂ F1 ⊂ F2 . . . because any yes-or-no question that can be answered at one stage can also be answered at any 
later stage (when one has even more information). An increasing sequence of σ-algebras is called a filtration. The 
Xn are assumed to be adapted with respect to the filtration, which essentially means that for any yes-no question 
one can ask about Xn, the event that the answer is yes is an element of Fn. Less formally, Xn is adapted if the 
value Xn can be determined using the information available at stage n. For the purpose of this course, we will try 
not to get too bogged down in thinking about filtrations and σ-algebras. But these are things you are likely to see 
if you ever take a graduate probability course or read an academic paper about probability. 
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the price of asset Y on the nth day, and on day n one has access to the sequence X0, X1, . . . , Xn 

and the sequence Y0, Y1, . . . , Yn. Then E[Z|Fn] would be our revised expectation of Z after we 
have incorporated what we know about both sequences (up to stage n). 

We say the Xn sequence is a martingale if E[|Xn|] < ∞ for all n and E[Xn+1|Fn] = Xn for all 
n. Informally X0, X1, . . . is a martingale if the following is true: taking into account all the 
information I have at stage n, the conditional expected value of Xn+1 is just Xn. 

To motivate this definition, imagine that Xn represents the price of a stock on day n. In this 
context, the martingale condition states informally that “The expected value of the stock 
tomorrow, given all I know today, is the value of the stock today.” It is not too unreasonable to 
argue that stock prices should approximately have this property (on the scale of a single day) 
assuming we have no inside information and no dividends are being paid today or tomorrow. 
After all, if the stock price today were 50 and I expected it to be 60 tomorrow, then I would 
have an easy way to make money in expectation (buy today, sell tomorrow). But if the public 
had the same information I had, then other investors would also try to cash in on this by buying 
the stock today at 50, and people holding the stock would be reluctant to sell for 50. Indeed, 
we’d expect the price to be quickly bid up to about 60 today. A slightly more nuanced 
discussion of the applicability of martingales to finance (incorporating a few caveats) appears in 
the section on risk neutral probability below. 

Let us now consider some simple examples. Suppose that A0, A1, A2, . . . are i.i.d. random 
variables each equal to −1 with probability .5 and 1 with probability .5. Let X0 = 0 and P n Xn = i=1 Ai for n > 0. Is the Xn sequence a martingale? 

The answer is yes. To see this, note that 

E[Xn+1|Fn] = E[Xn + An+1|Fn] = E[Xn|Fn] + E[An+1|Fn] 

by additivity of (conditional) expectation. Since Xn is known at stage n, we have 
E[Xn|Fn] = Xn. Since we know nothing more about An+1 at stage n than we originally knew, 
we have E[An+1|Fn] = 0. Thus E[Xn+1|Fn] = Xn for all n ≥ 0, so the sequence X0, X1, . . . is 
indeed a martingale. 

More informally, I’m just tossing a new fair coin at each stage to see if Xn goes up or down one 
step. If I know the information available up to stage n, and I know Xn = 10, then given 
everything I know, I see Xn+1 = 11 and Xn+1 = 9 as each having probability 1/2, so of course 
E[Xn+1|Fn] = 10 = Xn. 

To give another example, suppose each Ai is 1.01 with probability .5 and .99 with probability .5 Qn and we write X0 = 1 and Xn = i=1 Ai for n > 0? Then is Xn a martingale? 

Again, the answer is yes. Note that E[Xn+1|Fn] = E[An+1Xn|Fn]. At stage n, the value Xn is 
known, and hence can be treated as a known constant, which can be factored out of the 
expectation, i.e., E[An+1Xn|Fn] = XnE[An+1|Fn]. Since I know nothing new about An+1 at 
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stage n, we have E[An+1|Fn] = E[An+1] = 1. Hence E[An+1Xn|Fn] = Xn for all n ≥ 0, so the 
sequence X0, X1, . . . is indeed a martingale. 

