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I We may assume
R
R f (x)dx =

R∞
−∞ f (x)dx = 1 and f is

non-negative.

I Probability of interval [a, b] is given by
R b
a f (x)dx , the area

under f between a and b.

I Probability of any single point is zero.

I Define cumulative distribution function
F (a) = FX (a) := P{X < a} = P{X ≤ a} =

R a
−∞ f (x)dx .

Continuous random variables 

I Say X is a continuous random variable if there exists a 
probability density function f = fX on R such that R R 
P{X ∈ B} = f (x)dx := 1B (x)f (x)dx . B 
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I Probability of interval [a, b] is given by
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under f between a and b.

I Probability of any single point is zero.

I Define cumulative distribution function
F (a) = FX (a) := P{X < a} = P{X ≤ a} =

R a
−∞ f (x)dx .

Continuous random variables 
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probability density function f = fX on R such that R R 
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non-negative. 
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I Probability of any single point is zero.

I Define cumulative distribution function
F (a) = FX (a) := P{X < a} = P{X ≤ a} =

R a
−∞ f (x)dx .

Continuous random variables 

I Say X is a continuous random variable if there exists a 
probability density function f = fX on R such that R R 
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I Define cumulative distribution function
F (a) = FX (a) := P{X < a} = P{X ≤ a} =

R a
−∞ f (x)dx .

Continuous random variables 

I Say X is a continuous random variable if there exists a 
probability density function f = fX on R such that R R 
P{X ∈ B} = B Rf (x)dx := 1B (x)f (x)dx . R ∞ 

I We may assume R f (x)dx = f (x)dx = 1 and f is −∞ 
non-negative. R b 

I Probability of interval [a, b] is given by f (x)dx , the area a 
under f between a and b. 

I Probability of any single point is zero. 
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Continuous random variables 

I Say X is a continuous random variable if there exists a 
probability density function f = fX on R such that R R 
P{X ∈ B} = B Rf (x)dx := 1B (x)f (x)dx . R ∞ 

I We may assume R f (x)dx = f (x)dx = 1 and f is −∞ 
non-negative. R b 

I Probability of interval [a, b] is given by f (x)dx , the area a 
under f between a and b. 

I Probability of any single point is zero. 

I Define cumulative distribution function R a 
F (a) = FX (a) := P{X < a} = P{X ≤ a} = f (x)dx . −∞ 
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I What is P{X < 3/2}?
I What is P{X = 3/2}?
I What is P{1/2 < X < 3/2}?
I What is P{X ∈ (0, 1) ∪ (3/2, 5)}?
I What is F?

I F (a) = FX (a) =

⎧⎪⎨⎪⎩
0 a ≤ 0

a/2 0 < a < 2

1 a ≥ 2

I In general P(a ≤ x ≤ b) = F (b)− F (x).

I We say that X is uniformly distributed on [0, 2].

Simple example 

( 
1/2 x ∈ [0, 2] 

I Suppose f (x) = 
0 x 6∈ [0, 2]. 
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I What is P{1/2 < X < 3/2}?
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I What is F?
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I F (a) = FX (a) =
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I In general P(a ≤ x ≤ b) = F (b)− F (x).

I We say that X is uniformly distributed on [0, 2].
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I What is P{X < 3/2}?
I What is P{X = 3/2}?
I What is P{1/2 < X < 3/2}?
I What is F?

I FX (a) =

⎧⎪⎨⎪⎩
0 a ≤ 0

a2/4 0 < a < 2

1 a ≥ 2

Another example 

( 
x/2 x ∈ [0, 2] 

I Suppose f (x) = 
0 0 6∈ [0, 2]. 
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I How should we define E [X ] when X is a continuous random
variable?

I Answer: E [X ] =
R∞
−∞ f (x)xdx .

I Recall that when X was a discrete random variable, with
p(x) = P{X = x}, we wrote

E [g(X )] =
X

x :p(x)>0

p(x)g(x).

I What is the analog when X is a continuous random variable?

I Answer: we will write E [g(X )] =
R∞
−∞ f (x)g(x)dx .

Expectations of continuous random variables 

I Recall that when X was a discrete random variable, with 
p(x) = P{X = x}, we wrote X 

E [X ] = p(x)x . 
x :p(x)>0 
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I Recall that when X was a discrete random variable, with
p(x) = P{X = x}, we wrote
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X
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Expectations of continuous random variables 

I Recall that when X was a discrete random variable, with 
p(x) = P{X = x}, we wrote X 
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I We can write Var[X ] = E [(X − µ)2], same as in the discrete
case.

