18.600: Lecture 11

Binomial random variables and repeated trials

Scott Sheffield

MIT

1

Outline

Bernoulli random variables

Properties: expectation and variance

More problems

Outline

Bernoulli random variables

Properties: expectation and variance

More problems

Bernoulli random variables

- Toss fair coin n times. (Tosses are independent.) What is the probability of k heads?

Bernoulli random variables

- Toss fair coin n times. (Tosses are independent.) What is the probability of k heads?
- Answer: $\binom{n}{k} / 2^{n}$.

Bernoulli random variables

- Toss fair coin n times. (Tosses are independent.) What is the probability of k heads?
- Answer: $\binom{n}{k} / 2^{n}$.
- What if coin has p probability to be heads?

Bernoulli random variables

- Toss fair coin n times. (Tosses are independent.) What is the probability of k heads?
- Answer: $\binom{n}{k} / 2^{n}$.
- What if coin has p probability to be heads?
- Answer: $\binom{n}{k} p^{k}(1-p)^{n-k}$.

Bernoulli random variables

- Toss fair coin n times. (Tosses are independent.) What is the probability of k heads?
- Answer: $\binom{n}{k} / 2^{n}$.
- What if coin has p probability to be heads?
- Answer: $\binom{n}{k} p^{k}(1-p)^{n-k}$.
- Writing $q=1-p$, we can write this as $\binom{n}{k} p^{k} q^{n-k}$

Bernoulli random variables

- Toss fair coin n times. (Tosses are independent.) What is the probability of k heads?
- Answer: $\binom{n}{k} / 2^{n}$.
- What if coin has p probability to be heads?
- Answer: $\binom{n}{k} p^{k}(1-p)^{n-k}$.
- Writing $q=1-p$, we can write this as $\binom{n}{k} p^{k} q^{n-k}$
- Can use binomial theorem to show probabilities sum to one:

Bernoulli random variables

- Toss fair coin n times. (Tosses are independent.) What is the probability of k heads?
- Answer: $\binom{n}{k} / 2^{n}$.
- What if coin has p probability to be heads?
- Answer: $\binom{n}{k} p^{k}(1-p)^{n-k}$.
- Writing $q=1-p$, we can write this as $\binom{n}{k} p^{k} q^{n-k}$
- Can use binomial theorem to show probabilities sum to one:
- $1=1^{n}=(p+q)^{n}=\sum_{k=0}^{n}\binom{n}{k} p^{k} q^{n-k}$.

Bernoulli random variables

- Toss fair coin n times. (Tosses are independent.) What is the probability of k heads?
- Answer: $\binom{n}{k} / 2^{n}$.
- What if coin has p probability to be heads?
- Answer: $\binom{n}{k} p^{k}(1-p)^{n-k}$.
- Writing $q=1-p$, we can write this as $\binom{n}{k} p^{k} q^{n-k}$
- Can use binomial theorem to show probabilities sum to one:
- $1=1^{n}=(p+q)^{n}=\sum_{k=0}^{n}\binom{n}{k} p^{k} q^{n-k}$.
- Number of heads is binomial random variable with parameters (n, p).

Examples

- Toss 6 fair coins. Let X be number of heads you see. Then X is binomial with parameters (n, p) given by $(6,1 / 2)$.

Examples

- Toss 6 fair coins. Let X be number of heads you see. Then X is binomial with parameters (n, p) given by $(6,1 / 2)$.
- Probability mass function for X can be computed using the 6th row of Pascal's triangle.

Examples

- Toss 6 fair coins. Let X be number of heads you see. Then X is binomial with parameters (n, p) given by $(6,1 / 2)$.
- Probability mass function for X can be computed using the 6th row of Pascal's triangle.
- If coin is biased (comes up heads with probability $p \neq 1 / 2$), we can still use the 6th row of Pascal's triangle, but the probability that $X=i$ gets multiplied by $p^{i}(1-p)^{n-i}$.