Stated informally, in this example I’m just tossing a new fair coin at each stage to see if Xn goes 
up or down by a percentage point of its current value. If I know all the information available up 
to stage n, and I know Xn = c, then I see Xn+1 = 1.01c and Xn+1 = .99c as equally likely, so 
E[Xn+1|Fn] = c = Xn. 

The above examples illustrate two important kinds of martingales: those obtained as sums of 
independent random variables (each with mean zero) and those obtained products of 
independent random variables (each with mean one). Note that in the two examples above, the 
precise probability distributions of the An do not matter as long as the An are independent of 
each other and all have mean zero (in the first case, involving sums) or mean one (in the second 
case, involving products). 

Let’s think about a few more examples of sequences of the form X0, X1, . . . and decide whether 
they are martingales. 

1. The sequence Xn = n is not a martingale: in this case E[Xn+1|Fn] = n +1 =6 n when n ≥ 0 

2. The constant, deterministic sequence Xn = 7 is a martingale: in this case 
E[Xn+1|Fn] = 7 = Xn for all n ≥ 0. 

3. Suppose A1, A2, . . . are independent random variables with mean zero and variance one P n and write S0 = 0 and Sn = An for n ≥ 1. Then the sequence Sn is a martingale. i=1 

4. More surprisingly, if Sn is as in the previous example then the sequence Xn = S2 − n is a n 
martingale. Why? First note that E[Xn] = E[S2 − n] = 0 = X0. To see this, recall that n P n E[Sn] = 0 so E[Sn 

2] = Var[Sn] = j=1 Var[Aj ] = n by the additivity of variance for sums 
of independent random variables. 

But let us be careful to state that the fact that E[Xn] = X0 for all n > 0 is not by itself 
enough to imply that Xn is a martingale. In order to see whether the sequence is a 
martingale, we need to show that E[Xn+1|Fn] = Xn. This requires us to put ourselves in 
the shoes of somebody who has all the information available up until stage n and to then 
work out what that somebody would consider the expectation of Xn+1 to be. To this end, 
note that at time n, we know Xn and Sn, so a person with the information available at 
time n can treat Xn and Sn as known constants. The only new information that we get as 
time goes from n to n + 1 is that we see the value An+1. Since we know nothing about 
An+1, its conditional mean and variance (given what we know up to stage n) are the same 
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as its original mean and variance. So 

E[Xn+1|Fn] = E[Sn 
2
+1 − (n + 1)|Fn] 

= E[(Sn + An+1)
2|Fn] − (n + 1) 

= E[S2 + 2An+1Sn + A2 
n+1] − (n + 1) n 

= S2 + 0 + 1 − (n + 1) = S2 − n = Xn n n 

A stopping time is a non-negative integer-valued random variable T such that for all n the 
event that T = n depends only on the information available to us at time n. 2 We can think of T 
as giving the time the asset will be sold if the price sequence is X0, X1, X2, . . .. Informally, the 
statement that T is a stopping time means that the decision to sell at time n depends only the 
information we have up to time n, not on (as yet unknown) future prices. Specifying a stopping 
time can be interpreted as specifying a strategy for deciding when to sell the asset. 

For example, let A1, A2, . . . be i.i.d. random variables equal to −1 with probability .5 and 1 with P n probability .5 and let X0 = 0 and Xn = Ai for n ≥ 0. Which of the following is a stopping i=1 
time? 

1. The smallest T for which |XT | = 50 

2. The smallest T for which XT ∈ {−30, 100} 

3. The smallest T for which XT = 17. 

4. The T at which the Xn sequence achieves the value 17 for the 9th time. 

5. The value of T ∈ {0, 1, 2, . . . , 100} for which XT is largest. 

6. The largest T ∈ {0, 1, 2, . . . , 100} for which XT = 0. 

Answer: first four, not last two. 

