18.600: Lecture 8

Discrete random variables

Scott Sheffield

MIT

Outline

Defining random variables

Probability mass function and distribution function

Recursions

Outline

Defining random variables

Probability mass function and distribution function

Recursions

Random variables

- A random variable X is a function from the state space to the real numbers.

Random variables

- A random variable X is a function from the state space to the real numbers.
- Can interpret X as a quantity whose value depends on the outcome of an experiment.

Random variables

- A random variable X is a function from the state space to the real numbers.
- Can interpret X as a quantity whose value depends on the outcome of an experiment.
- Example: toss n coins (so state space consists of the set of all 2^{n} possible coin sequences) and let X be number of heads.

Random variables

- A random variable X is a function from the state space to the real numbers.
- Can interpret X as a quantity whose value depends on the outcome of an experiment.
- Example: toss n coins (so state space consists of the set of all 2^{n} possible coin sequences) and let X be number of heads.
- Question: What is $P\{X=k\}$ in this case?

Random variables

- A random variable X is a function from the state space to the real numbers.
- Can interpret X as a quantity whose value depends on the outcome of an experiment.
- Example: toss n coins (so state space consists of the set of all 2^{n} possible coin sequences) and let X be number of heads.
- Question: What is $P\{X=k\}$ in this case?
- Answer: $\binom{n}{k} / 2^{n}$, if $k \in\{0,1,2, \ldots, n\}$.

Independence of multiple events

- In n coin toss example, knowing the values of some coin tosses tells us nothing about the others.

Independence of multiple events

- In n coin toss example, knowing the values of some coin tosses tells us nothing about the others.
- Say $E_{1} \ldots E_{n}$ are independent if for each $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subset\{1,2, \ldots n\}$ we have $P\left(E_{i_{1}} E_{i_{2}} \ldots E_{i_{k}}\right)=P\left(E_{i_{1}}\right) P\left(E_{i_{2}}\right) \ldots P\left(E_{i_{k}}\right)$.

Independence of multiple events

- In n coin toss example, knowing the values of some coin tosses tells us nothing about the others.
- Say $E_{1} \ldots E_{n}$ are independent if for each $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subset\{1,2, \ldots n\}$ we have $P\left(E_{i_{1}} E_{i_{2}} \ldots E_{i_{k}}\right)=P\left(E_{i_{1}}\right) P\left(E_{i_{2}}\right) \ldots P\left(E_{i_{k}}\right)$.
- In other words, the product rule works.

Independence of multiple events

- In n coin toss example, knowing the values of some coin tosses tells us nothing about the others.
- Say $E_{1} \ldots E_{n}$ are independent if for each $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subset\{1,2, \ldots n\}$ we have $P\left(E_{i_{1}} E_{i_{2}} \ldots E_{i_{k}}\right)=P\left(E_{i_{1}}\right) P\left(E_{i_{2}}\right) \ldots P\left(E_{i_{k}}\right)$.
- In other words, the product rule works.
- Independence implies $P\left(E_{1} E_{2} E_{3} \mid E_{4} E_{5} E_{6}\right)=$ $\frac{P\left(E_{1}\right) P\left(E_{2}\right) P\left(E_{3}\right) P\left(E_{4}\right) P\left(E_{5}\right) P\left(E_{6}\right)}{P\left(E_{4}\right) P\left(E_{5}\right) P\left(E_{6}\right)}=P\left(E_{1} E_{2} E_{3}\right)$, and other similar statements.

Independence of multiple events

- In n coin toss example, knowing the values of some coin tosses tells us nothing about the others.
- Say $E_{1} \ldots E_{n}$ are independent if for each $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subset\{1,2, \ldots n\}$ we have $P\left(E_{i_{1}} E_{i_{2}} \ldots E_{i_{k}}\right)=P\left(E_{i_{1}}\right) P\left(E_{i_{2}}\right) \ldots P\left(E_{i_{k}}\right)$.
- In other words, the product rule works.
- Independence implies $P\left(E_{1} E_{2} E_{3} \mid E_{4} E_{5} E_{6}\right)=$ $\frac{P\left(E_{1}\right) P\left(E_{2}\right) P\left(E_{3}\right) P\left(E_{4}\right) P\left(E_{5}\right) P\left(E_{6}\right)}{P\left(E_{4}\right) P\left(E_{5}\right) P\left(E_{6}\right)}=P\left(E_{1} E_{2} E_{3}\right)$, and other similar statements.
- Does pairwise independence imply independence?