Other examples

- Room contains n people. What is the probability that exactly i of them were born on a Tuesday?

Other examples

- Room contains n people. What is the probability that exactly i of them were born on a Tuesday?
- Answer: use binomial formula $\binom{n}{i} p^{i} q^{n-i}$ with $p=1 / 7$ and $q=1-p=6 / 7$.

Other examples

- Room contains n people. What is the probability that exactly i of them were born on a Tuesday?
- Answer: use binomial formula $\binom{n}{i} p^{i} q^{n-i}$ with $p=1 / 7$ and $q=1-p=6 / 7$.
- Let $n=100$. Compute the probability that nobody was born on a Tuesday.

Other examples

- Room contains n people. What is the probability that exactly i of them were born on a Tuesday?
- Answer: use binomial formula $\binom{n}{i} p^{i} q^{n-i}$ with $p=1 / 7$ and $q=1-p=6 / 7$.
- Let $n=100$. Compute the probability that nobody was born on a Tuesday.
- What is the probability that exactly 15 people were born on a Tuesday?

Outline

Bernoulli random variables

Properties: expectation and variance

More problems

Outline

Bernoulli random variables

Properties: expectation and variance

More problems

Expectation

- Let X be a binomial random variable with parameters (n, p).

Expectation

- Let X be a binomial random variable with parameters (n, p).
- What is $E[X]$?

Expectation

- Let X be a binomial random variable with parameters (n, p).
- What is $E[X]$?
- Direct approach: by definition of expectation, $E[X]=\sum_{i=0}^{n} P\{X=i\} i$.

Expectation

- Let X be a binomial random variable with parameters (n, p).
- What is $E[X]$?
- Direct approach: by definition of expectation, $E[X]=\sum_{i=0}^{n} P\{X=i\} i$.
- What happens if we modify the nth row of Pascal's triangle by multiplying the i term by i ?

Expectation

- Let X be a binomial random variable with parameters (n, p).
- What is $E[X]$?
- Direct approach: by definition of expectation, $E[X]=\sum_{i=0}^{n} P\{X=i\} i$.
- What happens if we modify the nth row of Pascal's triangle by multiplying the i term by i ?
- For example, replace the 5 th row $(1,5,10,10,5,1)$ by $(0,5,20,30,20,5)$. Does this remind us of an earlier row in the triangle?

Expectation

- Let X be a binomial random variable with parameters (n, p).
- What is $E[X]$?
- Direct approach: by definition of expectation, $E[X]=\sum_{i=0}^{n} P\{X=i\} i$.
- What happens if we modify the nth row of Pascal's triangle by multiplying the i term by i ?
- For example, replace the 5 th row $(1,5,10,10,5,1)$ by $(0,5,20,30,20,5)$. Does this remind us of an earlier row in the triangle?
- Perhaps the prior row $(1,4,6,4,1)$?

Useful Pascal's triangle identity

- Recall that $\binom{n}{i}=\frac{n \times(n-1) \times \ldots \times(n-i+1)}{i \times(i-1) \times \ldots \times(1)}$. This implies a simple but important identity: $i\binom{n}{i}=n\binom{n-1}{i-1}$.

Useful Pascal's triangle identity

- Recall that $\binom{n}{i}=\frac{n \times(n-1) \times \ldots \times(n-i+1)}{i \times(i-1) \times \ldots \times(1)}$. This implies a simple but important identity: $i\binom{n}{i}=n\binom{n-1}{i-1}$.
- Using this identity (and $q=1-p$), we can write

$$
E[X]=\sum_{i=0}^{n} i\binom{n}{i} p^{i} q^{n-i}=\sum_{i=1}^{n} n\binom{n-1}{i-1} p^{i} q^{n-i}
$$

Useful Pascal's triangle identity

- Recall that $\binom{n}{i}=\frac{n \times(n-1) \times \ldots \times(n-i+1)}{i \times(i-1) \times \ldots \times(1)}$. This implies a simple but important identity: $i\binom{n}{i}=n\binom{n-1}{i-1}$.
- Using this identity (and $q=1-p$), we can write

$$
E[X]=\sum_{i=0}^{n} i\binom{n}{i} p^{i} q^{n-i}=\sum_{i=1}^{n} n\binom{n-1}{i-1} p^{i} q^{n-i}
$$

- Rewrite this as $E[X]=n p \sum_{i=1}^{n}\binom{n-1}{i-1} p^{(i-1)} q^{(n-1)-(i-1)}$.