2 Optional stopping theorem 

2.1 Theorem statements 

Doob’s optional stopping time theorem is contained in many basic texts on probability 
and martingales. (See, for example, Theorem 10.10 of Probability with Martingales, by David 
Williams, 1991 — or just google Doob’s optional stopping theorem and peruse the online 
sources.) It essentially says that you can’t make money (in expectation) by buying and selling 
an asset whose price is a martingale. Precisely, if you buy the asset at some time and adopt any 

2More formally, T is a stopping time if for each n ≥ 0 the event that T = n is an element of Fn. 
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strategy at all for deciding when to sell it, then the expected price at the time you sell is the 
price you originally paid. In other words, if the market price is a martingale, you cannot make 
money in expectation by “timing the market.” 

In the theorem statements below, note that when we say a random sequence X0, X1, . . . is 
bounded, we mean that for some C > 0, we have that with probability one |Xn| ≤ C for all 
n ≥ 0. When we say the stopping time T is bounded, we mean that for some C > 0 we have 
T ≤ C with probability one. 

Doob’s Optional Stopping Theorem (first version): Suppose that X0 is a known 
constant, that X0, X1, X2, . . . is a bounded martingale, and that T is a stopping time. Then 
E[XT ] = X0. 

Doob’s Optional Stopping Theorem (second version): Suppose that X0 is a known 
constant, that X0, X1, X2, . . . is a martingale, and that T is a bounded stopping time. Then 
E[XT ] = X0. 

Without at least one of these boundedness assumptions, the theorem would not be true. For a 
counterexample, recall that if X0 = 0 and Xn goes up or down by 1 at each time step (each with 
probability .5) then X0, X1, . . . is a martingale. If we let T be the first n for which Xn = 100, 
then it is not too hard to show that T is a finite number with probability one. (That is, with 
probability one Xn reaches T eventually.) But then XT is always 100, which means that 
E[XT ] = 100 6= X0. 

Note however that Xn might reach some extremely negative values before it ever comes up to 
100. So if you are a person making repeated one dollar bets up until the stopping time, and Xn 

represents your wealth at time n, you may find that there is a practical limit to how far 
negative your wealth can go (since at some point the casino is no longer willing to lend you 
money) and you cannot actually just “keep playing until you get to 100” in practice. The same 
would hold if you adopted the classical “double or nothing” strategy in which, each time you 
lose, you double the size of your bet and bet again, repeating this until eventually (with 
probability one) you win a bet and recover what you lost. In practice, it’s pretty reasonable to 
assume that there are upper and lower bounds to your wealth, so that the optional stopping 
theorem would indeed hold. 

2.2 Optional stopping theorem proof sketches 

Let us sketch a quick proof by induction of the second version of the optional stopping theorem. 
Our inductive hypothesis will be the statement that “E[XT ] = X0 if T is any stopping time 
which is at most K with probability one.” Then clearly this statement is true if K is zero. So 
for the induction to work, we need to show that if this statement is true for any fixed 
non-negative positive integer K, then it is also true for K + 1. To establish the latter (while 
assuming the former) suppose that T is at most K + 1 with probability one. Let S be the 
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minimum of T and K. By our inductive hypothesis, we know that E[XS ] = X0. So to show that 
E[XT ] = X0 it suffices to show that E[XT − XS ] = 0. Note that the only way XT − XS can be 
non-zero is if S = K and T = K + 1, in which case XT − XS represents the amount of money 
we make on the (K + 1)th step. So we just need to show that the expected amount of money we 
make on the (K + 1)th step (if we haven’t sold the stock by time K) is zero. To see this, recall 
that X0, X1, . . . is a martingale, which means that E[XK+1 − XK |FK ] = 0. This means that 
given everything we know up to time K (including our knowledge of whether or not we have 
already sold the stock at time K) we will always still expect XK+1 − XK to be zero. Since this 
is true for any possible scenario (of what the information looks like at time K) we may conclude 
by averaging over the possible scenarios that overall we have E[XT − XS ] = 0. Hence 
E[XT ] = E[XS ] = X0, which implies that our inductive hypothesis holds for K + 1 (and by 
induction for all positive integers). 

