18.600: Lecture 15
 Lectures 1-14 Review

Scott Sheffield

MIT

Outline

Counting tricks and basic principles of probability

Discrete random variables

Outline

Counting tricks and basic principles of probability

Discrete random variables

Selected counting tricks

- Break "choosing one of the items to be counted" into a sequence of stages so that one always has the same number of choices to make at each stage. Then the total count becomes a product of number of choices available at each stage.

Selected counting tricks

- Break "choosing one of the items to be counted" into a sequence of stages so that one always has the same number of choices to make at each stage. Then the total count becomes a product of number of choices available at each stage.
- Overcount by a fixed factor.

Selected counting tricks

- Break "choosing one of the items to be counted" into a sequence of stages so that one always has the same number of choices to make at each stage. Then the total count becomes a product of number of choices available at each stage.
- Overcount by a fixed factor.
- If you have n elements you wish to divide into r distinct piles of sizes $n_{1}, n_{2} \ldots n_{r}$, how many ways to do that?

Selected counting tricks

- Break "choosing one of the items to be counted" into a sequence of stages so that one always has the same number of choices to make at each stage. Then the total count becomes a product of number of choices available at each stage.
- Overcount by a fixed factor.
- If you have n elements you wish to divide into r distinct piles of sizes $n_{1}, n_{2} \ldots n_{r}$, how many ways to do that?
- Answer $\binom{n}{n_{1}, n_{2}, \ldots, n_{r}}:=\frac{n!}{n_{1}!n_{2}!\ldots n_{r}!}$.

Selected counting tricks

- Break "choosing one of the items to be counted" into a sequence of stages so that one always has the same number of choices to make at each stage. Then the total count becomes a product of number of choices available at each stage.
- Overcount by a fixed factor.
- If you have n elements you wish to divide into r distinct piles of sizes $n_{1}, n_{2} \ldots n_{r}$, how many ways to do that?
- Answer $\binom{n}{n_{1}, n_{2}, \ldots, n_{r}}:=\frac{n!}{n_{1}!n_{2}!\ldots n_{r}!}$.
- How many sequences a_{1}, \ldots, a_{k} of non-negative integers satisfy $a_{1}+a_{2}+\ldots+a_{k}=n$?

Selected counting tricks

- Break "choosing one of the items to be counted" into a sequence of stages so that one always has the same number of choices to make at each stage. Then the total count becomes a product of number of choices available at each stage.
- Overcount by a fixed factor.
- If you have n elements you wish to divide into r distinct piles of sizes $n_{1}, n_{2} \ldots n_{r}$, how many ways to do that?
- Answer $\binom{n}{n_{1}, n_{2}, \ldots, n_{r}}:=\frac{n!}{n_{1}!n_{2}!\ldots n_{r}!}$.
- How many sequences a_{1}, \ldots, a_{k} of non-negative integers satisfy $a_{1}+a_{2}+\ldots+a_{k}=n$?
- Answer: $\binom{n+k-1}{n}$. Represent partition by $k-1$ bars and n stars, e.g., as $* *|* *||* * * *| *$.

Axioms of probability

- Have a set S called sample space.

Axioms of probability

- Have a set S called sample space.
- $P(A) \in[0,1]$ for all (measurable) $A \subset S$.

Axioms of probability

- Have a set S called sample space.
- $P(A) \in[0,1]$ for all (measurable) $A \subset S$.
- $P(S)=1$.

Axioms of probability

- Have a set S called sample space.
- $P(A) \in[0,1]$ for all (measurable) $A \subset S$.
- $P(S)=1$.
- Finite additivity: $P(A \cup B)=P(A)+P(B)$ if $A \cap B=\emptyset$.

Axioms of probability

- Have a set S called sample space.
- $P(A) \in[0,1]$ for all (measurable) $A \subset S$.
- $P(S)=1$.
- Finite additivity: $P(A \cup B)=P(A)+P(B)$ if $A \cap B=\emptyset$.
- Countable additivity: $P\left(\cup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} P\left(E_{i}\right)$ if $E_{i} \cap E_{j}=\emptyset$ for each pair i and j.

Consequences of axioms

- $P\left(A^{c}\right)=1-P(A)$

Consequences of axioms

- $P\left(A^{c}\right)=1-P(A)$
- $A \subset B$ implies $P(A) \leq P(B)$

Consequences of axioms

- $P\left(A^{c}\right)=1-P(A)$
- $A \subset B$ implies $P(A) \leq P(B)$
- $P(A \cup B)=P(A)+P(B)-P(A B)$

Consequences of axioms

- $P\left(A^{c}\right)=1-P(A)$
- $A \subset B$ implies $P(A) \leq P(B)$
- $P(A \cup B)=P(A)+P(B)-P(A B)$
- $P(A B) \leq P(A)$

Inclusion-exclusion identity

- Observe $P(A \cup B)=P(A)+P(B)-P(A B)$.

Inclusion-exclusion identity

- Observe $P(A \cup B)=P(A)+P(B)-P(A B)$.
- Also, $P(E \cup F \cup G)=$

$$
P(E)+P(F)+P(G)-P(E F)-P(E G)-P(F G)+P(E F G)
$$

Inclusion-exclusion identity

- Observe $P(A \cup B)=P(A)+P(B)-P(A B)$.
- Also, $P(E \cup F \cup G)=$

$$
P(E)+P(F)+P(G)-P(E F)-P(E G)-P(F G)+P(E F G)
$$

- More generally,

$$
\begin{aligned}
P\left(\cup_{i=1}^{n} E_{i}\right) & =\sum_{i=1}^{n} P\left(E_{i}\right)-\sum_{i_{1}<i_{2}} P\left(E_{i_{1}} E_{i_{2}}\right)+\ldots \\
& +(-1)^{(r+1)} \sum_{i_{1}<i_{2}<\ldots<i_{r}} P\left(E_{i_{1}} E_{i_{2}} \ldots E_{i_{r}}\right) \\
& =+\ldots+(-1)^{n+1} P\left(E_{1} E_{2} \ldots E_{n}\right) .
\end{aligned}
$$

