18.600: Lecture 37

Review: practice problems

Scott Sheffield

MIT

Expectation and variance

- Eight athletic teams are ranked 1 through 8 after season one, and ranked 1 through 8 again after season two. Assume that each set of rankings is chosen uniformly from the set of 8 ! possible rankings and that the two rankings are independent. Let N be the number of teams whose rank does not change from season one to season two. Let N_{+}the number of teams whose rank improves by exactly two spots. Let N_{-}be the number whose rank declines by exactly two spots. Compute the following:

Expectation and variance

- Eight athletic teams are ranked 1 through 8 after season one, and ranked 1 through 8 again after season two. Assume that each set of rankings is chosen uniformly from the set of 8 ! possible rankings and that the two rankings are independent. Let N be the number of teams whose rank does not change from season one to season two. Let N_{+}the number of teams whose rank improves by exactly two spots. Let N_{-}be the number whose rank declines by exactly two spots. Compute the following:
- $E[N], E\left[N_{+}\right]$, and $E\left[N_{-}\right]$

Expectation and variance

- Eight athletic teams are ranked 1 through 8 after season one, and ranked 1 through 8 again after season two. Assume that each set of rankings is chosen uniformly from the set of 8 ! possible rankings and that the two rankings are independent. Let N be the number of teams whose rank does not change from season one to season two. Let N_{+}the number of teams whose rank improves by exactly two spots. Let N_{-}be the number whose rank declines by exactly two spots. Compute the following:
- $E[N], E\left[N_{+}\right]$, and $E\left[N_{-}\right]$
- $\operatorname{Var}[N]$

Expectation and variance

- Eight athletic teams are ranked 1 through 8 after season one, and ranked 1 through 8 again after season two. Assume that each set of rankings is chosen uniformly from the set of 8 ! possible rankings and that the two rankings are independent. Let N be the number of teams whose rank does not change from season one to season two. Let N_{+}the number of teams whose rank improves by exactly two spots. Let N_{-}be the number whose rank declines by exactly two spots. Compute the following:
- $E[N], E\left[N_{+}\right]$, and $E\left[N_{-}\right]$
- $\operatorname{Var}[N]$
- $\operatorname{Var}\left[N_{+}\right]$

Expectation and variance answers

- Let N_{i} be 1 if team ranked i th first season remains i th second seasons. Then $E[N]=E\left[\sum_{i=1}^{8} N_{i}\right]=8 \cdot \frac{1}{8}=1$. Similarly, $E\left[N_{+}\right]=E\left[N_{-}\right]=6 \cdot \frac{1}{8}=3 / 4$

Expectation and variance answers

- Let N_{i} be 1 if team ranked i th first season remains i th second seasons. Then $E[N]=E\left[\sum_{i=1}^{8} N_{i}\right]=8 \cdot \frac{1}{8}=1$. Similarly, $E\left[N_{+}\right]=E\left[N_{-}\right]=6 \cdot \frac{1}{8}=3 / 4$
- $\operatorname{Var}[N]=E\left[N^{2}\right]-E[N]^{2}$ and $E\left[N^{2}\right]=E\left[\sum_{i=1}^{8} \sum_{j=1}^{8} N_{i} N_{j}\right]=8 \cdot \frac{1}{8}+56 \cdot \frac{1}{56}=2$.

Expectation and variance answers

- Let N_{i} be 1 if team ranked i th first season remains i th second seasons. Then $E[N]=E\left[\sum_{i=1}^{8} N_{i}\right]=8 \cdot \frac{1}{8}=1$. Similarly, $E\left[N_{+}\right]=E\left[N_{-}\right]=6 \cdot \frac{1}{8}=3 / 4$
- $\operatorname{Var}[N]=E\left[N^{2}\right]-E[N]^{2}$ and $E\left[N^{2}\right]=E\left[\sum_{i=1}^{8} \sum_{j=1}^{8} N_{i} N_{j}\right]=8 \cdot \frac{1}{8}+56 \cdot \frac{1}{56}=2$.
- N_{+}^{i} be 1 if team ranked i th has rank improve to $(i-2)$ th for second seasons. Then $E\left[\left(N_{+}\right)^{2}\right]=E\left[\sum_{3=1}^{8} \sum_{3=1}^{8} N_{+}^{i} N_{+}^{j}\right]=6 \cdot \frac{1}{8}+30 \cdot \frac{1}{56}=9 / 7$, so $\operatorname{Var}\left[N_{+}\right]=9 / 7-(3 / 4)^{2}$.