The first version of the optional stopping theorem can be derived from the second version using 
a limiting procedure. The idea of the proof is that one lets TK be the minimum of T and K and 
attempts to show that 

lim E[XTK ] = E[XT ]. 
K→∞ 

The limit on the left hand side is obviously X0 (since each term in the sequence is X0, by the 
second version of the optional stopping theorem) so this would imply the desired conclusion: 
that E[XT ] = X0. 

To implement this strategy, recall that we are assuming that the |XTK | are with probability one 
all bounded by a fixed constant C > 0. Since TK is almost surely finite, it follows that for any 
� > 0 we may choose K large enough so that 

P (TK 6= T ) = P (TK > K) < �. 

Since XT and XTK only differ with probability at most � (and the magnitude of that difference 
is always at most 2C) it follows that 

E[XTK ] − E[XT ] = E[XTK − XT ] ∈ [2C�, −2C�]. 

Taking � small enough, we can make this interval as small as we want. Since we know that 
3 E[XTK ] = X0 for all K, this can only be true if E[XT ] = X0. 

3 More problems and perspectives 

Here are a couple of martingale questions that can be solved with the optional stopping theorem. 

3We remark that there are other variants of the optional stopping theorem (i.e., other sufficient conditions on 
the martingale and the stopping time that together ensure that E[XT ] = X0) that we will not discuss here. For 
people inclined to look up these other versions, “uniform integrability” is one of the key phrases that comes up, as 
is “convergence in Lp.” 
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1. Suppose that an asset price is a martingale X0, X1, . . . that starts at X0 = 50 and changes 
by increments of ±1 at each time step. What is the probability that the price goes down 
to 40 before it goes up to 70? To answer this, let T be the first time n for which Xn is 40 
or 70. Write p40 = P (XT = 40) and p70 = P (XT = 70). Then E[XT ] = 40p40 + 70p70 is 
equal to X0 = 50 by the optional stopping theorem. Since we also know p40 + p70 = 1 we 
can solve the two linear equations in two unknowns to get p40 = 2/3 and p70 = 1/3. 

Another way to solve this problem is to rescale so that the endpoints are zero or one. 
Write Yn = (Xn − 40)/30. One can use linearity of expectation to show that an affine 
function of a martingale is also a martingale, so Yn is also a martingale. But Y0 starts at 
1/3 and we have YT equal to either 0 or 1. Since E[YT ] = 1/3 we must have 
P (YT = 1) = 1/3 and P (YT = 0) = 2/3. 

Generally, this argument shows that if we have a bounded martingale starting at a point c 
between a and b and stopping when it hits a or b (assuming it reaches one or the other 
eventually with probability one), the probability it hits b first is (c − a)/(b − a). In other 
words, if the martingale starts a p fraction of the way from a to b, then it will get to b 
(before getting back to a) with probability p. 

2. What is the probability that the martingale from the previous example goes down to 45 
then up to 55 then down to 45 then up to 55 again — all before reaching either 0 or 100? 
To answer this we just use the analysis from the last problem and multiply. First, we have 
a 10/11 chance to get down to 45 (before hitting 100). Then, given that that succeeds, we 
have a 9/11 chance to get to 55 (before hitting 0). Then a 9/11 chance to get down to 45 
again (before hitting 100) and a 9/11 chance to get back to 55 again (before hitting 0). 
We end up with (10/11)(9/11)3 ≈ .4979. 

Next, let us make a couple more observations. First, observe that the two-element sequence 
E[X], X is clearly martingale. Second, recall that we have interpreted the conditional 
expectation E[X|Y ] as a random variable, which happens to depend only on the value of Y . It 
describes the expectation of X given observed Y value. Then observe the following. 