Independence of multiple events

- In n coin toss example, knowing the values of some coin tosses tells us nothing about the others.
- Say $E_{1} \ldots E_{n}$ are independent if for each $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subset\{1,2, \ldots n\}$ we have $P\left(E_{i_{1}} E_{i_{2}} \ldots E_{i_{k}}\right)=P\left(E_{i_{1}}\right) P\left(E_{i_{2}}\right) \ldots P\left(E_{i_{k}}\right)$.
- In other words, the product rule works.
- Independence implies $P\left(E_{1} E_{2} E_{3} \mid E_{4} E_{5} E_{6}\right)=$ $\frac{P\left(E_{1}\right) P\left(E_{2}\right) P\left(E_{3}\right) P\left(E_{4}\right) P\left(E_{5}\right) P\left(E_{6}\right)}{P\left(E_{4}\right) P\left(E_{5}\right) P\left(E_{6}\right)}=P\left(E_{1} E_{2} E_{3}\right)$, and other similar statements.
- Does pairwise independence imply independence?
- No. Consider these three events: first coin heads, second coin heads, odd number heads. Pairwise independent, not independent.

Examples

- Shuffle n cards, and let X be the position of the j th card. State space consists of all n ! possible orderings. X takes values in $\{1,2, \ldots, n\}$ depending on the ordering.

Examples

- Shuffle n cards, and let X be the position of the j th card. State space consists of all n ! possible orderings. X takes values in $\{1,2, \ldots, n\}$ depending on the ordering.
- Question: What is $P\{X=k\}$ in this case?

Examples

- Shuffle n cards, and let X be the position of the j th card. State space consists of all n ! possible orderings. X takes values in $\{1,2, \ldots, n\}$ depending on the ordering.
- Question: What is $P\{X=k\}$ in this case?
- Answer: $1 / n$, if $k \in\{1,2, \ldots, n\}$.

Examples

- Shuffle n cards, and let X be the position of the j th card. State space consists of all n ! possible orderings. X takes values in $\{1,2, \ldots, n\}$ depending on the ordering.
- Question: What is $P\{X=k\}$ in this case?
- Answer: $1 / n$, if $k \in\{1,2, \ldots, n\}$.
- Now say we roll three dice and let Y be sum of the values on the dice. What is $P\{Y=5\}$?

Examples

- Shuffle n cards, and let X be the position of the j th card. State space consists of all n ! possible orderings. X takes values in $\{1,2, \ldots, n\}$ depending on the ordering.
- Question: What is $P\{X=k\}$ in this case?
- Answer: $1 / n$, if $k \in\{1,2, \ldots, n\}$.
- Now say we roll three dice and let Y be sum of the values on the dice. What is $P\{Y=5\}$?
- 6/216

Indicators

- Given any event E, can define an indicator random variable, i.e., let X be random variable equal to 1 on the event E and 0 otherwise. Write this as $X=1_{E}$.

Indicators

- Given any event E, can define an indicator random variable, i.e., let X be random variable equal to 1 on the event E and 0 otherwise. Write this as $X=1_{E}$.
- The value of 1_{E} (either 1 or 0) indicates whether the event has occurred.

Indicators

- Given any event E, can define an indicator random variable, i.e., let X be random variable equal to 1 on the event E and 0 otherwise. Write this as $X=1_{E}$.
- The value of 1_{E} (either 1 or 0) indicates whether the event has occurred.
- If $E_{1}, E_{2}, \ldots E_{k}$ are events then $X=\sum_{i=1}^{k} 1_{E_{i}}$ is the number of these events that occur.

Indicators

- Given any event E, can define an indicator random variable, i.e., let X be random variable equal to 1 on the event E and 0 otherwise. Write this as $X=1_{E}$.
- The value of 1_{E} (either 1 or 0) indicates whether the event has occurred.
- If $E_{1}, E_{2}, \ldots E_{k}$ are events then $X=\sum_{i=1}^{k} 1_{E_{i}}$ is the number of these events that occur.
- Example: in n-hat shuffle problem, let E_{i} be the event i th person gets own hat.