Inclusion-exclusion identity

- Observe $P(A \cup B)=P(A)+P(B)-P(A B)$.
- Also, $P(E \cup F \cup G)=$

$$
P(E)+P(F)+P(G)-P(E F)-P(E G)-P(F G)+P(E F G)
$$

- More generally,

$$
\begin{aligned}
P\left(\cup_{i=1}^{n} E_{i}\right) & =\sum_{i=1}^{n} P\left(E_{i}\right)-\sum_{i_{1}<i_{2}} P\left(E_{i_{1}} E_{i_{2}}\right)+\ldots \\
& +(-1)^{(r+1)} \sum_{i_{1}<i_{2}<\ldots<i_{r}} P\left(E_{i_{1}} E_{i_{2}} \ldots E_{i_{r}}\right) \\
& =+\ldots+(-1)^{n+1} P\left(E_{1} E_{2} \ldots E_{n}\right) .
\end{aligned}
$$

- The notation $\sum_{i_{1}<i_{2}<\ldots<i_{r}}$ means a sum over all of the $\binom{n}{r}$ subsets of size r of the set $\left\{2 \frac{1}{2}, 2, \ldots, n\right\}$.

Famous hat problem

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.

Famous hat problem

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- Inclusion-exclusion. Let E_{i} be the event that i th person gets own hat.

Famous hat problem

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- Inclusion-exclusion. Let E_{i} be the event that i th person gets own hat.
- What is $P\left(E_{i_{1}} E_{i_{2}} \ldots E_{i_{r}}\right)$?

Famous hat problem

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- Inclusion-exclusion. Let E_{i} be the event that i th person gets own hat.
- What is $P\left(E_{i_{1}} E_{i_{2}} \ldots E_{i_{r}}\right)$?
- Answer: $\frac{(n-r)!}{n!}$.

Famous hat problem

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- Inclusion-exclusion. Let E_{i} be the event that i th person gets own hat.
- What is $P\left(E_{i_{1}} E_{i_{2}} \ldots E_{i_{r}}\right)$?
- Answer: $\frac{(n-r)!}{n!}$.
- There are $\binom{n}{r}$ terms like that in the inclusion exclusion sum. What is $\binom{n}{r} \frac{(n-r)!}{n!}$?

Famous hat problem

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- Inclusion-exclusion. Let E_{i} be the event that i th person gets own hat.
- What is $P\left(E_{i_{1}} E_{i_{2}} \ldots E_{i_{r}}\right)$?
- Answer: $\frac{(n-r)!}{n!}$.
- There are $\binom{n}{r}$ terms like that in the inclusion exclusion sum. What is $\binom{n}{r} \frac{(n-r)!}{n!}$?
- Answer: $\frac{1}{r!}$.

Famous hat problem

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- Inclusion-exclusion. Let E_{i} be the event that i th person gets own hat.
- What is $P\left(E_{i_{1}} E_{i_{2}} \ldots E_{i_{r}}\right)$?
- Answer: $\frac{(n-r)!}{n!}$.
- There are $\binom{n}{r}$ terms like that in the inclusion exclusion sum. What is $\binom{n}{r} \frac{(n-r)!}{n!}$?
- Answer: $\frac{1}{r!}$.
- $P\left(\cup_{i=1}^{n} E_{i}\right)=1-\frac{1}{2!}+\frac{1}{3!}-\frac{1}{4!}+\ldots \pm \frac{1}{n!}$

Famous hat problem

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- Inclusion-exclusion. Let E_{i} be the event that i th person gets own hat.
- What is $P\left(E_{i_{1}} E_{i_{2}} \ldots E_{i_{r}}\right)$?
- Answer: $\frac{(n-r)!}{n!}$.
- There are $\binom{n}{r}$ terms like that in the inclusion exclusion sum. What is $\binom{n}{r} \frac{(n-r)!}{n!}$?
- Answer: $\frac{1}{r!}$.
- $P\left(\cup_{i=1}^{n} E_{i}\right)=1-\frac{1}{2!}+\frac{1}{3!}-\frac{1}{4!}+\ldots \pm \frac{1}{n!}$
- $1-P\left(\cup_{i=1}^{n} E_{i}\right)=1-1+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\ldots \pm \frac{1}{n!} \approx 1 / e \approx .36788$

Conditional probability

- Definition: $P(E \mid F)=P(E F) / P(F)$.

Conditional probability

- Definition: $P(E \mid F)=P(E F) / P(F)$.
- Call $P(E \mid F)$ the "conditional probability of E given F " or "probability of E conditioned on F ".

Conditional probability

- Definition: $P(E \mid F)=P(E F) / P(F)$.
- Call $P(E \mid F)$ the "conditional probability of E given F " or "probability of E conditioned on F ".
- Nice fact: $P\left(E_{1} E_{2} E_{3} \ldots E_{n}\right)=$ $P\left(E_{1}\right) P\left(E_{2} \mid E_{1}\right) P\left(E_{3} \mid E_{1} E_{2}\right) \ldots P\left(E_{n} \mid E_{1} \ldots E_{n-1}\right)$

Conditional probability

- Definition: $P(E \mid F)=P(E F) / P(F)$.
- Call $P(E \mid F)$ the "conditional probability of E given F " or "probability of E conditioned on F ".
- Nice fact: $P\left(E_{1} E_{2} E_{3} \ldots E_{n}\right)=$ $P\left(E_{1}\right) P\left(E_{2} \mid E_{1}\right) P\left(E_{3} \mid E_{1} E_{2}\right) \ldots P\left(E_{n} \mid E_{1} \ldots E_{n-1}\right)$
- Useful when we think about multi-step experiments.

Conditional probability

- Definition: $P(E \mid F)=P(E F) / P(F)$.
- Call $P(E \mid F)$ the "conditional probability of E given F " or "probability of E conditioned on F ".
- Nice fact: $P\left(E_{1} E_{2} E_{3} \ldots E_{n}\right)=$ $P\left(E_{1}\right) P\left(E_{2} \mid E_{1}\right) P\left(E_{3} \mid E_{1} E_{2}\right) \ldots P\left(E_{n} \mid E_{1} \ldots E_{n-1}\right)$
- Useful when we think about multi-step experiments.
- For example, let E_{i} be event i th person gets own hat in the n-hat shuffle problem.

