18.600 Midterm 2 Solutions, Spring 2019: 50 minutes, 100 points

1. (10 points) Ramona enters a basketball free throw shooting contest and takes 100 shots. She makes each shot independently with probability .8 and misses with probability .2 Let X be the number of shots she makes.
(a) Compute the expectation and variance of X. ANSWER: $E[X]=n p=80$ and $\operatorname{Var}(X)=n p q=16$
(b) Use a normal random variable to estimate the probability that she makes between 76 and 84 shots total. You may use the function

$$
\Phi(a)=\int_{-\infty}^{a} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x
$$

in your answer. ANSWER: $\operatorname{SD}(X)=4$ and 76 is one SD below mean, 84 one SD above mean, so normal approximation gives $\Phi(1)-\Phi(-1) \approx .68$.
2. (20 points) Becky's Bagel Bakery does a brisk business. Customers arrive at random times, and each customer immediately purchases one type of bagel. The times C_{1}, C_{2}, \ldots at which cinnamon raisin bagels are sold form a Poisson point process with a rate of 1 per minute. The times P_{1}, P_{2}, \ldots at which pumpernickel bagels are sold form an independent Poisson point process with rate 2 per minute. And the times E_{1}, E_{2}, \ldots at which everything bagels are sold form a Poisson point process with rate 3 per minute. Compute the following:
(a) The probability density function for C_{3}. ANSWER: Sum of three exponentials is Gamma with parameter $n=3$ and $\lambda=1$. So answer is $x^{2} e^{-x} / 2$ on $[0, \infty)$.
(b) The probability density function for $X=\min \left\{C_{1}, P_{1}, E_{1}\right\}$. ANSWER: Minimum of exponentials with rates $\lambda_{1}=1, \lambda_{2}=2, \lambda_{3}=3$ is itself exponential with rate $\lambda_{1}+\lambda_{2}+\lambda_{3}=6$. So answer is $6 e^{-6 x}$ on $[0, \infty)$.
(c) The probability that exactly 10 bagels (altogether) are sold during the first 2 minutes the bakery is open. ANSWER: The set of all bagels sale times is a Poisson point process with parameter 6. So number of points sold in first two minutes is Poisson with $\lambda=12$. Probability to sell 10 is $e^{-\lambda} \lambda^{k} / k!=e^{-12} 12^{10} / 10$!.
(d) The expectation of $\cos \left(P_{1}+E_{1}^{2}\right)$. (You can leave this as a double integral - no need to evaluate it.) ANSWER: P_{1} exponential with parameter 2 , and E_{1} is exponential with parameter 3. So joint density is $2 e^{-2 x} 3 e^{-3 y}$. So for general function $g(x, y)$ we can write

$$
E[g(x, y)]=\int_{0}^{\infty} \int_{0}^{\infty} 2 e^{-2 x} 3 e^{-3 y} g(x, y) d x d y
$$

which in our case gives

$$
\int_{0}^{\infty} \int_{0}^{\infty} 2 e^{-2 x} 3 e^{-3 y} \cos \left(x+y^{2}\right) d x d y
$$

3. (10 points) Suppose that the pair of real random variables X, Y has joint density function $f(x, y)=\frac{1}{\pi^{2}\left(1+x^{2}\right)\left(1+y^{2}\right)}$.
(a) Compute the probability density function for $\frac{X+Y}{2}$. ANSWER: $f(x, y)=\left(\frac{1}{\pi\left(1+x^{2}\right)}\right)\left(\frac{1}{\pi\left(1+y^{2}\right)}\right)$ so X and Y are independent Cauchy random variables. Hence their average is also Cauchy, with density $\frac{1}{\pi\left(1+x^{2}\right)}$.
(b) Compute the probability $P(X>Y+2)$. ANSWER: Note that $(X-Y) / 2$ has same probability density function as $(X+Y) / 2$ (since density function for Y is symmetric) so it is Cauchy. Hence $P(X>Y+2)=P(X-Y>2)=P\left(\frac{X+Y}{2}>1\right)$ is the probability that a Cauchy random variable is greater than 1 . Recalling spinning flashlight story, this is probability that $\theta>\pi / 4$ when θ is uniform on $[-\pi / 2, \pi / 2]$, and this is $1 / 4$.
4. (20 points) Suppose that $X_{1}, X_{2}, X_{3}, X_{4}$ are independent random variables, each of which has density function $f(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$. Compute the following:
(a) The correlation coefficient $\rho\left(X_{1}+X_{2}+X_{3}, X_{2}+X_{3}+X_{4}\right)$. ANSWER:

$$
\operatorname{Cov}\left(X_{i}, X_{j}\right)= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

so bilinearity of covariance gives $\operatorname{Cov}\left(X_{1}+X_{2}+X_{3}, X_{2}+X_{3}+X_{4}\right)=2$. Variance additivity for independent random variables gives $\operatorname{Var}\left(X_{1}+X_{2}+X_{3}\right)=\operatorname{Var}\left(X_{2}+X_{3}+X_{4}\right)=3$. So

$$
\rho\left(X_{1}+X_{2}+X_{3}, X_{2}+X_{3}+X_{4}\right)=\frac{2}{\sqrt{3 \cdot 3}}=\frac{2}{3} .
$$

