Spring 2014 18.440 Final Exam Solutions

1. (10 points) Let X be a uniformly distributed random variable on $[-1,1]$.
(a) Compute the variance of X^{2}. ANSWER:

$$
\operatorname{Var}\left(X^{2}\right)=E\left[\left(X^{2}\right)^{2}\right]-E\left[X^{2}\right]^{2}
$$

and

$$
\begin{gathered}
E\left[X^{2}\right]=\int_{-1}^{1}\left(x^{2} / 2\right) d x=\left.\frac{x^{3}}{6}\right|_{-1} ^{1}=1 / 3, \\
E\left[\left(X^{2}\right)^{2}\right]=E\left[X^{4}\right]=\int_{-1}^{1} \frac{x^{4}}{2} d x=\left.\frac{x^{5}}{10}\right|_{-1} ^{1}=1 / 5, \\
\text { so } \operatorname{Var}\left(X^{2}\right)=E\left[\left(X^{2}\right)^{2}\right]-E\left[X^{2}\right]^{2}=1 / 5-(1 / 3)^{2}=1 / 5-1 / 9=4 / 45 .
\end{gathered}
$$

(b) If X_{1}, \ldots, X_{n} are independent copies of X, and $Z=\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$, then what is the cumulative distribution function F_{Z} ? ANSWER: $F_{X_{1}}(a)=(a+1) / 2$ for $a \in[-1,1]$. Thus

$$
F_{Z}(a)=F_{X_{1}}(a) F_{X_{2}}(a) \ldots F_{X_{n}}(a)= \begin{cases}\left(\frac{a+1}{2}\right)^{n} & a \in[-1,1] \\ 0 & a<-1 \\ 1 & a>1\end{cases}
$$

2. (10 points) A certain bench at a popular park can hold up to two people. People in this park walk in pairs or alone, but nobody ever sits down next to a stranger. They are just not friendly in that particular way. Individuals or pairs who sit on a bench stay for at least 1 minute, and tend to stay for 4 minutes on average. Transition probabilities are as follows:
(i) If the bench is empty, then by the next minute it has a $1 / 2$ chance of being empty, a $1 / 4$ chance of being occupied by 1 person, and a $1 / 4$ chance of being occupied by 2 people.
(ii) If it has 1 person, then by the next minute it has $1 / 4$ chance of being empty and a $3 / 4$ chance of remaining occupied by 1 person.
(iii) If it has 2 people then by the next minute it has $1 / 4$ chance of being empty and a $3 / 4$ chance of remaining occupied by 2 people.
(a) Use E, S, D to denote respectively the states empty, singly occupied, and doubly occupied. Write the three-by-three Markov transition matrix for this problem, labeling columns and rows by E, S, and D. ANSWER:

$$
\left(\begin{array}{ccc}
1 / 2 & 1 / 4 & 1 / 4 \\
1 / 4 & 3 / 4 & 0 \\
1 / 4 & 0 & 3 / 4
\end{array}\right)
$$

(b) If the bench is empty, what is the probability it will be empty two minutes later? ANSWER: $\frac{1}{2} \frac{1}{2}+\frac{1}{4} \frac{1}{4}+\frac{1}{4} \frac{1}{4}=6 / 16=3 / 8$.
(c) Over the long term, what fraction of the time does the bench spend in each of the three states? ANSWER: We know

$$
\left(\begin{array}{lll}
E & S & D
\end{array}\right)\left(\begin{array}{ccc}
1 / 2 & 1 / 4 & 1 / 4 \\
1 / 4 & 3 / 4 & 0 \\
1 / 4 & 0 & 3 / 4
\end{array}\right)=\left(\begin{array}{lll}
E & S & D
\end{array}\right)
$$

and $E+S+D=1$. Solving gives $E=S=D=1 / 3$.
3. (10 points) Eight people throw their hats into a box and then randomly redistribute the hats among themselves (each person getting one hat, all 8! permutations equally likely). Let N be the number of people who get their own hats back. Compute the following:
(a) $E[N]$ ANSWER: $8 \times \frac{1}{8}=1$
(b) $P(N=7)$ ANSWER: 0 since if seven get their own hat, then the eighth must also.
(c) $P(N=0)$ ANSWER: This is an inclusion exclusion problem. Let A_{i} be the event that the i th person gets own hat. Then