Dividing probability into two cases

$$
\begin{aligned}
P(E) & =P(E F)+P\left(E F^{c}\right) \\
& =P(E \mid F) P(F)+P\left(E \mid F^{c}\right) P\left(F^{c}\right)
\end{aligned}
$$

Dividing probability into two cases

$$
\begin{aligned}
P(E) & =P(E F)+P\left(E F^{c}\right) \\
& =P(E \mid F) P(F)+P\left(E \mid F^{c}\right) P\left(F^{c}\right)
\end{aligned}
$$

- In words: want to know the probability of E. There are two scenarios F and F^{c}. If I know the probabilities of the two scenarios and the probability of E conditioned on each scenario, I can work out the probability of E.

Bayes' theorem

- Bayes' theorem/law/rule states the following: $P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}$.

Bayes' theorem

- Bayes' theorem/law/rule states the following: $P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}$.
- Follows from definition of conditional probability: $P(A B)=P(B) P(A \mid B)=P(A) P(B \mid A)$.

Bayes' theorem

- Bayes' theorem/law/rule states the following: $P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}$.
- Follows from definition of conditional probability: $P(A B)=P(B) P(A \mid B)=P(A) P(B \mid A)$.
- Tells how to update estimate of probability of A when new evidence restricts your sample space to B.

Bayes' theorem

- Bayes' theorem/law/rule states the following: $P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}$.
- Follows from definition of conditional probability: $P(A B)=P(B) P(A \mid B)=P(A) P(B \mid A)$.
- Tells how to update estimate of probability of A when new evidence restricts your sample space to B.
- So $P(A \mid B)$ is $\frac{P(B \mid A)}{P(B)}$ times $P(A)$.

Bayes' theorem

- Bayes' theorem/law/rule states the following:
$P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}$.
- Follows from definition of conditional probability:
$P(A B)=P(B) P(A \mid B)=P(A) P(B \mid A)$.
- Tells how to update estimate of probability of A when new evidence restricts your sample space to B.
- So $P(A \mid B)$ is $\frac{P(B \mid A)}{P(B)}$ times $P(A)$.
- Ratio $\frac{P(B \mid A)}{P(B)}$ determines "how compelling new evidence is".

$P(\cdot \mid F)$ is a probability measure

- We can check the probability axioms: $0 \leq P(E \mid F) \leq 1$, $P(S \mid F)=1$, and $P\left(\cup E_{i}\right)=\sum P\left(E_{i} \mid F\right)$, if i ranges over a countable set and the E_{i} are disjoint.

$P(\cdot \mid F)$ is a probability measure

- We can check the probability axioms: $0 \leq P(E \mid F) \leq 1$, $P(S \mid F)=1$, and $P\left(\cup E_{i}\right)=\sum P\left(E_{i} \mid F\right)$, if i ranges over a countable set and the E_{i} are disjoint.
- The probability measure $P(\cdot \mid F)$ is related to $P(\cdot)$.

$P(\cdot \mid F)$ is a probability measure

- We can check the probability axioms: $0 \leq P(E \mid F) \leq 1$, $P(S \mid F)=1$, and $P\left(\cup E_{i}\right)=\sum P\left(E_{i} \mid F\right)$, if i ranges over a countable set and the E_{i} are disjoint.
- The probability measure $P(\cdot \mid F)$ is related to $P(\cdot)$.
- To get former from latter, we set probabilities of elements outside of F to zero and multiply probabilities of events inside of F by $1 / P(F)$.

$P(\cdot \mid F)$ is a probability measure

- We can check the probability axioms: $0 \leq P(E \mid F) \leq 1$, $P(S \mid F)=1$, and $P\left(\cup E_{i}\right)=\sum P\left(E_{i} \mid F\right)$, if i ranges over a countable set and the E_{i} are disjoint.
- The probability measure $P(\cdot \mid F)$ is related to $P(\cdot)$.
- To get former from latter, we set probabilities of elements outside of F to zero and multiply probabilities of events inside of F by $1 / P(F)$.
- $P(\cdot)$ is the prior probability measure and $P(\cdot \mid F)$ is the posterior measure (revised after discovering that F occurs).

Independence

- Say E and F are independent if $P(E F)=P(E) P(F)$.

Independence

- Say E and F are independent if $P(E F)=P(E) P(F)$.
- Equivalent statement: $P(E \mid F)=P(E)$. Also equivalent: $P(F \mid E)=P(F)$.

Independence of multiple events

- Say $E_{1} \ldots E_{n}$ are independent if for each $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subset\{1,2, \ldots n\}$ we have $P\left(E_{i_{1}} E_{i_{2}} \ldots E_{i_{k}}\right)=P\left(E_{i_{1}}\right) P\left(E_{i_{2}}\right) \ldots P\left(E_{i_{k}}\right)$.

Independence of multiple events

- Say $E_{1} \ldots E_{n}$ are independent if for each $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subset\{1,2, \ldots n\}$ we have $P\left(E_{i_{1}} E_{i_{2}} \ldots E_{i_{k}}\right)=P\left(E_{i_{1}}\right) P\left(E_{i_{2}}\right) \ldots P\left(E_{i_{k}}\right)$.
- In other words, the product rule works.

Independence of multiple events

- Say $E_{1} \ldots E_{n}$ are independent if for each $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subset\{1,2, \ldots n\}$ we have $P\left(E_{i_{1}} E_{i_{2}} \ldots E_{i_{k}}\right)=P\left(E_{i_{1}}\right) P\left(E_{i_{2}}\right) \ldots P\left(E_{i_{k}}\right)$.
- In other words, the product rule works.
- Independence implies $P\left(E_{1} E_{2} E_{3} \mid E_{4} E_{5} E_{6}\right)=$ $\frac{P\left(E_{1}\right) P\left(E_{2}\right) P\left(E_{3}\right) P\left(E_{4}\right) P\left(E_{5}\right) P\left(E_{6}\right)}{P\left(E_{4}\right) P\left(E_{5}\right) P\left(E_{6}\right)}=P\left(E_{1} E_{2} E_{3}\right)$, and other similar statements.