Indicators

- Given any event E, can define an indicator random variable, i.e., let X be random variable equal to 1 on the event E and 0 otherwise. Write this as $X=1_{E}$.
- The value of 1_{E} (either 1 or 0) indicates whether the event has occurred.
- If $E_{1}, E_{2}, \ldots E_{k}$ are events then $X=\sum_{i=1}^{k} 1_{E_{i}}$ is the number of these events that occur.
- Example: in n-hat shuffle problem, let E_{i} be the event i th person gets own hat.
- Then $\sum_{i=1}^{n} 1_{E_{i}}$ is total number of people who get own hats.

Indicators

- Given any event E, can define an indicator random variable, i.e., let X be random variable equal to 1 on the event E and 0 otherwise. Write this as $X=1_{E}$.
- The value of 1_{E} (either 1 or 0) indicates whether the event has occurred.
- If $E_{1}, E_{2}, \ldots E_{k}$ are events then $X=\sum_{i=1}^{k} 1_{E_{i}}$ is the number of these events that occur.
- Example: in n-hat shuffle problem, let E_{i} be the event i th person gets own hat.
- Then $\sum_{i=1}^{n} 1_{E_{i}}$ is total number of people who get own hats.
- Writing random variable as sum of indicators: frequently useful, sometimes confusing.

Outline

Defining random variables

Probability mass function and distribution function

Recursions

Outline

Defining random variables

Probability mass function and distribution function

Recursions

Probability mass function

- Say X is a discrete random variable if (with probability one) it takes one of a countable set of values.

Probability mass function

- Say X is a discrete random variable if (with probability one) it takes one of a countable set of values.
- For each a in this countable set, write $p(a):=P\{X=a\}$. Call p the probability mass function.

Probability mass function

- Say X is a discrete random variable if (with probability one) it takes one of a countable set of values.
- For each a in this countable set, write $p(a):=P\{X=a\}$. Call p the probability mass function.
- For the cumulative distribution function, write $F(a)=P\{X \leq a\}=\sum_{x \leq a} p(x)$.

Probability mass function

- Say X is a discrete random variable if (with probability one) it takes one of a countable set of values.
- For each a in this countable set, write $p(a):=P\{X=a\}$. Call p the probability mass function.
- For the cumulative distribution function, write $F(a)=P\{X \leq a\}=\sum_{x \leq a} p(x)$.
- Example: Let $T_{1}, T_{2}, T_{3}, \ldots$ be sequence of independent fair coin tosses (each taking values in $\{H, T\}$) and let X be the smallest j for which $T_{j}=H$.

Probability mass function

- Say X is a discrete random variable if (with probability one) it takes one of a countable set of values.
- For each a in this countable set, write $p(a):=P\{X=a\}$. Call p the probability mass function.
- For the cumulative distribution function, write $F(a)=P\{X \leq a\}=\sum_{x \leq a} p(x)$.
- Example: Let $T_{1}, T_{2}, T_{3}, \ldots$ be sequence of independent fair coin tosses (each taking values in $\{H, T\}$) and let X be the smallest j for which $T_{j}=H$.
- What is $p(k)=P\{X=k\}$ (for $k \in \mathbb{Z}$) in this case?

Probability mass function

- Say X is a discrete random variable if (with probability one) it takes one of a countable set of values.
- For each a in this countable set, write $p(a):=P\{X=a\}$. Call p the probability mass function.
- For the cumulative distribution function, write $F(a)=P\{X \leq a\}=\sum_{x \leq a} p(x)$.
- Example: Let $T_{1}, T_{2}, T_{3}, \ldots$ be sequence of independent fair coin tosses (each taking values in $\{H, T\}$) and let X be the smallest j for which $T_{j}=H$.
- What is $p(k)=P\{X=k\}$ (for $k \in \mathbb{Z}$) in this case?
- $p(k)=(1 / 2)^{k}$

Probability mass function

- Say X is a discrete random variable if (with probability one) it takes one of a countable set of values.
- For each a in this countable set, write $p(a):=P\{X=a\}$. Call p the probability mass function.
- For the cumulative distribution function, write $F(a)=P\{X \leq a\}=\sum_{x \leq a} p(x)$.
- Example: Let $T_{1}, T_{2}, T_{3}, \ldots$ be sequence of independent fair coin tosses (each taking values in $\{H, T\}$) and let X be the smallest j for which $T_{j}=H$.
- What is $p(k)=P\{X=k\}$ (for $k \in \mathbb{Z}$) in this case?
- $p(k)=(1 / 2)^{k}$
- What about $F_{X}(k)$?

