18.600: Lecture 8 Discrete random variables

Scott Sheffield

MIT

Defining random variables

Probability mass function and distribution function

Recursions

Defining random variables

Probability mass function and distribution function

Recursions

► A random variable X is a function from the state space to the real numbers.

- ► A random variable X is a function from the state space to the real numbers.
- Can interpret X as a quantity whose value depends on the outcome of an experiment.

- ► A random variable X is a function from the state space to the real numbers.
- Can interpret X as a quantity whose value depends on the outcome of an experiment.
- Example: toss n coins (so state space consists of the set of all 2ⁿ possible coin sequences) and let X be number of heads.

- ► A random variable X is a function from the state space to the real numbers.
- Can interpret X as a quantity whose value depends on the outcome of an experiment.
- Example: toss n coins (so state space consists of the set of all 2ⁿ possible coin sequences) and let X be number of heads.
- Question: What is $P\{X = k\}$ in this case?

- ► A random variable X is a function from the state space to the real numbers.
- Can interpret X as a quantity whose value depends on the outcome of an experiment.
- Example: toss n coins (so state space consists of the set of all 2ⁿ possible coin sequences) and let X be number of heads.
- Question: What is $P{X = k}$ in this case?
- Answer: $\binom{n}{k}/2^n$, if $k \in \{0, 1, 2, ..., n\}$.

In n coin toss example, knowing the values of some coin tosses tells us nothing about the others.

- In n coin toss example, knowing the values of some coin tosses tells us nothing about the others.
- ► Say $E_1 \dots E_n$ are independent if for each $\{i_1, i_2, \dots, i_k\} \subset \{1, 2, \dots, n\}$ we have $P(E_{i_1}E_{i_2} \dots E_{i_k}) = P(E_{i_1})P(E_{i_2}) \dots P(E_{i_k}).$

- In n coin toss example, knowing the values of some coin tosses tells us nothing about the others.
- ► Say $E_1 \dots E_n$ are independent if for each $\{i_1, i_2, \dots, i_k\} \subset \{1, 2, \dots, n\}$ we have $P(E_{i_1}E_{i_2} \dots E_{i_k}) = P(E_{i_1})P(E_{i_2}) \dots P(E_{i_k}).$
- In other words, the product rule works.

- In n coin toss example, knowing the values of some coin tosses tells us nothing about the others.
- ► Say $E_1 \ldots E_n$ are independent if for each $\{i_1, i_2, \ldots, i_k\} \subset \{1, 2, \ldots, n\}$ we have $P(E_{i_1}E_{i_2} \ldots E_{i_k}) = P(E_{i_1})P(E_{i_2}) \ldots P(E_{i_k}).$
- In other words, the product rule works.
- ▶ Independence implies $P(E_1E_2E_3|E_4E_5E_6) = \frac{P(E_1)P(E_2)P(E_3)P(E_4)P(E_5)P(E_6)}{P(E_4)P(E_5)P(E_6)} = P(E_1E_2E_3)$, and other similar statements.

- In n coin toss example, knowing the values of some coin tosses tells us nothing about the others.
- ► Say $E_1 \ldots E_n$ are independent if for each $\{i_1, i_2, \ldots, i_k\} \subset \{1, 2, \ldots, n\}$ we have $P(E_{i_1}E_{i_2} \ldots E_{i_k}) = P(E_{i_1})P(E_{i_2}) \ldots P(E_{i_k}).$
- In other words, the product rule works.
- ▶ Independence implies $P(E_1E_2E_3|E_4E_5E_6) = \frac{P(E_1)P(E_2)P(E_3)P(E_4)P(E_5)P(E_6)}{P(E_4)P(E_5)P(E_6)} = P(E_1E_2E_3)$, and other similar statements.
- Does pairwise independence imply independence?

- In n coin toss example, knowing the values of some coin tosses tells us nothing about the others.
- ► Say $E_1 \ldots E_n$ are independent if for each $\{i_1, i_2, \ldots, i_k\} \subset \{1, 2, \ldots, n\}$ we have $P(E_{i_1}E_{i_2} \ldots E_{i_k}) = P(E_{i_1})P(E_{i_2}) \ldots P(E_{i_k}).$
- In other words, the product rule works.
- ▶ Independence implies $P(E_1E_2E_3|E_4E_5E_6) = \frac{P(E_1)P(E_2)P(E_3)P(E_4)P(E_5)P(E_6)}{P(E_4)P(E_5)P(E_6)} = P(E_1E_2E_3)$, and other similar statements.
- Does pairwise independence imply independence?
- No. Consider these three events: first coin heads, second coin heads, odd number heads. Pairwise independent, not independent. 14

Shuffle n cards, and let X be the position of the *j*th card. State space consists of all n! possible orderings. X takes values in {1, 2, ..., n} depending on the ordering.