Independence of multiple events

- Say $E_{1} \ldots E_{n}$ are independent if for each $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subset\{1,2, \ldots n\}$ we have $P\left(E_{i_{1}} E_{i_{2}} \ldots E_{i_{k}}\right)=P\left(E_{i_{1}}\right) P\left(E_{i_{2}}\right) \ldots P\left(E_{i_{k}}\right)$.
- In other words, the product rule works.
- Independence implies $P\left(E_{1} E_{2} E_{3} \mid E_{4} E_{5} E_{6}\right)=$ $\frac{P\left(E_{1}\right) P\left(E_{2}\right) P\left(E_{3}\right) P\left(E_{4}\right) P\left(E_{5}\right) P\left(E_{6}\right)}{P\left(E_{4}\right) P\left(E_{5}\right) P\left(E_{6}\right)}=P\left(E_{1} E_{2} E_{3}\right)$, and other similar statements.
- Does pairwise independence imply independence?

Independence of multiple events

- Say $E_{1} \ldots E_{n}$ are independent if for each $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subset\{1,2, \ldots n\}$ we have $P\left(E_{i_{1}} E_{i_{2}} \ldots E_{i_{k}}\right)=P\left(E_{i_{1}}\right) P\left(E_{i_{2}}\right) \ldots P\left(E_{i_{k}}\right)$.
- In other words, the product rule works.
- Independence implies $P\left(E_{1} E_{2} E_{3} \mid E_{4} E_{5} E_{6}\right)=$ $\frac{P\left(E_{1}\right) P\left(E_{2}\right) P\left(E_{3}\right) P\left(E_{4}\right) P\left(E_{5}\right) P\left(E_{6}\right)}{P\left(E_{4}\right) P\left(E_{5}\right) P\left(E_{6}\right)}=P\left(E_{1} E_{2} E_{3}\right)$, and other similar statements.
- Does pairwise independence imply independence?
- No. Consider these three events: first coin heads, second coin heads, odd number heads. Pairwise independent, not independent.

Outline

Counting tricks and basic principles of probability

Discrete random variables

Outline

Counting tricks and basic principles of probability

Discrete random variables

Random variables

- A random variable X is a function from the state space to the real numbers.

Random variables

- A random variable X is a function from the state space to the real numbers.
- Can interpret X as a quantity whose value depends on the outcome of an experiment.

Random variables

- A random variable X is a function from the state space to the real numbers.
- Can interpret X as a quantity whose value depends on the outcome of an experiment.
- Say X is a discrete random variable if (with probability one) if it takes one of a countable set of values.

Random variables

- A random variable X is a function from the state space to the real numbers.
- Can interpret X as a quantity whose value depends on the outcome of an experiment.
- Say X is a discrete random variable if (with probability one) if it takes one of a countable set of values.
- For each a in this countable set, write $p(a):=P\{X=a\}$. Call p the probability mass function.

Random variables

- A random variable X is a function from the state space to the real numbers.
- Can interpret X as a quantity whose value depends on the outcome of an experiment.
- Say X is a discrete random variable if (with probability one) if it takes one of a countable set of values.
- For each a in this countable set, write $p(a):=P\{X=a\}$. Call p the probability mass function.
- Write $F(a)=P\{X \leq a\}=\sum_{x \leq a} p(x)$. Call F the cumulative distribution function.

Indicators

- Given any event E, can define an indicator random variable, i.e., let X be random variable equal to 1 on the event E and 0 otherwise. Write this as $X=1_{E}$.

Indicators

- Given any event E, can define an indicator random variable, i.e., let X be random variable equal to 1 on the event E and 0 otherwise. Write this as $X=1_{E}$.
- The value of 1_{E} (either 1 or 0) indicates whether the event has occurred.

Indicators

- Given any event E, can define an indicator random variable, i.e., let X be random variable equal to 1 on the event E and 0 otherwise. Write this as $X=1_{E}$.
- The value of 1_{E} (either 1 or 0) indicates whether the event has occurred.
- If $E_{1}, E_{2}, \ldots, E_{k}$ are events then $X=\sum_{i=1}^{k} 1_{E_{i}}$ is the number of these events that occur.

Indicators

- Given any event E, can define an indicator random variable, i.e., let X be random variable equal to 1 on the event E and 0 otherwise. Write this as $X=1_{E}$.
- The value of 1_{E} (either 1 or 0) indicates whether the event has occurred.
- If $E_{1}, E_{2}, \ldots, E_{k}$ are events then $X=\sum_{i=1}^{k} 1_{E_{i}}$ is the number of these events that occur.
- Example: in n-hat shuffle problem, let E_{i} be the event i th person gets own hat.

Indicators

- Given any event E, can define an indicator random variable, i.e., let X be random variable equal to 1 on the event E and 0 otherwise. Write this as $X=1_{E}$.
- The value of 1_{E} (either 1 or 0) indicates whether the event has occurred.
- If $E_{1}, E_{2}, \ldots, E_{k}$ are events then $X=\sum_{i=1}^{k} 1_{E_{i}}$ is the number of these events that occur.
- Example: in n-hat shuffle problem, let E_{i} be the event i th person gets own hat.
- Then $\sum_{i=1}^{n} 1_{E_{i}}$ is total number of people who get own hats.

Expectation of a discrete random variable

- Say X is a discrete random variable if (with probability one) it takes one of a countable set of values.

Expectation of a discrete random variable

- Say X is a discrete random variable if (with probability one) it takes one of a countable set of values.
- For each a in this countable set, write $p(a):=P\{X=a\}$. Call p the probability mass function.

Expectation of a discrete random variable

- Say X is a discrete random variable if (with probability one) it takes one of a countable set of values.
- For each a in this countable set, write $p(a):=P\{X=a\}$. Call p the probability mass function.
- The expectation of X, written $E[X]$, is defined by

$$
E[X]=\sum_{x: p(x)>0} x p(x)
$$

Expectation of a discrete random variable

- Say X is a discrete random variable if (with probability one) it takes one of a countable set of values.
- For each a in this countable set, write $p(a):=P\{X=a\}$. Call p the probability mass function.
- The expectation of X, written $E[X]$, is defined by

$$
E[X]=\sum_{x: p(x)>0} x p(x)
$$

- Represents weighted average of possible values X can take, each value being weighted by its probability.