Useful Pascal's triangle identity

- Recall that $\binom{n}{i}=\frac{n \times(n-1) \times \ldots \times(n-i+1)}{i \times(i-1) \times \ldots \times(1)}$. This implies a simple but important identity: $i\binom{n}{i}=n\binom{n-1}{i-1}$.
- Using this identity (and $q=1-p$), we can write

$$
E[X]=\sum_{i=0}^{n} i\binom{n}{i} p^{i} q^{n-i}=\sum_{i=1}^{n} n\binom{n-1}{i-1} p^{i} q^{n-i}
$$

- Rewrite this as $E[X]=n p \sum_{i=1}^{n}\binom{n-1}{i-1} p^{(i-1)} q^{(n-1)-(i-1)}$.
- Substitute $j=i-1$ to get

$$
E[X]=n p \sum_{j=0}^{n-1}\binom{n-1}{j} p^{j} q^{(n-1)-j}=n p(p+q)^{n-1}=n p
$$

Decomposition approach to computing expectation

- Let X be a binomial random variable with parameters (n, p). Here is another way to compute $E[X]$.

Decomposition approach to computing expectation

- Let X be a binomial random variable with parameters (n, p). Here is another way to compute $E[X]$.
- Think of X as representing number of heads in n tosses of coin that is heads with probability p.

Decomposition approach to computing expectation

- Let X be a binomial random variable with parameters (n, p). Here is another way to compute $E[X]$.
- Think of X as representing number of heads in n tosses of coin that is heads with probability p.
- Write $X=\sum_{j=1}^{n} X_{j}$, where X_{j} is 1 if the j th coin is heads, 0 otherwise.

Decomposition approach to computing expectation

- Let X be a binomial random variable with parameters (n, p). Here is another way to compute $E[X]$.
- Think of X as representing number of heads in n tosses of coin that is heads with probability p.
- Write $X=\sum_{j=1}^{n} X_{j}$, where X_{j} is 1 if the j th coin is heads, 0 otherwise.
- In other words, X_{j} is the number of heads (zero or one) on the j th toss.

Decomposition approach to computing expectation

- Let X be a binomial random variable with parameters (n, p). Here is another way to compute $E[X]$.
- Think of X as representing number of heads in n tosses of coin that is heads with probability p.
- Write $X=\sum_{j=1}^{n} X_{j}$, where X_{j} is 1 if the j th coin is heads, 0 otherwise.
- In other words, X_{j} is the number of heads (zero or one) on the j th toss.
- Note that $E\left[X_{j}\right]=p \cdot 1+(1-p) \cdot 0=p$ for each j.

Decomposition approach to computing expectation

- Let X be a binomial random variable with parameters (n, p). Here is another way to compute $E[X]$.
- Think of X as representing number of heads in n tosses of coin that is heads with probability p.
- Write $X=\sum_{j=1}^{n} X_{j}$, where X_{j} is 1 if the j th coin is heads, 0 otherwise.
- In other words, X_{j} is the number of heads (zero or one) on the j th toss.
- Note that $E\left[X_{j}\right]=p \cdot 1+(1-p) \cdot 0=p$ for each j.
- Conclude by additivity of expectation that

$$
E[X]=\sum_{j=1}^{n} E\left[X_{j}\right]=\sum_{j=1}^{n} p=n p
$$

Interesting moment computation

- Let X be binomial (n, p) and fix $k \geq 1$. What is $E\left[X^{k}\right]$?