1. E[E[X|Y ]] = E[X], which means that the three-element sequence E[X], E[X|Y ], X is a 
martingale. 

2. More generally if Yi are any random variables, the sequence 

E[X], E[X|Y1], E[X|Y1, Y2], E[X|Y1, Y2, Y3], . . . 

is a martingale. 

3. Stlll more generally, the sequence 

E[X|F0], E[X|F1], E[X|F2], . . . 
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is a martingale if X is any fixed random variable, and we have a sample space that we are 
learning information about in stages. 

For a story example, let C be the amount of oil available for drilling under a particular piece of 
land. Suppose that ten geological tests are done that will ultimately determine the value of C. 
Let Cn be the conditional expectation of C given the outcome of the first n of these tests. 
Then the sequence C0, C1, C2, . . . , C10 = C is a martingale. As another example, let Ai be my 
best guess at the probability that a basketball team will win the game, given the outcome of the 
first i minutes of the game. Then (assuming some “rationality” of my personal probabilities) Ai 

is a martingale. 

4 Risk neutral probability and martingales 

X(n) According to the fundamental theorem of asset pricing, the discounted price , where A(n) 

A is a risk-free asset, is a martingale with respected to risk neutral probability. 4 

To explain, what this means, we recall that “Risk neutral probability” is a fancy term for 
“market probability”. (The term “market probability” is arguably more descriptive.) That is, it 
is a probability measure that you can deduce by looking at prices on a market. For example, 
suppose somebody is about to shoot a free throw in basketball. What is the price in the sports 
betting world of a contract that pays one dollar if the shot is made? If the answer is .75 dollars, 
then we say that the risk neutral probability that the shot will be made is .75. Risk neutral 
probability is the probability determined by the market betting odds. More precisely: 

Risk neutral probability5 of event A: PRN (A) denotes 

Price{Contract paying 1 dollar at time T if A occurs } 
. 

Price{Contract paying 1 dollar at time T no matter what } 

If the risk-free interest rate is constant and equal to r (compounded continuously), then the 
denominator is e−rT . Assuming no arbitrage (i.e., no risk free profit with zero upfront 
investment), PRN satisfies the axioms of probability. That is, 0 ≤ PRN (A) ≤ 1, and 
PRN (S) = 1, and if events Aj are disjoint then PRN (A1 ∪ A2 ∪ . . .) = PRN (A1) + PRN (A2) + . . . 

Arbitrage example: here is an example of an arbitrage one can implement when one of the 
axioms of probability is violated. If A and B are disjoint and PRN (A ∪ B) < P (A) + P (B) then 

4The reader who is interested in the financial issues raised in this section (and who wants a more precise statement 
of this theorem) can read many more details about the subject in Mathematics for Finance: An Introduction to 
Financial Engineering by Zastawniak and Capiński. Google it. 

5In these notes, we are assuming that there is a liquid market for the contracts we discuss and that the bid-ask 
spread is very small — so that contracts like this have a price such that it is possible to both buy and sell at (very 
close to) that price. 
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we sell contracts paying 1 if A occurs and 1 if B occurs, buy a contract paying 1 if A ∪ B 
occurs, and pocket the difference. No matter what the outcome is, the amount we end up owing 
will equal the amount that is owed to us, so (assuming we trust that all contracts will be 
honored and enforced6) we are taking on no risk. 

Similar things can be done if the other axioms are violated. This is how one shows that the 
absence of arbitrage opportunities implies that the axioms apply. 

At first sight, one might think that PRN (A) describes the market’s best guess at the probability 
that A will occur. But suppose A is the event that the government is dissolved and all dollars 
become worthless. What is PRN (A)? It should be 0. Even if people think A is likely, a contract 
paying a dollar when A occurs is worthless. Now, suppose there are only 2 outcomes: A is the 
event that the economy booms and everyone prospers and B is the event that economy sags and 
everyone is needy. Suppose the purchasing power of dollar is the same in both scenarios. If 
people think A has a .5 chance to occur, do we expect PRN (A) > .5 or PRN (A) < .5? 