Expectation when state space is countable

- If the state space S is countable, we can give SUM OVER STATE SPACE definition of expectation:

$$
E[X]=\sum_{s \in S} P\{s\} X(s)
$$

Expectation when state space is countable

- If the state space S is countable, we can give SUM OVER STATE SPACE definition of expectation:

$$
E[X]=\sum_{s \in S} P\{s\} X(s)
$$

- Agrees with the SUM OVER POSSIBLE X VALUES definition:

$$
E[X]=\sum_{x: p(x)>0} x p(x)
$$

Expectation of a function of a random variable

- If X is a random variable and g is a function from the real numbers to the real numbers then $g(X)$ is also a random variable.

Expectation of a function of a random variable

- If X is a random variable and g is a function from the real numbers to the real numbers then $g(X)$ is also a random variable.
- How can we compute $E[g(X)]$?

Expectation of a function of a random variable

- If X is a random variable and g is a function from the real numbers to the real numbers then $g(X)$ is also a random variable.
- How can we compute $E[g(X)]$?
- Answer:

$$
E[g(X)]=\sum_{x: p(x)>0} g(x) p(x)
$$

Additivity of expectation

- If X and Y are distinct random variables, then $E[X+Y]=E[X]+E[Y]$.

Additivity of expectation

- If X and Y are distinct random variables, then $E[X+Y]=E[X]+E[Y]$.
- In fact, for real constants a and b, we have $E[a X+b Y]=a E[X]+b E[Y]$.

Additivity of expectation

- If X and Y are distinct random variables, then $E[X+Y]=E[X]+E[Y]$.
- In fact, for real constants a and b, we have $E[a X+b Y]=a E[X]+b E[Y]$.
- This is called the linearity of expectation.

Additivity of expectation

- If X and Y are distinct random variables, then $E[X+Y]=E[X]+E[Y]$.
- In fact, for real constants a and b, we have $E[a X+b Y]=a E[X]+b E[Y]$.
- This is called the linearity of expectation.
- Can extend to more variables

$$
E\left[X_{1}+X_{2}+\ldots+X_{n}\right]=E\left[X_{1}\right]+E\left[X_{2}\right]+\ldots+E\left[X_{n}\right]
$$

Defining variance in discrete case

- Let X be a random variable with mean μ.

Defining variance in discrete case

- Let X be a random variable with mean μ.
- The variance of X, denoted $\operatorname{Var}(X)$, is defined by $\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]$.

Defining variance in discrete case

- Let X be a random variable with mean μ.
- The variance of X, denoted $\operatorname{Var}(X)$, is defined by $\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]$.
- Taking $g(x)=(x-\mu)^{2}$, and recalling that $E[g(X)]=\sum_{x: p(x)>0} g(x) p(x)$, we find that

$$
\operatorname{Var}[X]=\sum_{x: p(x)>0}(x-\mu)^{2} p(x)
$$

Defining variance in discrete case

- Let X be a random variable with mean μ.
- The variance of X, denoted $\operatorname{Var}(X)$, is defined by $\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]$.
- Taking $g(x)=(x-\mu)^{2}$, and recalling that $E[g(X)]=\sum_{x: p(x)>0} g(x) p(x)$, we find that

$$
\operatorname{Var}[X]=\sum_{x: p(x)>0}(x-\mu)^{2} p(x)
$$

- Variance is one way to measure the amount a random variable "varies" from its mean over successive trials.

Defining variance in discrete case

- Let X be a random variable with mean μ.
- The variance of X, denoted $\operatorname{Var}(X)$, is defined by $\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]$.
- Taking $g(x)=(x-\mu)^{2}$, and recalling that $E[g(X)]=\sum_{x: p(x)>0} g(x) p(x)$, we find that

$$
\operatorname{Var}[X]=\sum_{x: p(x)>0}(x-\mu)^{2} p(x)
$$

- Variance is one way to measure the amount a random variable "varies" from its mean over successive trials.
- Very important alternate formula: $\operatorname{Var}[X]=E\left[X^{2}\right]-(E[X])^{2}$.

Identity

- If $Y=X+b$, where b is constant, then $\operatorname{Var}[Y]=\operatorname{Var}[X]$.

Identity

- If $Y=X+b$, where b is constant, then $\operatorname{Var}[Y]=\operatorname{Var}[X]$.
- Also, $\operatorname{Var}[a X]=a^{2} \operatorname{Var}[X]$.

Identity

- If $Y=X+b$, where b is constant, then $\operatorname{Var}[Y]=\operatorname{Var}[X]$.
- Also, $\operatorname{Var}[a X]=a^{2} \operatorname{Var}[X]$.
- Proof: $\operatorname{Var}[a X]=E\left[a^{2} X^{2}\right]-E[a X]^{2}=a^{2} E\left[X^{2}\right]-a^{2} E[X]^{2}=$ $a^{2} \operatorname{Var}[X]$.

Standard deviation

- Write $\operatorname{SD}[X]=\sqrt{\operatorname{Var}[X]}$.

Standard deviation

- Write $\operatorname{SD}[X]=\sqrt{\operatorname{Var}[X]}$.
- Satisfies identity $\operatorname{SD}[a X]=a \mathrm{SD}[X]$.

Standard deviation

- Write $\operatorname{SD}[X]=\sqrt{\operatorname{Var}[X]}$.
- Satisfies identity $\operatorname{SD}[a X]=a \mathrm{SD}[X]$.
- Uses the same units as X itself.

Standard deviation

- Write $\operatorname{SD}[X]=\sqrt{\operatorname{Var}[X]}$.
- Satisfies identity $\operatorname{SD}[a X]=a \mathrm{SD}[X]$.
- Uses the same units as X itself.
- If we switch from feet to inches in our "height of randomly chosen person" example, then $X, E[X]$, and $\mathrm{SD}[X]$ each get multiplied by 12 , but $\operatorname{Var}[X]$ gets multiplied by 144 .

Bernoulli random variables

- Toss fair coin n times. (Tosses are independent.) What is the probability of k heads?

Bernoulli random variables

- Toss fair coin n times. (Tosses are independent.) What is the probability of k heads?
- Answer: $\binom{n}{k} / 2^{n}$.

Bernoulli random variables

- Toss fair coin n times. (Tosses are independent.) What is the probability of k heads?
- Answer: $\binom{n}{k} / 2^{n}$.
- What if coin has p probability to be heads?