Interesting moment computation

- Let X be binomial (n, p) and fix $k \geq 1$. What is $E\left[X^{k}\right]$?
- Recall identity: $i\binom{n}{i}=n\binom{n-1}{i-1}$.

Interesting moment computation

- Let X be binomial (n, p) and fix $k \geq 1$. What is $E\left[X^{k}\right]$?
- Recall identity: $i\binom{n}{i}=n\binom{n-1}{i-1}$.
- Generally, $E\left[X^{k}\right]$ can be written as

$$
\sum_{i=0}^{n} i\binom{n}{i} p^{i}(1-p)^{n-i} i^{k-1}
$$

Interesting moment computation

- Let X be binomial (n, p) and fix $k \geq 1$. What is $E\left[X^{k}\right]$?
- Recall identity: $i\binom{n}{i}=n\binom{n-1}{i-1}$.
- Generally, $E\left[X^{k}\right]$ can be written as

$$
\sum_{i=0}^{n} i\binom{n}{i} p^{i}(1-p)^{n-i} i^{k-1}
$$

- Identity gives

$$
\begin{gathered}
E\left[X^{k}\right]=n p \sum_{i=1}^{n}\binom{n-1}{i-1} p^{i-1}(1-p)^{n-i} i^{k-1}= \\
n p \sum_{j=0}^{n-1}\binom{n-1}{j} p^{j}(1-p)^{n-1-j}(j+1)^{k-1}
\end{gathered}
$$

Interesting moment computation

- Let X be binomial (n, p) and fix $k \geq 1$. What is $E\left[X^{k}\right]$?
- Recall identity: $i\binom{n}{i}=n\binom{n-1}{i-1}$.
- Generally, $E\left[X^{k}\right]$ can be written as

$$
\sum_{i=0}^{n} i\binom{n}{i} p^{i}(1-p)^{n-i} i^{k-1}
$$

- Identity gives

$$
\begin{gathered}
E\left[X^{k}\right]=n p \sum_{i=1}^{n}\binom{n-1}{i-1} p^{i-1}(1-p)^{n-i} i^{k-1}= \\
n p \sum_{j=0}^{n-1}\binom{n-1}{j} p^{j}(1-p)^{n-1-j}(j+1)^{k-1}
\end{gathered}
$$

- Thus $E\left[X^{k}\right]=n p E\left[(Y+1)^{41-1}\right]$ where Y is binomial with parameters $(n-1, p)$.

Computing the variance

- Let X be binomial (n, p). What is $E[X]$?

Computing the variance

- Let X be binomial (n, p). What is $E[X]$?
- We know $E[X]=n p$.

Computing the variance

- Let X be binomial (n, p). What is $E[X]$?
- We know $E[X]=n p$.
- We computed identity $E\left[X^{k}\right]=n p E\left[(Y+1)^{k-1}\right]$ where Y is binomial with parameters $(n-1, p)$.

Computing the variance

- Let X be binomial (n, p). What is $E[X]$?
- We know $E[X]=n p$.
- We computed identity $E\left[X^{k}\right]=n p E\left[(Y+1)^{k-1}\right]$ where Y is binomial with parameters $(n-1, p)$.
- In particular $E\left[X^{2}\right]=n p E[Y+1]=n p[(n-1) p+1]$.

Computing the variance

- Let X be binomial (n, p). What is $E[X]$?
- We know $E[X]=n p$.
- We computed identity $E\left[X^{k}\right]=n p E\left[(Y+1)^{k-1}\right]$ where Y is binomial with parameters $(n-1, p)$.
- In particular $E\left[X^{2}\right]=n p E[Y+1]=n p[(n-1) p+1]$.
- So $\operatorname{Var}[X]=E\left[X^{2}\right]-E[X]^{2}=n p(n-1) p+n p-(n p)^{2}=$ $n p(1-p)=n p q$, where $q=1-p$.