- Shuffle n cards, and let X be the position of the jth card. State space consists of all n! possible orderings. X takes values in {1, 2, ..., n} depending on the ordering.
- Question: What is $P\{X = k\}$ in this case?

- Shuffle n cards, and let X be the position of the jth card. State space consists of all n! possible orderings. X takes values in {1, 2, ..., n} depending on the ordering.
- Question: What is $P\{X = k\}$ in this case?
- Answer: 1/n, if $k \in \{1, 2, ..., n\}$.

- Shuffle n cards, and let X be the position of the *j*th card. State space consists of all n! possible orderings. X takes values in {1, 2, ..., n} depending on the ordering.
- Question: What is $P\{X = k\}$ in this case?
- Answer: 1/n, if $k \in \{1, 2, ..., n\}$.
- Now say we roll three dice and let Y be sum of the values on the dice. What is P{Y = 5}?

- Shuffle n cards, and let X be the position of the *j*th card. State space consists of all n! possible orderings. X takes values in {1, 2, ..., n} depending on the ordering.
- Question: What is $P{X = k}$ in this case?
- Answer: 1/n, if $k \in \{1, 2, ..., n\}$.
- Now say we roll three dice and let Y be sum of the values on the dice. What is P{Y = 5}?
- ► 6/216

 Given any event E, can define an indicator random variable, i.e., let X be random variable equal to 1 on the event E and 0 otherwise. Write this as X = 1_E.

- Given any event E, can define an indicator random variable, i.e., let X be random variable equal to 1 on the event E and 0 otherwise. Write this as X = 1_E.
- ► The value of 1_E (either 1 or 0) *indicates* whether the event has occurred.

- Given any event E, can define an indicator random variable, i.e., let X be random variable equal to 1 on the event E and 0 otherwise. Write this as X = 1_E.
- ► The value of 1_E (either 1 or 0) *indicates* whether the event has occurred.
- If $E_1, E_2, \ldots E_k$ are events then $X = \sum_{i=1}^k 1_{E_i}$ is the number of these events that occur.

- ▶ Given any event *E*, can define an **indicator** random variable, i.e., let *X* be random variable equal to 1 on the event *E* and 0 otherwise. Write this as *X* = 1_{*E*}.
- ► The value of 1_E (either 1 or 0) *indicates* whether the event has occurred.
- If $E_1, E_2, \ldots E_k$ are events then $X = \sum_{i=1}^k \mathbb{1}_{E_i}$ is the number of these events that occur.
- Example: in *n*-hat shuffle problem, let E_i be the event *i*th person gets own hat.

- Given any event E, can define an indicator random variable, i.e., let X be random variable equal to 1 on the event E and 0 otherwise. Write this as X = 1_E.
- ► The value of 1_E (either 1 or 0) *indicates* whether the event has occurred.
- If $E_1, E_2, \ldots E_k$ are events then $X = \sum_{i=1}^k \mathbb{1}_{E_i}$ is the number of these events that occur.
- Example: in *n*-hat shuffle problem, let E_i be the event *i*th person gets own hat.
- Then $\sum_{i=1}^{n} 1_{E_i}$ is total number of people who get own hats.

- ▶ Given any event *E*, can define an **indicator** random variable, i.e., let *X* be random variable equal to 1 on the event *E* and 0 otherwise. Write this as *X* = 1_{*E*}.
- ► The value of 1_E (either 1 or 0) *indicates* whether the event has occurred.
- ▶ If $E_1, E_2, ..., E_k$ are events then $X = \sum_{i=1}^k 1_{E_i}$ is the number of these events that occur.
- Example: in *n*-hat shuffle problem, let E_i be the event *i*th person gets own hat.
- Then $\sum_{i=1}^{n} 1_{E_i}$ is total number of people who get own hats.
- Writing random variable as sum of indicators: frequently useful, sometimes confusing.

Defining random variables

Probability mass function and distribution function

Recursions

Defining random variables

Probability mass function and distribution function

Recursions

Say X is a discrete random variable if (with probability one) it takes one of a countable set of values.

- Say X is a discrete random variable if (with probability one) it takes one of a countable set of values.
- ► For each a in this countable set, write p(a) := P{X = a}. Call p the probability mass function.

- Say X is a discrete random variable if (with probability one) it takes one of a countable set of values.
- ► For each a in this countable set, write p(a) := P{X = a}. Call p the probability mass function.
- ► For the cumulative distribution function, write $F(a) = P\{X \le a\} = \sum_{x \le a} p(x).$

- Say X is a discrete random variable if (with probability one) it takes one of a countable set of values.
- ► For each a in this countable set, write p(a) := P{X = a}. Call p the probability mass function.
- ► For the cumulative distribution function, write $F(a) = P\{X \le a\} = \sum_{x \le a} p(x).$
- ► Example: Let T₁, T₂, T₃,... be sequence of independent fair coin tosses (each taking values in {H, T}) and let X be the smallest j for which T_j = H.