The answer is that we should expect PRN (A) < .5. People are risk averse. In the second 
scenario they need the money more. 

Suppose that A is the event that the Boston Red Sox win the World Series. Would we expect 
PRN (A) to represent (the market’s best assessment of) the probability that the Red Sox will 
win? 

In this case the answer is arguably yes. The amount that people in general need or value dollars 
does not depend much on whether A occurs (even though the financial needs of specific 
individuals may depend heavily on A). Even if some people bet based on loyalty, emotion, 
insurance against personal financial exposure to the team’s prospects, etc., there will arguably 
be enough in-it-for-the-money statistical arbitrageurs to keep price near a reasonable guess of 

6Of course, this assumption is not always justified in practice. In the runup to the 2012 presidential election, 
two large and liquid betting sites, Intrade and Betfair, offered very different odds for the same election: Intrade 
giving Romney a relatively higher chance of winning, Betfair giving Obama a relatively higher chance. It appeared 
that, for much less than $100, one could buy two contracts: one on Intrade paying $100 if Obama won, and one on 
Betfair paying $100 if Obama didn’t win. This was a classical arbitrage opportunity. Ordinarily, one would expect 
traders to try to take advantage of this opportunity, and one would expect the actions of these traders to cause 
the discepancy to go away quickly. In this case a major gap persisted for weeks. Speculation about the reasons 
for the persistent discrepancy appears for example here http://www.overcomingbias.com/2012/11/was-intrade-
being-manipulated-over-the-last-month.html. Shortly following the election and Obama’s victory, the US 
government announced that it was cracking down on Intrade, various financial problems within Intrade became 
apparent, and it became unclear whether Intrade would be able to redeem the money it owed its customers as 
the company collapsed. http://business.time.com/2013/03/11/online-predictions-market-intrade-shuts-
down-months-after-federal-lawsuit. Given this history, one might be tempted to say, “Okay, maybe that’s why 
the professional traders didn’t take advantange of the arbitrage and close the gap. They knew that Intrade might 
be on the verge of collapse.” But it’s hard to know if this is actually what traders were thinking. The chance that 
the company managing and enforcing the contracts might collapse is sometimes called “third party risk.” Collapses 
of this kind (involving institutions much larger and fundamental to our financial system than Intrade and Betfair) 
played a role in the 2008 financial crisis. 
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what well-informed informed experts would consider the true probability. 

The definition of risk neutral probability depends on choice of currency (the so-called 
numéraire). In the 2016 US presidential election, investors predicted (correctly) that the value 
of the Mexican peso (in US dollars) just after the election would be substantially lower if Trump 
won. Although this example was not as extreme as the one mentioned above (where one 
candidate would declare one of the currencies to be worthless), it was still significant enough for 
the risk neutral probability of a Trump victory to be quite different depending on whether one 
used dollars or pesos as the numéraire 

We remark that risk neutral probability can also be defined for variable times and variable 
interest rates — e.g., one can take the numéraire to be the amount one dollar in a 
variable-interest-rate money market account has grown to when the outcome is known. We can 
define PRN (A) to be the price of a contract paying this amount if and when A occurs. For 
simplicity, we focus on a fixed future time T and a fixed interest rate r in these notes. 

By assumption, the price of a contract that pays one dollar at time T if A occurs is 
PRN (A)e

−rT . If A and B are disjoint, what is the price of a contract that pays 2 dollars if A 
occurs, 3 if B occurs, 0 otherwise? 