Bernoulli random variables

- Toss fair coin n times. (Tosses are independent.) What is the probability of k heads?
- Answer: $\binom{n}{k} / 2^{n}$.
- What if coin has p probability to be heads?
- Answer: $\binom{n}{k} p^{k}(1-p)^{n-k}$.

Bernoulli random variables

- Toss fair coin n times. (Tosses are independent.) What is the probability of k heads?
- Answer: $\binom{n}{k} / 2^{n}$.
- What if coin has p probability to be heads?
- Answer: $\binom{n}{k} p^{k}(1-p)^{n-k}$.
- Writing $q=1-p$, we can write this as $\binom{n}{k} p^{k} q^{n-k}$

Bernoulli random variables

- Toss fair coin n times. (Tosses are independent.) What is the probability of k heads?
- Answer: $\binom{n}{k} / 2^{n}$.
- What if coin has p probability to be heads?
- Answer: $\binom{n}{k} p^{k}(1-p)^{n-k}$.
- Writing $q=1-p$, we can write this as $\binom{n}{k} p^{k} q^{n-k}$
- Can use binomial theorem to show probabilities sum to one:

Bernoulli random variables

- Toss fair coin n times. (Tosses are independent.) What is the probability of k heads?
- Answer: $\binom{n}{k} / 2^{n}$.
- What if coin has p probability to be heads?
- Answer: $\binom{n}{k} p^{k}(1-p)^{n-k}$.
- Writing $q=1-p$, we can write this as $\binom{n}{k} p^{k} q^{n-k}$
- Can use binomial theorem to show probabilities sum to one:
- $1=1^{n}=(p+q)^{n}=\sum_{k=0}^{n}\binom{n}{k} p^{k} q^{n-k}$.

Bernoulli random variables

- Toss fair coin n times. (Tosses are independent.) What is the probability of k heads?
- Answer: $\binom{n}{k} / 2^{n}$.
- What if coin has p probability to be heads?
- Answer: $\binom{n}{k} p^{k}(1-p)^{n-k}$.
- Writing $q=1-p$, we can write this as $\binom{n}{k} p^{k} q^{n-k}$
- Can use binomial theorem to show probabilities sum to one:
- $1=1^{n}=(p+q)^{n}=\sum_{k=0}^{n}\binom{n}{k} p^{k} q^{n-k}$.
- Number of heads is binomial random variable with parameters (n, p).

Decomposition approach to computing expectation

- Let X be a binomial random variable with parameters (n, p). Here is one way to compute $E[X]$.

Decomposition approach to computing expectation

- Let X be a binomial random variable with parameters (n, p). Here is one way to compute $E[X]$.
- Think of X as representing number of heads in n tosses of coin that is heads with probability p.

Decomposition approach to computing expectation

- Let X be a binomial random variable with parameters (n, p). Here is one way to compute $E[X]$.
- Think of X as representing number of heads in n tosses of coin that is heads with probability p.
- Write $X=\sum_{j=1}^{n} X_{j}$, where X_{j} is 1 if the j th coin is heads, 0 otherwise.

Decomposition approach to computing expectation

- Let X be a binomial random variable with parameters (n, p). Here is one way to compute $E[X]$.
- Think of X as representing number of heads in n tosses of coin that is heads with probability p.
- Write $X=\sum_{j=1}^{n} X_{j}$, where X_{j} is 1 if the j th coin is heads, 0 otherwise.
- In other words, X_{j} is the number of heads (zero or one) on the j th toss.

Decomposition approach to computing expectation

- Let X be a binomial random variable with parameters (n, p). Here is one way to compute $E[X]$.
- Think of X as representing number of heads in n tosses of coin that is heads with probability p.
- Write $X=\sum_{j=1}^{n} X_{j}$, where X_{j} is 1 if the j th coin is heads, 0 otherwise.
- In other words, X_{j} is the number of heads (zero or one) on the j th toss.
- Note that $E\left[X_{j}\right]=p \cdot 1+(1-p) \cdot 0=p$ for each j.

Decomposition approach to computing expectation

- Let X be a binomial random variable with parameters (n, p). Here is one way to compute $E[X]$.
- Think of X as representing number of heads in n tosses of coin that is heads with probability p.
- Write $X=\sum_{j=1}^{n} X_{j}$, where X_{j} is 1 if the j th coin is heads, 0 otherwise.
- In other words, X_{j} is the number of heads (zero or one) on the j th toss.
- Note that $E\left[X_{j}\right]=p \cdot 1+(1-p) \cdot 0=p$ for each j.
- Conclude by additivity of expectation that

$$
E[X]=\sum_{j=1}^{n} E\left[X_{j}\right]=\sum_{j=1}^{n} p=n p
$$

Compute variance with decomposition trick

- $X=\sum_{j=1}^{n} X_{j}$, so
$E\left[X^{2}\right]=E\left[\sum_{i=1}^{n} X_{i} \sum_{j=1}^{n} X_{j}\right]=\sum_{i=1}^{n} \sum_{j=1}^{n} E\left[X_{i} X_{j}\right]$

Compute variance with decomposition trick

- $X=\sum_{j=1}^{n} X_{j}$, so
$E\left[X^{2}\right]=E\left[\sum_{i=1}^{n} X_{i} \sum_{j=1}^{n} X_{j}\right]=\sum_{i=1}^{n} \sum_{j=1}^{n} E\left[X_{i} X_{j}\right]$
- $E\left[X_{i} X_{j}\right]$ is p if $i=j, p^{2}$ otherwise.

Compute variance with decomposition trick

- $X=\sum_{j=1}^{n} X_{j}$, so

$$
E\left[X^{2}\right]=E\left[\sum_{i=1}^{n} X_{i} \sum_{j=1}^{n} X_{j}\right]=\sum_{i=1}^{n} \sum_{j=1}^{n} E\left[X_{i} X_{j}\right]
$$

- $E\left[X_{i} X_{j}\right]$ is p if $i=j, p^{2}$ otherwise.
- $\sum_{i=1}^{n} \sum_{j=1}^{n} E\left[X_{i} X_{j}\right]$ has n terms equal to p and $(n-1) n$ terms equal to p^{2}.