$$
\begin{aligned}
P(N>0) & =P\left(A_{1} \cup A_{2} \cup A_{3} \cup \ldots \cup A_{8}\right) \\
& =\sum_{i} P\left(A_{i}\right)-\sum_{i<j} P\left(A_{i} \cap A_{j}\right)+\sum_{i<j<k} P\left(A_{i} \cap A_{j} \cap A_{k}\right)-\ldots \\
& =\binom{8}{1} \frac{1}{8}-\binom{8}{2} \frac{1}{8 \cdot 7}+\binom{8}{3} \frac{1}{8 \cdot 7 \cdot 6} \ldots \\
& =1 / 1!-1 / 2!+1 / 3!+\ldots-1 / 8!
\end{aligned}
$$

Thus,

$$
P(N=0)=1-P(N>0)=1-1 / 1!+1 / 2!-1 / 3!+1 / 4!+1 / 5!-1 / 6!+1 / 7!-1 / 8!\approx 1 / e
$$

4. (10 points) Suppose that $X_{1}, X_{2}, X_{3}, \ldots$ is an infinite sequence of independent random variables which are each equal to 5 with probability $1 / 2$ and -5 with probability $1 / 2$. Write $Y_{n}=\sum_{i=1}^{n} X_{i}$. Answer the following:
(a) What is the probability that Y_{n} reaches 65 before the first time that it reaches -15 ? ANSWER: Y_{n} is a martingale, so by the optional stopping theorem, we have $E\left[Y_{T}\right]=Y_{0}=1$ (where
$\left.T=\min \left\{n: Y_{n} \in\{-15,65\}\right\}\right)$. We thus find
$0=Y_{0}=E\left[Y_{T}\right]=65 p+(-15)(1-p)$ so $80 p=15$ and $p=3 / 16$.
(b) In which of the cases below is the sequence Z_{n} a martingale? (Just circle the corresponding letters.)
(i) $Z_{n}=5 X_{n}$
(ii) $Z_{n}=5^{-n} \prod_{i=1}^{n} X_{i}$
(iii) $Z_{n}=\prod_{i=1}^{n} X_{i}^{2}$
(iv) $Z_{n}=17$
(v) $Z_{n}=X_{n}-4$

ANSWER: (iv) only.
5. (10 points) Suppose that X and Y are independent exponential random variables with parameter $\lambda=2$. Write $Z=\min \{X, Y\}$
(a) Compute the probability density function for Z. ANSWER: Z is exponential with parameter $\lambda+\lambda=4$ so $F_{Z}(t)=4 e^{-4 t}$ for $t \geq 0$.
(b) Express $E\left[\cos \left(X^{2} Y^{3}\right)\right]$ as a double integral. (You don't have to explicitly evaluate the integral.) ANSWER:
$\int_{0}^{\infty} \int_{0}^{\infty} \cos \left(x^{2} y^{3}\right) \cdot 2 e^{-2 x} \cdot 2 e^{-2 y} d y d x$
6. (10 points) Let X_{1}, X_{2}, X_{3} be independent standard die rolls (i.e., each of $\{1,2,3,4,5,6\}$ is equally likely). Write $Z=X_{1}+X_{2}+X_{3}$.
(a) Compute the conditional probability $P\left[X_{1}=6 \mid Z=16\right]$. ANSWER: One can enumerate the six possibilities that add up to 16. These are $(4,6,6),(6,4,6),(6,6,4)$ and $(6,5,5),(5,6,5),(5,5,6)$. Of these, three have $X_{1}=6$, so $P\left[X_{1}=6 \mid Z=16\right]=1 / 2$.
(b) Compute the conditional expectation $E\left[X_{2} \mid Z\right]$ as a function of Z (for $Z \in\{3,4,5, \ldots, 18\})$. ANSWER: Note that $E\left[X_{1}+X_{2}+X_{3} \mid Z\right]=E[Z \mid Z]=Z$. So by symmetry and additivity of conditional expectation we find $E\left[X_{2} \mid Z\right]=Z / 3$.
7. (10 points) Suppose that X_{i} are i.i.d. uniform random variables on $[0,1]$.
(a) Compute the moment generating function for X_{1}. ANSWER: $E\left(e^{t X_{1}}\right)=\int_{0}^{1} e^{t x} d x=\frac{e^{t}-1}{t}$.
(b) Compute the moment generating function for the sum $\sum_{i=1}^{n} X_{i}$.