Probability mass function

- Say X is a discrete random variable if (with probability one) it takes one of a countable set of values.
- For each a in this countable set, write $p(a):=P\{X=a\}$. Call p the probability mass function.
- For the cumulative distribution function, write $F(a)=P\{X \leq a\}=\sum_{x \leq a} p(x)$.
- Example: Let $T_{1}, T_{2}, T_{3}, \ldots$ be sequence of independent fair coin tosses (each taking values in $\{H, T\}$) and let X be the smallest j for which $T_{j}=H$.
- What is $p(k)=P\{X=k\}$ (for $k \in \mathbb{Z}$) in this case?
- $p(k)=(1 / 2)^{k}$
- What about $F_{X}(k)$?
- $1-(1 / 2)^{k}$

Another example

- Another example: let X be non-negative integer such that $p(k)=P\{X=k\}=e^{-\lambda} \lambda^{k} / k!$.

Another example

- Another example: let X be non-negative integer such that $p(k)=P\{X=k\}=e^{-\lambda} \lambda^{k} / k!$.
- Recall Taylor expansion $\sum_{k=0}^{\infty} \lambda^{k} / k!=e^{\lambda}$.

Another example

- Another example: let X be non-negative integer such that $p(k)=P\{X=k\}=e^{-\lambda} \lambda^{k} / k!$.
- Recall Taylor expansion $\sum_{k=0}^{\infty} \lambda^{k} / k!=e^{\lambda}$.
- In this example, X is called a Poisson random variable with intensity λ.

Another example

- Another example: let X be non-negative integer such that $p(k)=P\{X=k\}=e^{-\lambda} \lambda^{k} / k!$.
- Recall Taylor expansion $\sum_{k=0}^{\infty} \lambda^{k} / k!=e^{\lambda}$.
- In this example, X is called a Poisson random variable with intensity λ.
- Question: what is the state space in this example?

Another example

- Another example: let X be non-negative integer such that $p(k)=P\{X=k\}=e^{-\lambda} \lambda^{k} / k!$.
- Recall Taylor expansion $\sum_{k=0}^{\infty} \lambda^{k} / k!=e^{\lambda}$.
- In this example, X is called a Poisson random variable with intensity λ.
- Question: what is the state space in this example?
- Answer: Didn't specify. One possibility would be to define state space as $S=\{0,1,2, \ldots\}$ and define X (as a function on S) by $X(j)=j$. The probability function would be determined by $P(S)=\sum_{k \in S} e^{-\lambda} \lambda^{k} / k!$.

Another example

- Another example: let X be non-negative integer such that $p(k)=P\{X=k\}=e^{-\lambda} \lambda^{k} / k!$.
- Recall Taylor expansion $\sum_{k=0}^{\infty} \lambda^{k} / k!=e^{\lambda}$.
- In this example, X is called a Poisson random variable with intensity λ.
- Question: what is the state space in this example?
- Answer: Didn't specify. One possibility would be to define state space as $S=\{0,1,2, \ldots\}$ and define X (as a function on S) by $X(j)=j$. The probability function would be determined by $P(S)=\sum_{k \in S} e^{-\lambda} \lambda^{k} / k!$.
- Are there other choices of S and P - and other functions X from S to P - for which the values of $P\{X=k\}$ are the same?

Another example

- Another example: let X be non-negative integer such that $p(k)=P\{X=k\}=e^{-\lambda} \lambda^{k} / k!$.
- Recall Taylor expansion $\sum_{k=0}^{\infty} \lambda^{k} / k!=e^{\lambda}$.
- In this example, X is called a Poisson random variable with intensity λ.
- Question: what is the state space in this example?
- Answer: Didn't specify. One possibility would be to define state space as $S=\{0,1,2, \ldots\}$ and define X (as a function on S) by $X(j)=j$. The probability function would be determined by $P(S)=\sum_{k \in S} e^{-\lambda} \lambda^{k} / k!$.
- Are there other choices of S and P - and other functions X from S to P - for which the values of $P\{X=k\}$ are the same?
- Yes. " X is a Poisson randorf²variable with intensity λ " is statement only about the probability mass function of X.