Compute variance with decomposition trick

- $X=\sum_{j=1}^{n} X_{j}$, so

$$
E\left[X^{2}\right]=E\left[\sum_{i=1}^{n} X_{i} \sum_{j=1}^{n} X_{j}\right]=\sum_{i=1}^{n} \sum_{j=1}^{n} E\left[X_{i} X_{j}\right]
$$

- $E\left[X_{i} X_{j}\right]$ is p if $i=j, p^{2}$ otherwise.
- $\sum_{i=1}^{n} \sum_{j=1}^{n} E\left[X_{i} X_{j}\right]$ has n terms equal to p and $(n-1) n$ terms equal to p^{2}.
- So $E\left[X^{2}\right]=n p+(n-1) n p^{2}=n p+(n p)^{2}-n p^{2}$.

Compute variance with decomposition trick

- $X=\sum_{j=1}^{n} X_{j}$, so
$E\left[X^{2}\right]=E\left[\sum_{i=1}^{n} X_{i} \sum_{j=1}^{n} X_{j}\right]=\sum_{i=1}^{n} \sum_{j=1}^{n} E\left[X_{i} X_{j}\right]$
- $E\left[X_{i} X_{j}\right]$ is p if $i=j, p^{2}$ otherwise.
- $\sum_{i=1}^{n} \sum_{j=1}^{n} E\left[X_{i} X_{j}\right]$ has n terms equal to p and $(n-1) n$ terms equal to p^{2}.
- So $E\left[X^{2}\right]=n p+(n-1) n p^{2}=n p+(n p)^{2}-n p^{2}$.
- Thus
$\operatorname{Var}[X]=E\left[X^{2}\right]-E[X]^{2}=n p-n p^{2}=n p(1-p)=n p q$.

Compute variance with decomposition trick

- $X=\sum_{j=1}^{n} X_{j}$, so
$E\left[X^{2}\right]=E\left[\sum_{i=1}^{n} X_{i} \sum_{j=1}^{n} X_{j}\right]=\sum_{i=1}^{n} \sum_{j=1}^{n} E\left[X_{i} X_{j}\right]$
- $E\left[X_{i} X_{j}\right]$ is p if $i=j, p^{2}$ otherwise.
- $\sum_{i=1}^{n} \sum_{j=1}^{n} E\left[X_{i} X_{j}\right]$ has n terms equal to p and $(n-1) n$ terms equal to p^{2}.
- So $E\left[X^{2}\right]=n p+(n-1) n p^{2}=n p+(n p)^{2}-n p^{2}$.
- Thus
$\operatorname{Var}[X]=E\left[X^{2}\right]-E[X]^{2}=n p-n p^{2}=n p(1-p)=n p q$.
- Can show generally that if X_{1}, \ldots, X_{n} independent then $\operatorname{Var}\left[\sum_{j=1}^{n} X_{j}\right]=\sum_{j=1}^{n} \operatorname{Var}\left[X_{j}\right]$

Bernoulli random variable with n large and $n p$

- Let λ be some moderate-sized number. Say $\lambda=2$ or $\lambda=3$. Let n be a huge number, say $n=10^{6}$.

Bernoulli random variable with n large and $n p$

- Let λ be some moderate-sized number. Say $\lambda=2$ or $\lambda=3$. Let n be a huge number, say $n=10^{6}$.
- Suppose I have a coin that comes on heads with probability λ / n and I toss it n times.

Bernoulli random variable with n large and $n p$

- Let λ be some moderate-sized number. Say $\lambda=2$ or $\lambda=3$. Let n be a huge number, say $n=10^{6}$.
- Suppose I have a coin that comes on heads with probability λ / n and I toss it n times.
- How many heads do I expect to see?

Bernoulli random variable with n large and $n p$

- Let λ be some moderate-sized number. Say $\lambda=2$ or $\lambda=3$. Let n be a huge number, say $n=10^{6}$.
- Suppose I have a coin that comes on heads with probability λ / n and I toss it n times.
- How many heads do I expect to see?
- Answer: $n p=\lambda$.

Bernoulli random variable with n large and $n p$

- Let λ be some moderate-sized number. Say $\lambda=2$ or $\lambda=3$. Let n be a huge number, say $n=10^{6}$.
- Suppose I have a coin that comes on heads with probability λ / n and I toss it n times.
- How many heads do I expect to see?
- Answer: $n p=\lambda$.
- Let k be some moderate sized number (say $k=4$). What is the probability that I see exactly k heads?

Bernoulli random variable with n large and $n p$

- Let λ be some moderate-sized number. Say $\lambda=2$ or $\lambda=3$. Let n be a huge number, say $n=10^{6}$.
- Suppose I have a coin that comes on heads with probability λ / n and I toss it n times.
- How many heads do I expect to see?
- Answer: $n p=\lambda$.
- Let k be some moderate sized number (say $k=4$). What is the probability that I see exactly k heads?
- Binomial formula:

$$
\binom{n}{k} p^{k}(1-p)^{n-k}=\frac{n(n-1)(n-2) \ldots(n-k+1)}{k!} p^{k}(1-p)^{n-k} .
$$

Bernoulli random variable with n large and $n p$

- Let λ be some moderate-sized number. Say $\lambda=2$ or $\lambda=3$. Let n be a huge number, say $n=10^{6}$.
- Suppose I have a coin that comes on heads with probability λ / n and I toss it n times.
- How many heads do I expect to see?
- Answer: $n p=\lambda$.
- Let k be some moderate sized number (say $k=4$). What is the probability that I see exactly k heads?
- Binomial formula:

$$
\binom{n}{k} p^{k}(1-p)^{n-k}=\frac{n(n-1)(n-2) \ldots(n-k+1)}{k!} p^{k}(1-p)^{n-k} .
$$

- This is approximately $\frac{\lambda^{k}}{k!}(1-p)^{n-k} \approx \frac{\lambda^{k}}{k!} e^{-\lambda}$.

Bernoulli random variable with n large and $n p$

- Let λ be some moderate-sized number. Say $\lambda=2$ or $\lambda=3$. Let n be a huge number, say $n=10^{6}$.
- Suppose I have a coin that comes on heads with probability λ / n and I toss it n times.
- How many heads do I expect to see?
- Answer: $n p=\lambda$.
- Let k be some moderate sized number (say $k=4$). What is the probability that I see exactly k heads?
- Binomial formula:

$$
\binom{n}{k} p^{k}(1-p)^{n-k}=\frac{n(n-1)(n-2) \ldots(n-k+1)}{k!} p^{k}(1-p)^{n-k} .
$$

- This is approximately $\frac{\lambda^{k}}{k!}(1-p)^{n-k} \approx \frac{\lambda^{k}}{k!} e^{-\lambda}$.
- A Poisson random variable X with parameter λ satisfies $P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$.