Conditional distributions

- Roll ten dice. Find the conditional probability that there are exactly 4 ones, given that there are exactly 4 sixes.

Conditional distributions answers

- Straightforward approach: $P(A \mid B)=P(A B) / P(B)$.

Conditional distributions answers

- Straightforward approach: $P(A \mid B)=P(A B) / P(B)$.
- Numerator: is $\frac{\binom{10}{4}\binom{6}{4} 4^{2}}{6^{10}}$. Denominator is $\frac{\binom{10}{4} 5^{6}}{6^{10}}$.

Conditional distributions answers

- Straightforward approach: $P(A \mid B)=P(A B) / P(B)$.
- Numerator: is $\frac{\binom{10}{4}\binom{6}{4} 4^{2}}{6^{10}}$. Denominator is $\frac{\binom{10}{4} 5^{6}}{6^{10}}$.
- Ratio is $\binom{6}{4} 4^{2} / 5^{6}=\binom{6}{4}\left(\frac{1}{5}\right)^{4}\left(\frac{4}{5}\right)^{2}$.

Conditional distributions answers

- Straightforward approach: $P(A \mid B)=P(A B) / P(B)$.
- Numerator: is $\frac{\binom{10}{4}\binom{6}{4} 4^{2}}{6^{10}}$. Denominator is $\frac{\binom{10}{4} 5^{6}}{6^{10}}$.
- Ratio is $\binom{6}{4} 4^{2} / 5^{6}=\binom{6}{4}\left(\frac{1}{5}\right)^{4}\left(\frac{4}{5}\right)^{2}$.
- Alternate solution: first condition on location of the 6's and then use binomial theorem.

Poisson point processes

- Suppose that in a certain town earthquakes are a Poisson point process, with an average of one per decade, and volcano eruptions are an independent Poisson point process, with an average of two per decade. The V be length of time (in decades) until the first volcano eruption and E the length of time (in decades) until the first earthquake. Compute the following:
- $\mathbb{E}\left[E^{2}\right]$ and $\operatorname{Cov}[E, V]$.

Poisson point processes

- Suppose that in a certain town earthquakes are a Poisson point process, with an average of one per decade, and volcano eruptions are an independent Poisson point process, with an average of two per decade. The V be length of time (in decades) until the first volcano eruption and E the length of time (in decades) until the first earthquake. Compute the following:
- $\mathbb{E}\left[E^{2}\right]$ and $\operatorname{Cov}[E, V]$.
- The expected number of calendar years, in the next decade (ten calendar years), that have no earthquakes and no volcano eruptions.

Poisson point processes

- Suppose that in a certain town earthquakes are a Poisson point process, with an average of one per decade, and volcano eruptions are an independent Poisson point process, with an average of two per decade. The V be length of time (in decades) until the first volcano eruption and E the length of time (in decades) until the first earthquake. Compute the following:
- $\mathbb{E}\left[E^{2}\right]$ and $\operatorname{Cov}[E, V]$.
- The expected number of calendar years, in the next decade (ten calendar years), that have no earthquakes and no volcano eruptions.
- The probability density function of $\min \{E, V\}$.

Poisson point processes answers

- $E\left[E^{2}\right]=2$ and $\operatorname{Cov}[E, V]=0$.

Poisson point processes answers

- $E\left[E^{2}\right]=2$ and $\operatorname{Cov}[E, V]=0$.
- Probability of no earthquake or eruption in first year is $e^{-(2+1) \frac{1}{10}}=e^{-.3}$ (see next part). Same for any year by memoryless property. Expected number of quake/eruption-free years is $10 e^{-.3} \approx 7.4$.

Poisson point processes answers

- $E\left[E^{2}\right]=2$ and $\operatorname{Cov}[E, V]=0$.
- Probability of no earthquake or eruption in first year is $e^{-(2+1) \frac{1}{10}}=e^{-.3}$ (see next part). Same for any year by memoryless property. Expected number of quake/eruption-free years is $10 e^{-.3} \approx 7.4$.
- Probability density function of $\min \{E, V\}$ is $3 e^{-(2+1) x}$ for $x \geq 0$, and 0 for $x<0$.

MIT OpenCourseWare https://ocw.mit.edu

18.600 Probability and Random Variables

Fall 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