Computing the variance

- Let X be binomial (n, p). What is $E[X]$?
- We know $E[X]=n p$.
- We computed identity $E\left[X^{k}\right]=n p E\left[(Y+1)^{k-1}\right]$ where Y is binomial with parameters $(n-1, p)$.
- In particular $E\left[X^{2}\right]=n p E[Y+1]=n p[(n-1) p+1]$.
- So $\operatorname{Var}[X]=E\left[X^{2}\right]-E[X]^{2}=n p(n-1) p+n p-(n p)^{2}=$ $n p(1-p)=n p q$, where $q=1-p$.
- Commit to memory: variance of binomial (n, p) random variable is $n p q$.

Computing the variance

- Let X be binomial (n, p). What is $E[X]$?
- We know $E[X]=n p$.
- We computed identity $E\left[X^{k}\right]=n p E\left[(Y+1)^{k-1}\right]$ where Y is binomial with parameters $(n-1, p)$.
- In particular $E\left[X^{2}\right]=n p E[Y+1]=n p[(n-1) p+1]$.
- So $\operatorname{Var}[X]=E\left[X^{2}\right]-E[X]^{2}=n p(n-1) p+n p-(n p)^{2}=$ $n p(1-p)=n p q$, where $q=1-p$.
- Commit to memory: variance of binomial (n, p) random variable is $n p q$.
- This is n times the variance you'd get with a single coin. Coincidence?

Compute variance with decomposition trick

- $X=\sum_{j=1}^{n} X_{j}$, so
$E\left[X^{2}\right]=E\left[\sum_{i=1}^{n} X_{i} \sum_{j=1}^{n} X_{j}\right]=\sum_{i=1}^{n} \sum_{j=1}^{n} E\left[X_{i} X_{j}\right]$

Compute variance with decomposition trick

- $X=\sum_{j=1}^{n} X_{j}$, so
$E\left[X^{2}\right]=E\left[\sum_{i=1}^{n} X_{i} \sum_{j=1}^{n} X_{j}\right]=\sum_{i=1}^{n} \sum_{j=1}^{n} E\left[X_{i} X_{j}\right]$
- $E\left[X_{i} X_{j}\right]$ is p if $i=j, p^{2}$ otherwise.

Compute variance with decomposition trick

- $X=\sum_{j=1}^{n} X_{j}$, so $E\left[X^{2}\right]=E\left[\sum_{i=1}^{n} X_{i} \sum_{j=1}^{n} X_{j}\right]=\sum_{i=1}^{n} \sum_{j=1}^{n} E\left[X_{i} X_{j}\right]$
- $E\left[X_{i} X_{j}\right]$ is p if $i=j, p^{2}$ otherwise.
- $\sum_{i=1}^{n} \sum_{j=1}^{n} E\left[X_{i} X_{j}\right]$ has n terms equal to p and $(n-1) n$ terms equal to p^{2}.

Compute variance with decomposition trick

- $X=\sum_{j=1}^{n} X_{j}$, so $E\left[X^{2}\right]=E\left[\sum_{i=1}^{n} X_{i} \sum_{j=1}^{n} X_{j}\right]=\sum_{i=1}^{n} \sum_{j=1}^{n} E\left[X_{i} X_{j}\right]$
- $E\left[X_{i} X_{j}\right]$ is p if $i=j, p^{2}$ otherwise.
- $\sum_{i=1}^{n} \sum_{j=1}^{n} E\left[X_{i} X_{j}\right]$ has n terms equal to p and $(n-1) n$ terms equal to p^{2}.
- So $E\left[X^{2}\right]=n p+(n-1) n p^{2}=n p+(n p)^{2}-n p^{2}$.