I Next, if g = g1 + g2 then
E [g(X )] =

R
g1(x)f (x)dx +

R
g2(x)f (x)dx =R �

g1(x) + g2(x)
�
f (x)dx = E [g1(X )] + E [g2(X )].

I Furthermore, E [ag(X )] = aE [g(X )] when a is a constant.

I Just as in the discrete case, we can expand the variance
expression as Var[X ] = E [X 2 − 2µX + µ2] and use additivity
of expectation to say that
Var[X ] = E [X 2]− 2µE [X ] + E [µ2] = E [X 2]− 2µ2 + µ2 =
E [X 2]− E [X ]2.

I This formula is often useful for calculations.

Variance of continuous random variables 

I Suppose X is a continuous random variable with mean µ. 
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I Just as in the discrete case, we can expand the variance
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I This formula is often useful for calculations.

Variance of continuous random variables 

I Suppose X is a continuous random variable with mean µ. 

I We can write Var[X ] = E [(X − µ)2], same as in the discrete 
case. 

I Next, if g = g1 + g2 then R R 
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I Just as in the discrete case, we can expand the variance 
expression as Var[X ] = E [X 2 − 2µX + µ2] and use additivity 
of expectation to say that 

2 Var[X ] = E [X 2] − 2µE [X ] + E [µ2] = E [X 2] − 2µ2 + µ = 
E [X 2] − E [X ]2 . 
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Variance of continuous random variables 

I Suppose X is a continuous random variable with mean µ. 

I We can write Var[X ] = E [(X − µ)2], same as in the discrete 
case. 

I Next, if g = g1 + g2 then R R 
E [g(X )] = g1(x)f (x)dx + g2(x)f (x)dx = R � � 

g1(x) + g2(x) f (x)dx = E [g1(X )] + E [g2(X )]. 

I Furthermore, E [ag(X )] = aE [g(X )] when a is a constant. 
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of expectation to say that 

2 Var[X ] = E [X 2] − 2µE [X ] + E [µ2] = E [X 2] − 2µ2 + µ = 
E [X 2] − E [X ]2 . 

I This formula is often useful for calculations. 37
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I Then for any 0 ≤ a ≤ b ≤ 1 we have P{X ∈ [a, b]} = b − a.

I Intuition: all locations along the interval [0, 1] equally likely.

I Say that X is a uniform random variable on [0, 1] or that X
is sampled uniformly from [0, 1].

Uniform random variables on [0, 1] 

I Suppose X is a random variable with probability density ( 
1 x ∈ [0, 1] 

function f (x) = 
0 x 6∈ [0, 1]. 
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I Intuition: all locations along the interval [0, 1] equally likely.

I Say that X is a uniform random variable on [0, 1] or that X
is sampled uniformly from [0, 1].
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I Say that X is a uniform random variable on [0, 1] or that X
is sampled uniformly from [0, 1].

Uniform random variables on [0, 1] 

I Suppose X is a random variable with probability density ( 
1 x ∈ [0, 1] 

function f (x) = 
0 x 6∈ [0, 1]. 

I Then for any 0 ≤ a ≤ b ≤ 1 we have P{X ∈ [a, b]} = b − a. 

I Intuition: all locations along the interval [0, 1] equally likely. 
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Uniform random variables on [0, 1] 

I Suppose X is a random variable with probability density ( 
1 x ∈ [0, 1] 

function f (x) = 
0 x 6∈ [0, 1]. 

I Then for any 0 ≤ a ≤ b ≤ 1 we have P{X ∈ [a, b]} = b − a. 

I Intuition: all locations along the interval [0, 1] equally likely. 

I Say that X is a uniform random variable on [0, 1] or that X 
is sampled uniformly from [0, 1]. 
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I What is E [X ]?
I Guess 1/2 (since 1/2 is, you know, in the middle).

I Indeed,
R∞
−∞ f (x)xdx =

R 1
0 xdx = x2

2

1

0
= 1/2.

I What is the general moment E [X k ] for k ≥ 0?
I Answer: 1/(k + 1).
I What would you guess the variance is? Expected square of

distance from 1/2?
I It’s obviously less than 1/4, but how much less?
I VarE [X 2]− E [X ]2 = 1/3− 1/4 = 1/12.

���

Properties of uniform random variable on [0, 1] 

I Suppose X is a random variable with probability density ( 

function f (x) = 
1 

0 

x ∈ [0, 1] 

x 6∈ [0, 1], 
which implies 

⎧ ⎪0 ⎨ a < 0 

FX (a) = a ⎪⎩ 
1 

a ∈ [0, 1] . 

a > 1 
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I Indeed,
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x 6∈ [0, 1], 
which implies 

⎧ ⎪0 ⎨ a < 0 

FX (a) = a ⎪⎩ 
1 

a ∈ [0, 1] . 

a > 1 

I What is E [X ]? 
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I Indeed,
R∞
−∞ f (x)xdx =

R 1
0 xdx = x2

2

1

0
= 1/2.