The answer: (2PRN (A) + 3PRN (B))e−rT . More generally, in the absence of arbitrage, the price 
of a contract that pays X at time T should be ERN (X)e−rT where ERN denotes expectation 
with respect to the risk neutral probability. For example, if a non-divided paying stock will be 
worth X at time T , then its price today should be ERN (X)e−rT . As mentioned above, the 
so-called fundamental theorem of asset pricing states that (assuming no arbitrage) 
interest-discounted asset prices are martingales with respect to risk neutral probability. The 
current price of the stock being ERN (X)e−rT follows from this. 

5 Black-Scholes 

Famous professors who worked at MIT at some point (Black, Scholes, and Merton) won the 
1997 Nobel Prize for their work on an option pricing model now known as the Black-Scholes 
model. The mathematics of our Black-Scholes discussion will not go far beyond things we know. 
The main mathematical tasks will be to compute expectations of functions of log-normal 
random variables (to get the Black-Scholes formula) and differentiate under an integral (to 
compute risk neutral density functions from option prices). We can interpret our analysis in this 
section as a sophisticated story problem, illustrating an important application of the probability 
we have learned in this course (involving probability axioms, expectations, cumulative 
distribution functions, etc.) Much has been written about the Black-Scholes formula (start with 
the Wikipedia articles if you want to learn more). These notes will give a very quick overview 
and will explain how the formula can be derived directly from a few simple assumptions about 
risk neutral probability. 
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Brownian motion (as mathematically constructed by MIT professor Norbert Wiener) is a 
continuous time martingale. The important thing to know about it for now is that the value of 
the Brownian motion at time T is a normal random variable with mean zero and variance Tσ2 

where σ2 is a volatility parameter. The Black-Scholes theory assumes that the log of an asset 
price is a process called Brownian motion with drift with respect to risk neutral probability. 
Since we will focus on a fixed future time T in these notes, the important thing about this 
assumption is that it implies that the log of the asset price at time T is a normal random 
variable with variance Tσ2 and some fixed mean value. 

1. Assumption: the log of an asset price X at a fixed future time T is a normal random 
variable (call it N) with some known variance (call it Tσ2) and some mean (call it µ) with 
respect to risk neutral probability. 

µ+Tσ2/2 2. Observation: N normal (µ, T σ2) implies E[eN ] = e . 

3. Observation: If X0 is the current price then 

−rT −rT µ+(σ2/2−r)T X0 = ERN [X]e = ERN [e N ]e = e . 

7 4. Observation: This implies µ = log X0 + (r − σ2/2)T . 

5. Conclusion: If g is any function then the price of a contract that pays g(X) at time T is 

−rT −rT ERN [g(X)]e = ERN [g(e N )]e 

where N is normal with mean µ and variance Tσ2 . 

A European call option on a stock at maturity date T , strike price K, gives the holder 
the right (but not obligation) to purchase a share of stock for K dollars at time T . 

The document gives the
bearer the right to pur-
chase one share of MSFT
from me on May 31 for
35 dollars. SS

7This is a very important point. Previous works on options pricing had assumed that one somehow had to know 
µ in advance to price options — one needed a guess about the direction the stock was drifting. The Black-Scholes 
work notes that the relevant notion of probability for determining prices is risk neutral probability, not some notion 
of “true probability,” and that with respect to risk neutral probability the value of µ is determined by the values 
of r and σ, and hence is not needed as an input. 
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If X is the value of the stock at T , then the value of the option at time T is given by 
g(X) = max{0, X − K}. The Black-Scholes formula states that the price of a contract paying 
g(X) at time T is 

−rT −rT ERN [g(X)]e = ERN [g(e N )]e 

where N is normal with variance Tσ2 , mean µ = log X0 + (r − σ2/2)T . 