ANSWER: $\left(\frac{e^{t}-1}{t}\right)^{n}$
8. (10 points) Let X be a normal random variable with mean 0 and variance 5 .
(a) Compute $E\left[e^{X}\right]$. ANSWER: $E\left[e^{t X}\right]=\int_{-\infty}^{\infty} \frac{1}{\sqrt{5} \sqrt{2 \pi}} e^{-x^{2} /(2 \cdot 5)} e^{-x} d x$. A complete the square trick allows one to evaluate this and obtain $e^{5 / 2}$.
(b) Compute $E\left[X^{9}+X^{3}-50 X+7\right]$. ANSWER:
$E\left[X^{9}\right]=E\left[X^{7}\right]=E[X]=0$ by symmetry, so
$E\left[X^{9}+X^{3}-50 X+7\right]=7$.
9. (10 points) Let X and Y be independent random variables. Suppose X takes values $\{1,2\}$ each with probability $1 / 2$ and Y takes values $\{1,2,3\}$ each with probability $1 / 3$. Write $Z=X+Y$.
(a) Compute the entropies $H(X)$ and $H(Y)$. ANSWER:
$H(X)=-(1 / 2) \log \frac{1}{2}-(1 / 2) \log \frac{1}{2}=-\log \frac{1}{2}=\log 2$. Similarly, $H(Y)=-(1 / 3) \log \frac{1}{3}-(1 / 3) \log \frac{1}{3}-(1 / 3) \log \frac{1}{3}=-\log \frac{1}{3}=\log 3$.
(b) Compute $H(X, Z)$. ANSWER:
$H(X, Z)=H(X, Y)=H(X)+H(Y)=\log 6$.
(c) Compute $H\left(2^{X} 3^{Y}\right)$. ANSWER: Also $\log 6$, since each distinct (X, Y) pair gives a distinct number for $2^{X} 3^{Y}$.
10. (10 points) Suppose that $X_{1}, X_{2}, X_{3}, \ldots$ is an infinite sequence of independent random variables which are each equal to 2 with probability $1 / 3$ and .5 with probability $2 / 3$. Let $Y_{0}=1$ and $Y_{n}=\prod_{i=1}^{n} X_{i}$ for $n \geq 1$.
(a) What is the the probability that Y_{n} reaches 4 before the first time that it reaches $\frac{1}{64}$? ANSWER: Y_{n} is a martingale, so by the optional stopping theorem, $E\left[Y_{T}\right]=Y_{0}=1$ (where $\left.T=\min \left\{n: Y_{n} \in\{1 / 64,4\}\right\}\right)$. Thus $E\left[Y_{T}\right]=4 p+(1 / 64)(1-p)=1$. Solving yields $p=63 / 255=21 / 85$.
(b) Find the mean and variance of $\log Y_{400}$. ANSWER: $\log X_{1}$ is $\log 2$ with probability $1 / 3$ and $-\log 2$ with probability $2 / 3$. So

$$
E\left[\log X_{1}\right]=\frac{1}{3} \log 2+\frac{2}{3}(-\log 2)=\frac{-\log 2}{3} .
$$

Similarly,

$$
E\left[\left(\log X_{1}\right)^{2}\right]=\frac{1}{3}(\log 2)^{2}+\frac{2}{3}(-\log 2)^{2}=(\log 2)^{2} .
$$

Thus,
$\operatorname{Var}\left(X_{1}\right)=E\left[\left(\log X_{i}\right)^{2}\right]-E\left[\log X_{i}\right]^{2}=(\log 2)^{2}-\left(\frac{-\log 2}{3}\right)^{2}=(\log 2)^{2}\left(1-\frac{1}{9}\right)=\frac{8}{9}(\log 2)^{2}$.
Multiplying, we find $E\left[\log Y_{400}\right]=400 E\left[\log X_{1}\right]=-400(\log 2) / 3$. And $\operatorname{Var}\left[\log Y_{400}\right]=(3200 / 9)(\log 2)^{2}$.
(c) Compute $\mathbb{E} Y_{100}$. ANSWER: Since Y_{n} is a martingale, we have $E\left[Y_{100}\right]=1$. This can also be derived by noting that for independent random variables, the expectation of a product is the product of the expectations.

MIT OpenCourseWare
https://ocw.mit.edu

18.600 Probability and Random Variables

Fall 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