Compute variance with decomposition trick

- $X=\sum_{j=1}^{n} X_{j}$, so
$E\left[X^{2}\right]=E\left[\sum_{i=1}^{n} X_{i} \sum_{j=1}^{n} X_{j}\right]=\sum_{i=1}^{n} \sum_{j=1}^{n} E\left[X_{i} X_{j}\right]$
- $E\left[X_{i} X_{j}\right]$ is p if $i=j, p^{2}$ otherwise.
- $\sum_{i=1}^{n} \sum_{j=1}^{n} E\left[X_{i} X_{j}\right]$ has n terms equal to p and $(n-1) n$ terms equal to p^{2}.
- So $E\left[X^{2}\right]=n p+(n-1) n p^{2}=n p+(n p)^{2}-n p^{2}$.
- Thus
$\operatorname{Var}[X]=E\left[X^{2}\right]-E[X]^{2}=n p-n p^{2}=n p(1-p)=n p q$.

Outline

Bernoulli random variables

Properties: expectation and variance

More problems

Outline

Bernoulli random variables

Properties: expectation and variance

More problems

More examples

- An airplane seats 200, but the airline has sold 205 tickets. Each person, independently, has a .05 chance of not showing up for the flight. What is the probability that more than 200 people will show up for the flight?

More examples

- An airplane seats 200, but the airline has sold 205 tickets. Each person, independently, has a .05 chance of not showing up for the flight. What is the probability that more than 200 people will show up for the flight?
- $\sum_{j=201}^{205}\binom{205}{j} .95^{j} .05^{205-j}$

More examples

- An airplane seats 200, but the airline has sold 205 tickets. Each person, independently, has a .05 chance of not showing up for the flight. What is the probability that more than 200 people will show up for the flight?
- $\sum_{j=201}^{205}\binom{205}{j} .95^{j} .05^{205-j}$
- In a 100 person senate, forty people always vote for the Republicans' position, forty people always for the Democrats' position and 20 people just toss a coin to decide which way to vote. What is the probability that a given vote is tied?

More examples

- An airplane seats 200, but the airline has sold 205 tickets. Each person, independently, has a .05 chance of not showing up for the flight. What is the probability that more than 200 people will show up for the flight?
- $\sum_{j=201}^{205}\binom{205}{j} .95^{j} .05^{205-j}$
- In a 100 person senate, forty people always vote for the Republicans' position, forty people always for the Democrats' position and 20 people just toss a coin to decide which way to vote. What is the probability that a given vote is tied?
- $\binom{20}{10} / 2^{20}$

More examples

- An airplane seats 200, but the airline has sold 205 tickets. Each person, independently, has a .05 chance of not showing up for the flight. What is the probability that more than 200 people will show up for the flight?
- $\sum_{j=201}^{205}\binom{205}{j} .95^{j} .05^{205-j}$
- In a 100 person senate, forty people always vote for the Republicans' position, forty people always for the Democrats' position and 20 people just toss a coin to decide which way to vote. What is the probability that a given vote is tied?
- $\binom{20}{10} / 2^{20}$
- You invite 50 friends to a party. Each one, independently, has a $1 / 3$ chance of showing up. What is the probability that more than 25 people will show up?

More examples

- An airplane seats 200, but the airline has sold 205 tickets. Each person, independently, has a .05 chance of not showing up for the flight. What is the probability that more than 200 people will show up for the flight?
- $\sum_{j=201}^{205}\binom{205}{j} .95^{j} .05^{205-j}$
- In a 100 person senate, forty people always vote for the Republicans' position, forty people always for the Democrats' position and 20 people just toss a coin to decide which way to vote. What is the probability that a given vote is tied?
- $\binom{20}{10} / 2^{20}$
- You invite 50 friends to a party. Each one, independently, has a $1 / 3$ chance of showing up. What is the probability that more than 25 people will show up?
- $\sum_{j=26}^{50}\binom{50}{j}(1 / 3)^{j}(2 / 3)^{50-j} 61$

MIT OpenCourseWare https://ocw.mit.edu

18.600 Probability and Random Variables

Fall 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