I What is the general moment E [X k ] for k ≥ 0?
I Answer: 1/(k + 1).
I What would you guess the variance is? Expected square of

distance from 1/2?
I It’s obviously less than 1/4, but how much less?
I VarE [X 2]− E [X ]2 = 1/3− 1/4 = 1/12.

���

Properties of uniform random variable on [0, 1] 

I Suppose X is a random variable with probability density ( 

function f (x) = 
1 

0 

x ∈ [0, 1] 

x 6∈ [0, 1], 
which implies 

⎧ ⎪0 ⎨ a < 0 

FX (a) = a ⎪⎩ 
1 

a ∈ [0, 1] . 

a > 1 

I What is E [X ]? 
I Guess 1/2 (since 1/2 is, you know, in the middle). 
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I What is the general moment E [X k ] for k ≥ 0?
I Answer: 1/(k + 1).
I What would you guess the variance is? Expected square of

distance from 1/2?
I It’s obviously less than 1/4, but how much less?
I VarE [X 2]− E [X ]2 = 1/3− 1/4 = 1/12.

���

Properties of uniform random variable on [0, 1] 

I Suppose X is a random variable with probability density ( 

function f (x) = 
1 

0 

x ∈ [0, 1] 

x 6∈ [0, 1], 
which implies 

⎧ ⎪0 ⎨ a < 0 

FX (a) = a ⎪⎩ 
1 

a ∈ [0, 1] . 

a > 1 

I What is E [X ]? 
I Guess 1/2 (since 1/2 is, you know, in the middle). 

1 R ∞ R 1 2 
I Indeed, f (x)xdx = xdx = x = 1/2. −∞ 0 2 0 
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I Answer: 1/(k + 1).
I What would you guess the variance is? Expected square of

distance from 1/2?
I It’s obviously less than 1/4, but how much less?
I VarE [X 2]− E [X ]2 = 1/3− 1/4 = 1/12.

���

Properties of uniform random variable on [0, 1] 

I Suppose X is a random variable with probability density ( 

function f (x) = 
1 

0 

x ∈ [0, 1] 

x 6∈ [0, 1], 
which implies 

⎧ ⎪0 ⎨ a < 0 

FX (a) = a ⎪⎩ 
1 

a ∈ [0, 1] . 

a > 1 

I What is E [X ]? 
I Guess 1/2 (since 1/2 is, you know, in the middle). 

1 R ∞ R 1 2 x I Indeed, f (x)xdx = xdx = = 1/2. −∞ 0 2 0 
I What is the general moment E [X k ] for k ≥ 0? 
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I What would you guess the variance is? Expected square of
distance from 1/2?

I It’s obviously less than 1/4, but how much less?
I VarE [X 2]− E [X ]2 = 1/3− 1/4 = 1/12.

���

Properties of uniform random variable on [0, 1] 

I Suppose X is a random variable with probability density ( 

function f (x) = 
1 

0 

x ∈ [0, 1] 

x 6∈ [0, 1], 
which implies 

⎧ ⎪0 ⎨ a < 0 

FX (a) = a ⎪⎩ 
1 

a ∈ [0, 1] . 

a > 1 

I What is E [X ]? 
I Guess 1/2 (since 1/2 is, you know, in the middle). 

1 R ∞ R 1 2 x I Indeed, f (x)xdx = xdx = = 1/2. −∞ 0 2 0 
I What is the general moment E [X k ] for k ≥ 0? 
I Answer: 1/(k + 1). 
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I It’s obviously less than 1/4, but how much less?
I VarE [X 2]− E [X ]2 = 1/3− 1/4 = 1/12.

���

Properties of uniform random variable on [0, 1] 

I Suppose X is a random variable with probability density ( 

function f (x) = 
1 

0 

x ∈ [0, 1] 

x 6∈ [0, 1], 
which implies 

⎧ ⎪0 ⎨ a < 0 

FX (a) = a ⎪⎩ 
1 

a ∈ [0, 1] . 

a > 1 

I What is E [X ]? 
I Guess 1/2 (since 1/2 is, you know, in the middle). 

1 R ∞ R 1 2 x I Indeed, f (x)xdx = xdx = = 1/2. −∞ 0 2 0 
I What is the general moment E [X k ] for k ≥ 0? 
I Answer: 1/(k + 1). 
I What would you guess the variance is? Expected square of 

distance from 1/2? 50



I VarE [X 2]− E [X ]2 = 1/3− 1/4 = 1/12.