Expectation and variance

- A Poisson random variable X with parameter λ satisfies $P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$.

Expectation and variance

- A Poisson random variable X with parameter λ satisfies $P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$.
- Clever computation tricks yield $E[X]=\lambda$ and $\operatorname{Var}[X]=\lambda$.

Expectation and variance

- A Poisson random variable X with parameter λ satisfies $P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$.
- Clever computation tricks yield $E[X]=\lambda$ and $\operatorname{Var}[X]=\lambda$.
- We think of a Poisson random variable as being (roughly) a Bernoulli (n, p) random variable with n very large and $p=\lambda / n$.

Expectation and variance

- A Poisson random variable X with parameter λ satisfies $P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$.
- Clever computation tricks yield $E[X]=\lambda$ and $\operatorname{Var}[X]=\lambda$.
- We think of a Poisson random variable as being (roughly) a Bernoulli (n, p) random variable with n very large and $p=\lambda / n$.
- This also suggests $E[X]=n p=\lambda$ and $\operatorname{Var}[X]=n p q \approx \lambda$.

Poisson point process

- A Poisson point process is a random function $N(t)$ called a Poisson process of rate λ.

Poisson point process

- A Poisson point process is a random function $N(t)$ called a Poisson process of rate λ.
- For each $t>s \geq 0$, the value $N(t)-N(s)$ describes the number of events occurring in the time interval (s, t) and is Poisson with rate $(t-s) \lambda$.

Poisson point process

- A Poisson point process is a random function $N(t)$ called a Poisson process of rate λ.
- For each $t>s \geq 0$, the value $N(t)-N(s)$ describes the number of events occurring in the time interval (s, t) and is Poisson with rate $(t-s) \lambda$.
- The numbers of events occurring in disjoint intervals are independent random variables.

Poisson point process

- A Poisson point process is a random function $N(t)$ called a Poisson process of rate λ.
- For each $t>s \geq 0$, the value $N(t)-N(s)$ describes the number of events occurring in the time interval (s, t) and is Poisson with rate $(t-s) \lambda$.
- The numbers of events occurring in disjoint intervals are independent random variables.
- Probability to see zero events in first t time units is $e^{-\lambda t}$.
- Let T_{k} be time elapsed, since the previous event, until the k th event occurs. Then the T_{k} are independent random variables, each of which is exponential with parameter λ.

Geometric random variables

- Consider an infinite sequence of independent tosses of a coin that comes up heads with probability p.

Geometric random variables

- Consider an infinite sequence of independent tosses of a coin that comes up heads with probability p.
- Let X be such that the first heads is on the X th toss.

Geometric random variables

- Consider an infinite sequence of independent tosses of a coin that comes up heads with probability p.
- Let X be such that the first heads is on the X th toss.
- Answer: $P\{X=k\}=(1-p)^{k-1} p=q^{k-1} p$, where $q=1-p$ is tails probability.

Geometric random variables

- Consider an infinite sequence of independent tosses of a coin that comes up heads with probability p.
- Let X be such that the first heads is on the X th toss.
- Answer: $P\{X=k\}=(1-p)^{k-1} p=q^{k-1} p$, where $q=1-p$ is tails probability.
- Say X is a geometric random variable with parameter p.

Geometric random variables

- Consider an infinite sequence of independent tosses of a coin that comes up heads with probability p.
- Let X be such that the first heads is on the X th toss.
- Answer: $P\{X=k\}=(1-p)^{k-1} p=q^{k-1} p$, where $q=1-p$ is tails probability.
- Say X is a geometric random variable with parameter p.
- Some cool calculation tricks show that $E[X]=1 / p$.

Geometric random variables

- Consider an infinite sequence of independent tosses of a coin that comes up heads with probability p.
- Let X be such that the first heads is on the X th toss.
- Answer: $P\{X=k\}=(1-p)^{k-1} p=q^{k-1} p$, where $q=1-p$ is tails probability.
- Say X is a geometric random variable with parameter p.
- Some cool calculation tricks show that $E[X]=1 / p$.
- And $\operatorname{Var}[X]=q / p^{2}$.

Negative binomial random variables

- Consider an infinite sequence of independent tosses of a coin that comes up heads with probability p.

Negative binomial random variables

- Consider an infinite sequence of independent tosses of a coin that comes up heads with probability p.
- Let X be such that the r th heads is on the X th toss.

Negative binomial random variables

- Consider an infinite sequence of independent tosses of a coin that comes up heads with probability p.
- Let X be such that the r th heads is on the X th toss.
- Then $P\{X=k\}=\binom{k-1}{r-1} p^{r-1}(1-p)^{k-r} p$.

Negative binomial random variables

- Consider an infinite sequence of independent tosses of a coin that comes up heads with probability p.
- Let X be such that the r th heads is on the X th toss.
- Then $P\{X=k\}=\binom{k-1}{r-1} p^{r-1}(1-p)^{k-r} p$.
- Call X negative binomial random variable with parameters (r, p).

Negative binomial random variables

- Consider an infinite sequence of independent tosses of a coin that comes up heads with probability p.
- Let X be such that the r th heads is on the X th toss.
- Then $P\{X=k\}=\binom{k-1}{r-1} p^{r-1}(1-p)^{k-r} p$.
- Call X negative binomial random variable with parameters (r, p).
- So $E[X]=r / p$.

Negative binomial random variables

- Consider an infinite sequence of independent tosses of a coin that comes up heads with probability p.
- Let X be such that the r th heads is on the X th toss.
- Then $P\{X=k\}=\binom{k-1}{r-1} p^{r-1}(1-p)^{k-r} p$.
- Call X negative binomial random variable with parameters (r, p).
- So $E[X]=r / p$.
- And $\operatorname{Var}[X]=r q / p^{2}$.

MIT OpenCourseWare https://ocw.mit.edu

18.600 Probability and Random Variables

Fall 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