Outline

Defining random variables

Probability mass function and distribution function

Recursions

Outline

Defining random variables
 Probability mass function and distribution function

Recursions

Using Bayes' rule to set up recursions

- Gambler one has positive integer m dollars, gambler two has positive integer n dollars. Take turns making one dollar bets until one runs out of money. What is probability first gambler runs out of money first?

Using Bayes' rule to set up recursions

- Gambler one has positive integer m dollars, gambler two has positive integer n dollars. Take turns making one dollar bets until one runs out of money. What is probability first gambler runs out of money first?
- $n /(m+n)$

Using Bayes' rule to set up recursions

- Gambler one has positive integer m dollars, gambler two has positive integer n dollars. Take turns making one dollar bets until one runs out of money. What is probability first gambler runs out of money first?
- $n /(m+n)$
- Gambler's ruin: what if gambler one has an unlimited amount of money?

Using Bayes' rule to set up recursions

- Gambler one has positive integer m dollars, gambler two has positive integer n dollars. Take turns making one dollar bets until one runs out of money. What is probability first gambler runs out of money first?
- $n /(m+n)$
- Gambler's ruin: what if gambler one has an unlimited amount of money?
- Wins eventually with probability one.

Using Bayes' rule to set up recursions

- Gambler one has positive integer m dollars, gambler two has positive integer n dollars. Take turns making one dollar bets until one runs out of money. What is probability first gambler runs out of money first?
- $n /(m+n)$
- Gambler's ruin: what if gambler one has an unlimited amount of money?
- Wins eventually with probability one.
- Problem of points: in sequence of independent fair coin tosses, what is probability $P_{n, m}$ to see n heads before seeing m tails?

Using Bayes' rule to set up recursions

- Gambler one has positive integer m dollars, gambler two has positive integer n dollars. Take turns making one dollar bets until one runs out of money. What is probability first gambler runs out of money first?
- $n /(m+n)$
- Gambler's ruin: what if gambler one has an unlimited amount of money?
- Wins eventually with probability one.
- Problem of points: in sequence of independent fair coin tosses, what is probability $P_{n, m}$ to see n heads before seeing m tails?
- Observe: $P_{n, m}$ is equivalent to the probability of having n or more heads in first $m+n-1$ trials.

Using Bayes' rule to set up recursions

- Gambler one has positive integer m dollars, gambler two has positive integer n dollars. Take turns making one dollar bets until one runs out of money. What is probability first gambler runs out of money first?
- $n /(m+n)$
- Gambler's ruin: what if gambler one has an unlimited amount of money?
- Wins eventually with probability one.
- Problem of points: in sequence of independent fair coin tosses, what is probability $P_{n, m}$ to see n heads before seeing m tails?
- Observe: $P_{n, m}$ is equivalent to the probability of having n or more heads in first $m+n-1$ trials.
- Probability of exactly n heads in $m+n-1$ trials is $\binom{m+n-1}{n}$.

Using Bayes' rule to set up recursions

- Gambler one has positive integer m dollars, gambler two has positive integer n dollars. Take turns making one dollar bets until one runs out of money. What is probability first gambler runs out of money first?
- $n /(m+n)$
- Gambler's ruin: what if gambler one has an unlimited amount of money?
- Wins eventually with probability one.
- Problem of points: in sequence of independent fair coin tosses, what is probability $P_{n, m}$ to see n heads before seeing m tails?
- Observe: $P_{n, m}$ is equivalent to the probability of having n or more heads in first $m+n-1$ trials.
- Probability of exactly n heads in $m+n-1$ trials is $\binom{m+n-1}{n}$.
- Famous correspondence by Fermat and Pascal. Led Pascal to write Le Triangle Arithmétique.

MIT OpenCourseWare https://ocw.mit.edu

18.600 Probability and Random Variables

Fall 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