���

Properties of uniform random variable on [0, 1] 

I Suppose X is a random variable with probability density ( 

function f (x) = 
1 

0 

x ∈ [0, 1] 

x 6∈ [0, 1], 
which implies 

⎧ ⎪0 ⎨ a < 0 

FX (a) = a ⎪⎩ 
1 

a ∈ [0, 1] . 

a > 1 

I What is E [X ]? 
I Guess 1/2 (since 1/2 is, you know, in the middle). 

1 R ∞ R 1 2 
I Indeed, f (x)xdx = xdx = x = 1/2. −∞ 0 2 0 
I What is the general moment E [X k ] for k ≥ 0? 
I Answer: 1/(k + 1). 
I What would you guess the variance is? Expected square of 

distance from 1/2? 
I It’s obviously less than 1/4, but how much less? 
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Properties of uniform random variable on [0, 1] 

I Suppose X is a random variable with probability density ( 

function f (x) = 
1 

0 

x ∈ [0, 1] 

x 6∈ [0, 1], 
which implies 

⎧ ⎪0 ⎨ a < 0 

FX (a) = a ⎪⎩ 
1 

a ∈ [0, 1] . 

a > 1 

I What is E [X ]? 
I Guess 1/2 (since 1/2 is, you know, in the middle). 

1 R ∞ R 1 2 
I Indeed, f (x)xdx = xdx = x = 1/2. −∞ 0 2 0 
I What is the general moment E [X k ] for k ≥ 0? 
I Answer: 1/(k + 1). 
I What would you guess the variance is? Expected square of 

distance from 1/2? 
I It’s obviously less than 1/4, but how much less? 
I VarE [X 2] − E [X ]2 = 1/3 − 1/4 = 1/12. 
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Continuous random variables 

Expectation and variance of continuous random variables 

Uniform random variable on [0, 1] 

Uniform random variable on [α, β] 

Measurable sets and a famous paradox 
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I Then for any α ≤ a ≤ b ≤ β we have P{X ∈ [a, b]} = b−a
β−α .

I Intuition: all locations along the interval [α, β] are equally
likely.

I Say that X is a uniform random variable on [α, β] or that
X is sampled uniformly from [α, β].

Uniform random variables on [α, β] 

I Fix α < β and suppose X is a random variable with ( 
1 

β−α x ∈ [α, β] 
probability density function f (x) = 

0 x 6∈ [α, β]. 
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I Intuition: all locations along the interval [α, β] are equally
likely.

I Say that X is a uniform random variable on [α, β] or that
X is sampled uniformly from [α, β].

Uniform random variables on [α, β] 

I Fix α < β and suppose X is a random variable with ( 
1 x ∈ [α, β] 

probability density function f (x) = β−α 

0 x 6∈ [α, β]. 
b−a I Then for any α ≤ a ≤ b ≤ β we have P{X ∈ [a, b]} = β−α . 
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I Say that X is a uniform random variable on [α, β] or that
X is sampled uniformly from [α, β].

Uniform random variables on [α, β] 

I Fix α < β and suppose X is a random variable with ( 
1 x ∈ [α, β] 

probability density function f (x) = β−α 

0 x 6∈ [α, β]. 
b−a I Then for any α ≤ a ≤ b ≤ β we have P{X ∈ [a, b]} = β−α . 

I Intuition: all locations along the interval [α, β] are equally 
likely. 
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Uniform random variables on [α, β] 

I Fix α < β and suppose X is a random variable with ( 
1 x ∈ [α, β] 

probability density function f (x) = β−α 

0 x 6∈ [α, β]. 
b−a I Then for any α ≤ a ≤ b ≤ β we have P{X ∈ [a, b]} = β−α . 

I Intuition: all locations along the interval [α, β] are equally 
likely. 

I Say that X is a uniform random variable on [α, β] or that 
X is sampled uniformly from [α, β]. 
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I What is E [X ]?

I Intuitively, we’d guess the midpoint α+β
2 .

I What’s the cleanest way to prove this?

I One approach: let Y be uniform on [0, 1] and try to show that
X = (β − α)Y + α is uniform on [α, β].

I Then expectation linearity gives
E [X ] = (β − α)E [Y ] + α = (1/2)(β − α) + α = α+β

2 .

I Using similar logic, what is the variance Var[X ]?

I Answer: Var[X ] = Var[(β − α)Y + α] = Var[(β − α)Y ] =
(β − α)2Var[Y ] = (β − α)2/12.

Uniform random variables on [α, β] 

I Suppose X is a random variable with probability density ( 
1 

β−α x ∈ [α, β] 
function f (x) = 

0 x 6∈ [α, β]. 
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I Intuitively, we’d guess the midpoint α+β
2 .