(b) The probability that $\min \left\{X_{1}, X_{2}\right\}>\max \left\{X_{3}, X_{4}\right\}$. ANSWER: This is the probability that X_{1} and X_{2} are the "top two". There are $\binom{4}{2}$ pairs which could be "top two" and by symmetry each such pair is equally likely, so answer is $1 /\binom{4}{2}=1 / 6$. Alternatively, one may consider that of 24 permutations of $X_{1}, X_{2}, X_{3}, X_{4}$, exactly four satisfy the constraint.
(c) The probability density function for $X_{1}+X_{2}+X_{3}$. ANSWER: Sum of independent normals is also normal (with mean and variance given by the sum of the respective means and variances of the individual terms). Thus $X_{1}+X_{2}+X_{3}$ is normal with mean $\mu=0$, variance $\sigma^{2}=3$. So answer is $\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)}=\frac{1}{\sqrt{3} \sqrt{2 \pi}} e^{-x^{2} / 6}$.
(d) The probability $P\left(X_{1}^{2}+X_{3}^{2} \leq 2\right)$. Give an explicit value. ANSWER: The joint density of X_{1} and X_{3} is $f_{X_{1}, X_{3}}(x, y)=f_{X_{1}}(x) f_{X_{3}}(y)=\frac{1}{2 \pi} e^{-\left(x^{2}+y^{2}\right) / 2}$. We have to integrate this over region where $x^{2}+y^{2} \leq 2$ which is the disk of radius $\sqrt{2}$. This can be done in polar coordinates: answer is

$$
\int_{0}^{\sqrt{2}} \int_{0}^{2 \pi} e^{-r^{2} / 2} d \theta r d r=\int_{0}^{\sqrt{2}} e^{-r^{2} / 2} r d r=-e_{0}^{-r^{2} / 2}=1-e^{-1}
$$

5. (10 points) Imagine that A, B, C and D are independent uniform random variables on $[0,1]$. You then find out that A is the third largest of those random variables.
(a) Given this new information, give a revised probability density function f_{A} for A (i.e., a Bayesian posterior). NOTE: If you remember what this means, you may use the fact that a Beta (a, b) random variable has expectation $a /(a+b)$ and density $x^{a-1}(1-x)^{b-1} / B(a, b)$, where $B(a, b)=(a-1)!(b-1)!/(a+b-1)!$. ANSWER: Answer is Beta with $a-1$ equal to number of points below A (that's 1) and $b-1$ equal to number of points above A (that's 2). So $a=2$ and $b=3$ and answer is $x(1-x)^{2} / B(2,3)$ on $[0,1]$. Can compute $B(2,3)=1!2!/ 4!=1 / 12$, so answer is $12 x(1-x)^{2}$.
(b) According to your Bayesian prior, the expected value of A was $1 / 2$. Given that A was the third largest of the random variables, what is your revised expectation of the value A ?
ANSWER: $a /(a+b)=2 / 5$, by the expectation formula given.
6. (15 points) Suppose that the pair (X, Y) is uniformly distributed on the triangle $T=\{(x, y): 0 \leq x, 0 \leq y, x+y \leq 1\}$. That is, the joint density function is given by

$$
f_{X, Y}(x, y)=\left\{\begin{array}{ll}
2 & (x, y) \in T \\
0 & (x, y) \notin T
\end{array} .\right.
$$

(a) Compute the marginal density function f_{X}. ANSWER: $f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y$. If $x \in[0,1]$, this value is 2 times length of intersection of vertical line through $(x, 0)$ with T, which is $1-x$. So answer is $f_{X}(x)= \begin{cases}2-2 x & x \in[0,1] \\ 0 & x \notin[0,1]\end{cases}$
(b) Compute the probability $P(X<2 Y)$. ANSWER: Using figure shown, area of whole triangle is $1 / 2$, area of subtriangle on which $X<2 Y$ is $1 / 3$, so answer is $(1 / 3) /(1 / 2)=2 / 3$.
(c) Compute the conditional density function $f_{X \mid Y=.5}(x)$. ANSWER: $f_{Y}(1 / 2)=f_{X}(1 / 2)=1$ so

$$
f_{X \mid Y=.5}(x)=f(x, 1 / 2) / f_{Y}(1 / 2)=f(x, 1 / 2)=\left\{\begin{array}{ll}
2 & x \in[0,1 / 2] \\
0 & x \notin[0,2]
\end{array} .\right.
$$

(Visually, given that (X, Y) is on horizontal dotted line, X is uniform on $[0,1 / 2]$.)
7. (15 points) Suppose that X is an exponential random variable with parameter 1 and set $Z=X^{5}$.
(a) Compute the cumulative distribution function $F_{Z}(a)$ in terms of a. ANSWER:
$F_{X}(a)=\int_{0}^{a} e^{-x} d x=1-e^{-a}$. And $F_{Z}(a)=P(Z \leq a)=P\left(X \leq a^{1 / 5}\right)=F_{X}\left(a^{1 / 5}\right)=1-e^{-a^{1 / 5}}$
(b) Compute the expectation $E\left[Z^{2}\right]$. ANSWER: $E\left[Z^{2}\right]=E\left[X^{10}\right]=\int_{0}^{\infty} e^{-x} x^{10} d x=10$!. (Recall this is one of our definitions for 10!.)
(c) Compute the conditional probability $P(Z>32 \mid Z>1)$. ANSWER:

$$
P(Z>32 \mid Z>1)=P(X>2 \mid X>1)=P(X>1)=e^{-1} .
$$

MIT OpenCourseWare
https://ocw.mit.edu

18.600 Probability and Random Variables

Fall 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