- Say X is a discrete random variable if (with probability one) it takes one of a countable set of values.
- For each a in this countable set, write p(a) := P{X = a}. Call p the probability mass function.
- ► For the cumulative distribution function, write $F(a) = P\{X \le a\} = \sum_{x \le a} p(x).$
- ► Example: Let T₁, T₂, T₃,... be sequence of independent fair coin tosses (each taking values in {H, T}) and let X be the smallest j for which T_j = H.
- What is $p(k) = P\{X = k\}$ (for $k \in \mathbb{Z}$) in this case?

- Say X is a discrete random variable if (with probability one) it takes one of a countable set of values.
- For each a in this countable set, write p(a) := P{X = a}. Call p the probability mass function.
- ► For the cumulative distribution function, write $F(a) = P\{X \le a\} = \sum_{x \le a} p(x).$
- ► Example: Let T₁, T₂, T₃,... be sequence of independent fair coin tosses (each taking values in {H, T}) and let X be the smallest j for which T_j = H.
- What is $p(k) = P\{X = k\}$ (for $k \in \mathbb{Z}$) in this case?

•
$$p(k) = (1/2)^k$$

- Say X is a discrete random variable if (with probability one) it takes one of a countable set of values.
- ► For each a in this countable set, write p(a) := P{X = a}. Call p the probability mass function.
- ► For the cumulative distribution function, write $F(a) = P\{X \le a\} = \sum_{x \le a} p(x).$
- ► Example: Let T₁, T₂, T₃,... be sequence of independent fair coin tosses (each taking values in {H, T}) and let X be the smallest j for which T_j = H.
- What is $p(k) = P\{X = k\}$ (for $k \in \mathbb{Z}$) in this case?
- $p(k) = (1/2)^k$
- ► What about F_X(k)?

- Say X is a discrete random variable if (with probability one) it takes one of a countable set of values.
- ► For each a in this countable set, write p(a) := P{X = a}. Call p the probability mass function.
- ► For the cumulative distribution function, write $F(a) = P\{X \le a\} = \sum_{x \le a} p(x).$
- ► Example: Let T₁, T₂, T₃,... be sequence of independent fair coin tosses (each taking values in {H, T}) and let X be the smallest j for which T_j = H.
- What is $p(k) = P\{X = k\}$ (for $k \in \mathbb{Z}$) in this case?
- $p(k) = (1/2)^k$
- What about F_X(k)?
- ▶ $1 (1/2)^k$ 35

Another example: let X be non-negative integer such that p(k) = P{X = k} = e^{-λ}λ^k/k!.

- Another example: let X be non-negative integer such that p(k) = P{X = k} = e^{-λ}λ^k/k!.
- Recall Taylor expansion $\sum_{k=0}^{\infty} \lambda^k / k! = e^{\lambda}$.

- Another example: let X be non-negative integer such that p(k) = P{X = k} = e^{-λ}λ^k/k!.
- Recall Taylor expansion $\sum_{k=0}^{\infty} \lambda^k / k! = e^{\lambda}$.
- In this example, X is called a Poisson random variable with intensity λ.

- Another example: let X be non-negative integer such that p(k) = P{X = k} = e^{-λ}λ^k/k!.
- Recall Taylor expansion $\sum_{k=0}^{\infty} \lambda^k / k! = e^{\lambda}$.
- In this example, X is called a **Poisson** random variable with intensity λ.
- Question: what is the state space in this example?

- Another example: let X be non-negative integer such that p(k) = P{X = k} = e^{-λ}λ^k/k!.
- Recall Taylor expansion $\sum_{k=0}^{\infty} \lambda^k / k! = e^{\lambda}$.
- In this example, X is called a **Poisson** random variable with intensity λ.
- Question: what is the state space in this example?
- Answer: Didn't specify. One possibility would be to define state space as S = {0,1,2,...} and define X (as a function on S) by X(j) = j. The probability function would be determined by P(S) = ∑_{k∈S} e^{-λ}λ^k/k!.

- Another example: let X be non-negative integer such that p(k) = P{X = k} = e^{-λ}λ^k/k!.
- Recall Taylor expansion $\sum_{k=0}^{\infty} \lambda^k / k! = e^{\lambda}$.
- In this example, X is called a **Poisson** random variable with intensity λ.
- Question: what is the state space in this example?
- Answer: Didn't specify. One possibility would be to define state space as S = {0, 1, 2, ...} and define X (as a function on S) by X(j) = j. The probability function would be determined by P(S) = ∑_{k∈S} e^{-λ}λ^k/k!.
- ► Are there other choices of S and P and other functions X from S to P for which the values of P{X = k} are the same?