I What’s the cleanest way to prove this?

I One approach: let Y be uniform on [0, 1] and try to show that
X = (β − α)Y + α is uniform on [α, β].

I Then expectation linearity gives
E [X ] = (β − α)E [Y ] + α = (1/2)(β − α) + α = α+β

2 .

I Using similar logic, what is the variance Var[X ]?

I Answer: Var[X ] = Var[(β − α)Y + α] = Var[(β − α)Y ] =
(β − α)2Var[Y ] = (β − α)2/12.

Uniform random variables on [α, β] 

I Suppose X is a random variable with probability density ( 
1 

β−α x ∈ [α, β] 
function f (x) = 

0 x 6∈ [α, β]. 

I What is E [X ]? 

60



I What’s the cleanest way to prove this?

I One approach: let Y be uniform on [0, 1] and try to show that
X = (β − α)Y + α is uniform on [α, β].

I Then expectation linearity gives
E [X ] = (β − α)E [Y ] + α = (1/2)(β − α) + α = α+β

2 .

I Using similar logic, what is the variance Var[X ]?

I Answer: Var[X ] = Var[(β − α)Y + α] = Var[(β − α)Y ] =
(β − α)2Var[Y ] = (β − α)2/12.

Uniform random variables on [α, β] 

I Suppose X is a random variable with probability density ( 
1 

β−α x ∈ [α, β] 
function f (x) = 

0 x 6∈ [α, β]. 

I What is E [X ]? 

I Intuitively, we’d guess the midpoint α+β . 2 
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I One approach: let Y be uniform on [0, 1] and try to show that
X = (β − α)Y + α is uniform on [α, β].

I Then expectation linearity gives
E [X ] = (β − α)E [Y ] + α = (1/2)(β − α) + α = α+β

2 .

I Using similar logic, what is the variance Var[X ]?

I Answer: Var[X ] = Var[(β − α)Y + α] = Var[(β − α)Y ] =
(β − α)2Var[Y ] = (β − α)2/12.

Uniform random variables on [α, β] 

I Suppose X is a random variable with probability density ( 
1 x ∈ [α, β] 

function f (x) = β−α 

0 x 6∈ [α, β]. 

I What is E [X ]? 

I Intuitively, we’d guess the midpoint α+β . 2 

I What’s the cleanest way to prove this? 
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I Then expectation linearity gives
E [X ] = (β − α)E [Y ] + α = (1/2)(β − α) + α = α+β

2 .

I Using similar logic, what is the variance Var[X ]?

I Answer: Var[X ] = Var[(β − α)Y + α] = Var[(β − α)Y ] =
(β − α)2Var[Y ] = (β − α)2/12.

Uniform random variables on [α, β] 

I Suppose X is a random variable with probability density ( 
1 x ∈ [α, β] 

function f (x) = β−α 

0 x 6∈ [α, β]. 

I What is E [X ]? 

I Intuitively, we’d guess the midpoint α+β . 2 

I What’s the cleanest way to prove this? 

I One approach: let Y be uniform on [0, 1] and try to show that 
X = (β − α)Y + α is uniform on [α, β]. 
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I Using similar logic, what is the variance Var[X ]?

I Answer: Var[X ] = Var[(β − α)Y + α] = Var[(β − α)Y ] =
(β − α)2Var[Y ] = (β − α)2/12.

Uniform random variables on [α, β] 

I Suppose X is a random variable with probability density ( 
1 

β−α x ∈ [α, β] 
function f (x) = 

0 x 6∈ [α, β]. 

I What is E [X ]? 

I Intuitively, we’d guess the midpoint α+β . 2 

I What’s the cleanest way to prove this? 

I One approach: let Y be uniform on [0, 1] and try to show that 
X = (β − α)Y + α is uniform on [α, β]. 

I Then expectation linearity gives 
α+β E [X ] = (β − α)E [Y ] + α = (1/2)(β − α) + α = . 2 
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I Answer: Var[X ] = Var[(β − α)Y + α] = Var[(β − α)Y ] =
(β − α)2Var[Y ] = (β − α)2/12.

Uniform random variables on [α, β] 

I Suppose X is a random variable with probability density ( 
1 

β−α x ∈ [α, β] 
function f (x) = 

0 x 6∈ [α, β]. 

I What is E [X ]? 

I Intuitively, we’d guess the midpoint α+β . 2 

I What’s the cleanest way to prove this? 

I One approach: let Y be uniform on [0, 1] and try to show that 
X = (β − α)Y + α is uniform on [α, β]. 