We could just end the discussion here, but let’s try to put this expression into a more explicit 
form. Write this as 

e −rT ERN [max{0, e N − K}] = e −rT ERN [(e N − K)1N≥log K ] 

(x−µ)2 Z ∞ 1 −rT − = e √ e 2Tσ2 (e x − K)dx. 
log K σ 2πT 

Recall that we let T be the time to maturity, the X0 current price of underlying asset, K the 
strike price, r the risk free interest rate, and σ2 the volatility. We need to compute 

(x−µ)2 
−rT 

R ∞ 1 − e √ e 2Tσ2 (ex − K)dx where µ = rT + log X0 − Tσ2/2. We can write this as log K σ 2πT Z ∞ Z ∞ (x−µ)2 (x−µ)2 1 1 −rT − −rT − e √ e 2Tσ2 e xdx − e √ e 2Tσ2 Kdx. 
log K σ 2πT log K σ 2πT 

x We can use a complete-the-square trick to deal with the extra e in the first term. We can also 
us generally the fact that the probability a normal random variable is more than a standard 
deviations above its mean is given by 1 − Φ(a) (which implies a statement about the integral of 
the density function from some point to infinity). These ideas allow us to compute the two 
terms explicitly in terms of the standard normal cumulative distribution function Φ. We leave 
the details as an exercise to the reader. In the end we find that the price of European call is 

Φ(d1)X0 − Φ(d2)Ke−rT 

X0 σ2 X0 ln( )+(r+ )(T ) ln( )+(r− σ
2 
)(T ) 

K = 2 where d1 = √ 2 and d2 
K √ . 

σ T σ T 

6 Call quotes and risk neutral probability 

If C(K) is the price of a European call with strike price K and f = fX is the risk neutral R ∞ −rT probability density function for X at time T , then C(K) = e f(x) max{0, x − K}dx. −∞ 
Differentiating under the integral, we find that Z 

rT C 0(K) = e f(x)(−1x>K )dx = −PRN {X > K} = FX (K) − 1, 

rT C 00(K) = f(K). e 
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We can look up C(K) for a given stock symbol (say GOOG) and expiration time T at cboe.com 
and work out approximately what FX and hence fX must be. 

Try doing this an option with a date in the near future, so that one can assume that erT is 
essentially one. You’ll find when you look up the option chain that one is not given C(K) for all 
values of K (it is only listed for a discrete set of K values) so one has to estimate what would be 
its first and second derivatives of C from this. Still it is satisfying to know that you can use this 
technique to assess the risk neutral probability that a stock price will lie in a specified range on 
a specified date. If you are ever offered a job at a company that promises to pay you in stock or 
in options, you might want to take a look at the option prices for the company and try to work 
out a probability distribution for the value of your pay. 

The risk neutral probability densities derived from call quotes are not quite lognormal in 
practice. The tails are too fat. In other words, the risk neutral probability that the stock will 
rise or fall by very large factors tends to be higher than the Black-Scholes model would predict. 

Although Black-Scholes is not a perfect predictor of option prices, traders still think about the 
model when they think about pricing. When looking at a specific option, the “implied 
volatility” is defined to be the value of σ2 that (when plugged into Black-Scholes formula along 
with the other known parameters) predicts the current market price. If Black-Scholes were 
completely correct, then given a stock and an expiration date, the implied volatility would be 
the same for all strike prices. In practice, when the implied volatility is viewed as a function of 
strike price (sometimes called the “volatility smile”), it is not constant. Nonetheless, comparing 
“implied volatilities” gives traders an intuitive way to understand option prices. 

The main Black-Scholes assumption is that risk neutral probability densities are lognormal. The 
heuristic support for this assumption is basically this: if the price goes up 1 percent or down 1 
percent each day (with no interest) then the risk neutral probability must be .5 for each 
(independently of previous days). Then the central limit theorem gives log normality for large 
T . However, in reality, the amount that a stock varies up and down can differ a lot from one 
day to another. 

It is also the case in principle that prices can have big jumps. Although we will not discuss 
them here, we remark that there are variants of the Black-Scholes model that allow for variable 
volatility, random interest rates, processes with random jump discontinuities (called Lévy 
processes) and so forth. 
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