- Another example: let X be non-negative integer such that p(k) = P{X = k} = e^{-λ}λ^k/k!.
- Recall Taylor expansion $\sum_{k=0}^{\infty} \lambda^k / k! = e^{\lambda}$.
- In this example, X is called a **Poisson** random variable with intensity λ.
- Question: what is the state space in this example?
- Answer: Didn't specify. One possibility would be to define state space as S = {0, 1, 2, ...} and define X (as a function on S) by X(j) = j. The probability function would be determined by P(S) = ∑_{k∈S} e^{-λ}λ^k/k!.
- Are there other choices of S and P and other functions X from S to P — for which the values of P{X = k} are the same?
- Yes. "X is a Poisson randor⁴²variable with intensity λ" is statement only about the *probability mass function* of X.

Defining random variables

Probability mass function and distribution function

Recursions

Defining random variables

Probability mass function and distribution function

Recursions

Gambler one has positive integer *m* dollars, gambler two has positive integer *n* dollars. Take turns making one dollar bets until one runs out of money. What is probability first gambler runs out of money first?

Gambler one has positive integer *m* dollars, gambler two has positive integer *n* dollars. Take turns making one dollar bets until one runs out of money. What is probability first gambler runs out of money first?

▶ n/(m+n)

- ▶ Gambler one has positive integer *m* dollars, gambler two has positive integer *n* dollars. Take turns making one dollar bets until one runs out of money. What is probability first gambler runs out of money first?
- ▶ n/(m+n)
- Gambler's ruin: what if gambler one has an unlimited amount of money?

- ▶ Gambler one has positive integer *m* dollars, gambler two has positive integer *n* dollars. Take turns making one dollar bets until one runs out of money. What is probability first gambler runs out of money first?
- ▶ n/(m+n)
- Gambler's ruin: what if gambler one has an unlimited amount of money?
- Wins eventually with probability one.

- ▶ Gambler one has positive integer *m* dollars, gambler two has positive integer *n* dollars. Take turns making one dollar bets until one runs out of money. What is probability first gambler runs out of money first?
- ▶ n/(m+n)
- Gambler's ruin: what if gambler one has an unlimited amount of money?
- Wins eventually with probability one.
- ▶ **Problem of points:** in sequence of independent fair coin tosses, what is probability *P*_{*n*,*m*} to see *n* heads before seeing *m* tails?

- ▶ Gambler one has positive integer *m* dollars, gambler two has positive integer *n* dollars. Take turns making one dollar bets until one runs out of money. What is probability first gambler runs out of money first?
- ▶ n/(m+n)
- Gambler's ruin: what if gambler one has an unlimited amount of money?
- Wins eventually with probability one.
- ▶ **Problem of points:** in sequence of independent fair coin tosses, what is probability *P*_{*n*,*m*} to see *n* heads before seeing *m* tails?
- ▶ Observe: $P_{n,m}$ is equivalent to the probability of having *n* or more heads in first m + n 1 trials.

- Gambler one has positive integer *m* dollars, gambler two has positive integer *n* dollars. Take turns making one dollar bets until one runs out of money. What is probability first gambler runs out of money first?
- ▶ n/(m+n)
- Gambler's ruin: what if gambler one has an unlimited amount of money?
- Wins eventually with probability one.
- ▶ **Problem of points:** in sequence of independent fair coin tosses, what is probability *P*_{*n*,*m*} to see *n* heads before seeing *m* tails?
- ▶ Observe: $P_{n,m}$ is equivalent to the probability of having *n* or more heads in first m + n 1 trials.
- ▶ Probability of exactly *n* heads in m + n 1 trials is $\binom{m+n-1}{n}$.

- ▶ Gambler one has positive integer *m* dollars, gambler two has positive integer *n* dollars. Take turns making one dollar bets until one runs out of money. What is probability first gambler runs out of money first?
- ▶ n/(m+n)
- Gambler's ruin: what if gambler one has an unlimited amount of money?
- Wins eventually with probability one.
- ▶ **Problem of points:** in sequence of independent fair coin tosses, what is probability *P*_{*n*,*m*} to see *n* heads before seeing *m* tails?
- ► Observe: P_{n,m} is equivalent to the probability of having n or more heads in first m + n - 1 trials.
- ▶ Probability of exactly *n* heads in m + n 1 trials is $\binom{m+n-1}{n}$.
- Famous correspondence by Fermat and Pascal. Led Pascal to write Le Triangle Arithmétique.

18.600 Probability and Random Variables Fall 2019

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.