I Then expectation linearity gives 
α+β E [X ] = (β − α)E [Y ] + α = (1/2)(β − α) + α = . 2 

I Using similar logic, what is the variance Var[X ]? 
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Uniform random variables on [α, β] 

I Suppose X is a random variable with probability density ( 
1 x ∈ [α, β] 

function f (x) = β−α 

0 x 6∈ [α, β]. 

I What is E [X ]? 

I Intuitively, we’d guess the midpoint α+β . 2 

I What’s the cleanest way to prove this? 

I One approach: let Y be uniform on [0, 1] and try to show that 
X = (β − α)Y + α is uniform on [α, β]. 

I Then expectation linearity gives 
α+β E [X ] = (β − α)E [Y ] + α = (1/2)(β − α) + α = . 2 

I Using similar logic, what is the variance Var[X ]? 

I Answer: Var[X ] = Var[(β − α)Y + α] = Var[(β − α)Y ] = 
(β − α)2Var[Y ] = (β − α)2/12. 66
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I If B ⊂ [0, 1] is an interval, then P{X ∈ B} is the length of
that interval.

I Generally, if B ⊂ [0, 1] then P{X ∈ B} =
R
B 1dx =

R
1B(x)dx

is the “total volume” or “total length” of the set B.

I What if B is the set of all rational numbers?

I How do we mathematically define the volume of an arbitrary
set B?

Uniform measure: is probability defined for all subsets? 

I One of the very simplest probability density functions is ( 
1 x ∈ [0, 1] 

f (x) = . 
0 0 6∈ [0, 1]. 
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I Generally, if B ⊂ [0, 1] then P{X ∈ B} =
R
B 1dx =

R
1B(x)dx

is the “total volume” or “total length” of the set B.

I What if B is the set of all rational numbers?

I How do we mathematically define the volume of an arbitrary
set B?

Uniform measure: is probability defined for all subsets? 

I One of the very simplest probability density functions is ( 
1 x ∈ [0, 1] 

f (x) = . 
0 0 6∈ [0, 1]. 

I If B ⊂ [0, 1] is an interval, then P{X ∈ B} is the length of 
that interval. 
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I What if B is the set of all rational numbers?

I How do we mathematically define the volume of an arbitrary
set B?

Uniform measure: is probability defined for all subsets? 

I One of the very simplest probability density functions is ( 
1 x ∈ [0, 1] 

f (x) = . 
0 0 6∈ [0, 1]. 

I If B ⊂ [0, 1] is an interval, then P{X ∈ B} is the length of 
that interval. R R 

I Generally, if B ⊂ [0, 1] then P{X ∈ B} = 1dx = 1B (x)dx B 
is the “total volume” or “total length” of the set B. 
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I How do we mathematically define the volume of an arbitrary
set B?

Uniform measure: is probability defined for all subsets? 

I One of the very simplest probability density functions is ( 
1 x ∈ [0, 1] 

f (x) = . 
0 0 6∈ [0, 1]. 

I If B ⊂ [0, 1] is an interval, then P{X ∈ B} is the length of 
that interval. R R 

I Generally, if B ⊂ [0, 1] then P{X ∈ B} = 1dx = 1B (x)dx B 
is the “total volume” or “total length” of the set B. 

I What if B is the set of all rational numbers? 
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Uniform measure: is probability defined for all subsets? 

I One of the very simplest probability density functions is ( 
1 x ∈ [0, 1] 

f (x) = . 
0 0 6∈ [0, 1]. 

I If B ⊂ [0, 1] is an interval, then P{X ∈ B} is the length of 
that interval. R R 

I Generally, if B ⊂ [0, 1] then P{X ∈ B} = 1dx = 1B (x)dx B 
is the “total volume” or “total length” of the set B. 

I What if B is the set of all rational numbers? 

I How do we mathematically define the volume of an arbitrary 
set B? 
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I If that probability was zero, then (by countable additivity)
probability of whole circle would be zero, a contradiction.

I But if that probability were a number greater than zero the
probability of whole circle would be infinite, also a
contradiction...

I Related problem: if (in a non-atomic world, where mass was
infinitely divisible) you could cut a cake into countably
infinitely many pieces all of the same weight, how much would
each piece weigh?

I Question: Is it really possible to partition [0, 1) into
countably many identical (up to rotation) pieces?

Idea behind parodox 

I Hypothetical: Consider the interval [0, 1) with the two 
endpoints glued together (so it looks like a circle). What if we 
could partition [0, 1) into a countably infinite collection of 
disjoint sets that all looked the same (up to a rotation of the 
circle) and thus had to have the same probability? 
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I But if that probability were a number greater than zero the
probability of whole circle would be infinite, also a
contradiction...

I Related problem: if (in a non-atomic world, where mass was
infinitely divisible) you could cut a cake into countably
infinitely many pieces all of the same weight, how much would
each piece weigh?

I Question: Is it really possible to partition [0, 1) into
countably many identical (up to rotation) pieces?

Idea behind parodox 

I Hypothetical: Consider the interval [0, 1) with the two 
endpoints glued together (so it looks like a circle). What if we 
could partition [0, 1) into a countably infinite collection of 
disjoint sets that all looked the same (up to a rotation of the 
circle) and thus had to have the same probability? 

I If that probability was zero, then (by countable additivity) 
probability of whole circle would be zero, a contradiction. 
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I Related problem: if (in a non-atomic world, where mass was
infinitely divisible) you could cut a cake into countably
infinitely many pieces all of the same weight, how much would
each piece weigh?

I Question: Is it really possible to partition [0, 1) into
countably many identical (up to rotation) pieces?

Idea behind parodox 

I Hypothetical: Consider the interval [0, 1) with the two 
endpoints glued together (so it looks like a circle). What if we 
could partition [0, 1) into a countably infinite collection of 
disjoint sets that all looked the same (up to a rotation of the 
circle) and thus had to have the same probability? 

I If that probability was zero, then (by countable additivity) 
probability of whole circle would be zero, a contradiction. 

I But if that probability were a number greater than zero the 
probability of whole circle would be infinite, also a 
contradiction... 
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I Question: Is it really possible to partition [0, 1) into
countably many identical (up to rotation) pieces?

Idea behind parodox 

I Hypothetical: Consider the interval [0, 1) with the two 
endpoints glued together (so it looks like a circle). What if we 
could partition [0, 1) into a countably infinite collection of 
disjoint sets that all looked the same (up to a rotation of the 
circle) and thus had to have the same probability? 

I If that probability was zero, then (by countable additivity) 
probability of whole circle would be zero, a contradiction. 

I But if that probability were a number greater than zero the 
probability of whole circle would be infinite, also a 
contradiction... 

I Related problem: if (in a non-atomic world, where mass was 
infinitely divisible) you could cut a cake into countably 
infinitely many pieces all of the same weight, how much would 
each piece weigh? 
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Idea behind parodox 

I Hypothetical: Consider the interval [0, 1) with the two 
endpoints glued together (so it looks like a circle). What if we 
could partition [0, 1) into a countably infinite collection of 
disjoint sets that all looked the same (up to a rotation of the 
circle) and thus had to have the same probability? 

I If that probability was zero, then (by countable additivity) 
probability of whole circle would be zero, a contradiction. 

I But if that probability were a number greater than zero the 
probability of whole circle would be infinite, also a 
contradiction... 

I Related problem: if (in a non-atomic world, where mass was 
infinitely divisible) you could cut a cake into countably 
infinitely many pieces all of the same weight, how much would 
each piece weigh? 

I Question: Is it really possible to partition [0, 1) into 
countably many identical (up to rotation) pieces? 
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I Let’s suggest one fancy way to divide this set into ten equal
subsets that are translations of each other modulo 100.

I Two numbers are equivalent modulo 10 if their difference is
a multiple of 10 (so they end in same digit). Pick a set
S ⊂ {0, 1, 2, . . . , 99} with one number from each equivalence
class, e.g., S = {40, 21, 42, 53, 94, 5, 76, 27, 28, 39}.

I Then for each j ∈ {0, 10, 20, . . . , 90} define the set
Sj = {s + j : s ∈ S}, where addition is modulo 100.

I Now observe that every number in {0, 1, 2, . . . , 99} lies in
exactly one of the ten Sj sets we have defined.

I On next slide, we’re going to do something similar with [0, 1)
in place of {0, 1, 2, . . . , 99} and the rational numbers in
[0, 1) in place of {0, 10, 20, . . . , 90}.

Cutting things into identical slices: a warmup problem 

I Consider the set of numbers {0, 1, 2, . . . , 99}. 
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I Two numbers are equivalent modulo 10 if their difference is
a multiple of 10 (so they end in same digit). Pick a set
S ⊂ {0, 1, 2, . . . , 99} with one number from each equivalence
class, e.g., S = {40, 21, 42, 53, 94, 5, 76, 27, 28, 39}.

I Then for each j ∈ {0, 10, 20, . . . , 90} define the set
Sj = {s + j : s ∈ S}, where addition is modulo 100.

I Now observe that every number in {0, 1, 2, . . . , 99} lies in
exactly one of the ten Sj sets we have defined.

I On next slide, we’re going to do something similar with [0, 1)
in place of {0, 1, 2, . . . , 99} and the rational numbers in
[0, 1) in place of {0, 10, 20, . . . , 90}.

Cutting things into identical slices: a warmup problem 

I Consider the set of numbers {0, 1, 2, . . . , 99}. 
I Let’s suggest one fancy way to divide this set into ten equal 

subsets that are translations of each other modulo 100. 
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I Then for each j ∈ {0, 10, 20, . . . , 90} define the set
Sj = {s + j : s ∈ S}, where addition is modulo 100.

I Now observe that every number in {0, 1, 2, . . . , 99} lies in
exactly one of the ten Sj sets we have defined.

I On next slide, we’re going to do something similar with [0, 1)
in place of {0, 1, 2, . . . , 99} and the rational numbers in
[0, 1) in place of {0, 10, 20, . . . , 90}.

Cutting things into identical slices: a warmup problem 

I Consider the set of numbers {0, 1, 2, . . . , 99}. 
I Let’s suggest one fancy way to divide this set into ten equal 

subsets that are translations of each other modulo 100. 

I Two numbers are equivalent modulo 10 if their difference is 
a multiple of 10 (so they end in same digit). Pick a set 
S ⊂ {0, 1, 2, . . . , 99} with one number from each equivalence 
class, e.g., S = {40, 21, 42, 53, 94, 5, 76, 27, 28, 39}. 
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I Now observe that every number in {0, 1, 2, . . . , 99} lies in
exactly one of the ten Sj sets we have defined.

I On next slide, we’re going to do something similar with [0, 1)
in place of {0, 1, 2, . . . , 99} and the rational numbers in
[0, 1) in place of {0, 10, 20, . . . , 90}.

Cutting things into identical slices: a warmup problem 

I Consider the set of numbers {0, 1, 2, . . . , 99}. 
I Let’s suggest one fancy way to divide this set into ten equal 

subsets that are translations of each other modulo 100. 

I Two numbers are equivalent modulo 10 if their difference is 
a multiple of 10 (so they end in same digit). Pick a set 
S ⊂ {0, 1, 2, . . . , 99} with one number from each equivalence 
class, e.g., S = {40, 21, 42, 53, 94, 5, 76, 27, 28, 39}. 

I Then for each j ∈ {0, 10, 20, . . . , 90} define the set 
Sj = {s + j : s ∈ S}, where addition is modulo 100. 
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I We expect τr (B) to have same probability as B.

I Call x , y “equivalent modulo rationals” if x − y is rational
(e.g., x = π − 3 and y = π − 9/4). An equivalence class is
the set of points in [0, 1) equivalent to some given point.

I There are uncountably many of these classes.

I Let A ⊂ [0, 1) contain one point from each class. For each
x ∈ [0, 1), there is one a ∈ A such that r = x − a is rational.

I Then each x in [0, 1) lies in τr (A) for one rational r ∈ [0, 1).

I Thus [0, 1) = ∪τr (A) as r ranges over rationals in [0, 1).

I If P(A) = 0, then P(S) =
P

r P(τr (A)) = 0. If P(A) > 0 then
P(S) =

P
r P(τr (A)) =∞. Contradicts P(S) = 1 axiom.

Formulating the paradox precisely 

I Consider wrap-around translations τr (x) = (x + r) mod 1. 
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I 2. Re-examine axioms of probability: Replace countable
additivity with finite additivity? (Doesn’t fully solve problem:
look up Banach-Tarski.)

I 3. Keep the axiom of choice and countable additivity but
don’t define probabilities of all sets: Instead of defining
P(B) for every subset B of sample space, restrict attention to
a family of so-called “measurable” sets.

I Most mainstream probability and analysis takes the third
approach.

I In practice, sets we care about (e.g., countable unions of
points and intervals) tend to be measurable.

Three ways to get around this 

I 1. Re-examine axioms of mathematics: the very existence 
of a set A with one element from each equivalence class is 
consequence of so-called axiom of choice. Removing that 
axiom makes paradox goes away, since one can just suppose 
(pretend?) these kinds of sets don’t exist. 
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I These courses also replace the Riemann integral with the
so-called Lebesgue integral.

I We will not treat these topics any further in this course.

I We usually limit our attention to probability density functions
f and sets B for which the ordinary Riemann integralR
1B(x)f (x)dx is well defined.

I Riemann integration is a mathematically rigorous theory. It’s
just not as robust as Lebesgue integration.

Perspective 

I More advanced courses in probability and analysis (such as 
18.125 and 18.175) spend a significant amount of time 
rigorously constructing a class of so-called measurable sets 
and the so-called Lebesgue measure, which assigns a real 
number (a measure) to each of these sets. 
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