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I Can interpret X as a quantity whose value depends on the
outcome of an experiment.

I Example: toss n coins (so state space consists of the set of all
2n possible coin sequences) and let X be number of heads.

I Question: What is P{X = k} in this case?

I Answer:
�n
k

�
/2n, if k ∈ {0, 1, 2, . . . , n}.

Random variables 

I A random variable X is a function from the state space to the 
real numbers. 
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I Say E1 . . .En are independent if for each
{i1, i2, . . . , ik} ⊂ {1, 2, . . . n} we have
P(Ei1Ei2 . . .Eik ) = P(Ei1)P(Ei2) . . .P(Eik ).

I In other words, the product rule works.

I Independence implies P(E1E2E3|E4E5E6) =
P(E1)P(E2)P(E3)P(E4)P(E5)P(E6)

P(E4)P(E5)P(E6)
= P(E1E2E3), and other similar

statements.

I Does pairwise independence imply independence?

I No. Consider these three events: first coin heads, second coin
heads, odd number heads. Pairwise independent, not
independent.

Independence of multiple events 

I In n coin toss example, knowing the values of some coin 
tosses tells us nothing about the others. 

9



I In other words, the product rule works.

I Independence implies P(E1E2E3|E4E5E6) =
P(E1)P(E2)P(E3)P(E4)P(E5)P(E6)

P(E4)P(E5)P(E6)
= P(E1E2E3), and other similar

statements.

I Does pairwise independence imply independence?

I No. Consider these three events: first coin heads, second coin
heads, odd number heads. Pairwise independent, not
independent.

Independence of multiple events 

I In n coin toss example, knowing the values of some coin 
tosses tells us nothing about the others. 

I Say E1 . . . En are independent if for each 
{i1, i2, . . . , ik } ⊂ {1, 2, . . . n} we have 
P(Ei1 Ei2 . . . Eik ) = P(Ei1 )P(Ei2 ) . . . P(Eik ). 

10



I Independence implies P(E1E2E3|E4E5E6) =
P(E1)P(E2)P(E3)P(E4)P(E5)P(E6)

P(E4)P(E5)P(E6)
= P(E1E2E3), and other similar

statements.

I Does pairwise independence imply independence?

I No. Consider these three events: first coin heads, second coin
heads, odd number heads. Pairwise independent, not
independent.

Independence of multiple events 

I In n coin toss example, knowing the values of some coin 
tosses tells us nothing about the others. 

I Say E1 . . . En are independent if for each 
{i1, i2, . . . , ik } ⊂ {1, 2, . . . n} we have 
P(Ei1 Ei2 . . . Eik ) = P(Ei1 )P(Ei2 ) . . . P(Eik ). 

I In other words, the product rule works. 

11



I Does pairwise independence imply independence?

I No. Consider these three events: first coin heads, second coin
heads, odd number heads. Pairwise independent, not
independent.

Independence of multiple events 

I In n coin toss example, knowing the values of some coin 
tosses tells us nothing about the others. 

I Say E1 . . . En are independent if for each 
{i1, i2, . . . , ik } ⊂ {1, 2, . . . n} we have 
P(Ei1 Ei2 . . . Eik ) = P(Ei1 )P(Ei2 ) . . . P(Eik ). 

I In other words, the product rule works. 

I Independence implies P(E1E2E3|E4E5E6) = 
P(E1)P(E2)P(E3)P(E4)P(E5)P(E6) = P(E1E2E3), and other similar P(E4)P(E5)P(E6) 
statements. 

12



I No. Consider these three events: first coin heads, second coin
heads, odd number heads. Pairwise independent, not
independent.

Independence of multiple events 

I In n coin toss example, knowing the values of some coin 
tosses tells us nothing about the others. 

I Say E1 . . . En are independent if for each 
{i1, i2, . . . , ik } ⊂ {1, 2, . . . n} we have 
P(Ei1 Ei2 . . . Eik ) = P(Ei1 )P(Ei2 ) . . . P(Eik ). 

I In other words, the product rule works. 

I Independence implies P(E1E2E3|E4E5E6) = 
P(E1)P(E2)P(E3)P(E4)P(E5)P(E6) = P(E1E2E3), and other similar P(E4)P(E5)P(E6) 
statements. 

I Does pairwise independence imply independence? 

13



Independence of multiple events 

I In n coin toss example, knowing the values of some coin 
tosses tells us nothing about the others. 

I Say E1 . . . En are independent if for each 
{i1, i2, . . . , ik } ⊂ {1, 2, . . . n} we have 
P(Ei1 Ei2 . . . Eik ) = P(Ei1 )P(Ei2 ) . . . P(Eik ). 

I In other words, the product rule works. 

I Independence implies P(E1E2E3|E4E5E6) = 
P(E1)P(E2)P(E3)P(E4)P(E5)P(E6) = P(E1E2E3), and other similar P(E4)P(E5)P(E6) 
statements. 

I Does pairwise independence imply independence? 

I No. Consider these three events: first coin heads, second coin 
heads, odd number heads. Pairwise independent, not 
independent. 14



I Question: What is P{X = k} in this case?

I Answer: 1/n, if k ∈ {1, 2, . . . , n}.
I Now say we roll three dice and let Y be sum of the values on

the dice. What is P{Y = 5}?
I 6/216

Examples 

I Shuffle n cards, and let X be the position of the jth card. 
State space consists of all n! possible orderings. X takes 
values in {1, 2, . . . , n} depending on the ordering. 
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I The value of 1E (either 1 or 0) indicates whether the event
has occurred.

I If E1,E2, . . .Ek are events then X =
Pk

i=1 1Ei
is the number

of these events that occur.

I Example: in n-hat shuffle problem, let Ei be the event ith
person gets own hat.

I Then
Pn

i=1 1Ei
is total number of people who get own hats.

I Writing random variable as sum of indicators: frequently
useful, sometimes confusing.

Indicators 

I Given any event E , can define an indicator random variable, 
i.e., let X be random variable equal to 1 on the event E and 0 
otherwise. Write this as X = 1E . 
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I For each a in this countable set, write p(a) := P{X = a}.
Call p the probability mass function.

I For the cumulative distribution function, write
F (a) = P{X ≤ a} =

P
x≤a p(x).

I Example: Let T1,T2,T3, . . . be sequence of independent fair
coin tosses (each taking values in {H,T}) and let X be the
smallest j for which Tj = H.

I What is p(k) = P{X = k} (for k ∈ Z) in this case?

I p(k) = (1/2)k

I What about FX (k)?

I 1− (1/2)k

Probability mass function 

I Say X is a discrete random variable if (with probability one) 
it takes one of a countable set of values. 
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I Recall Taylor expansion
P∞

k=0 λ
k/k! = eλ.

I In this example, X is called a Poisson random variable with
intensity λ.

I Question: what is the state space in this example?

I Answer: Didn’t specify. One possibility would be to define
state space as S = {0, 1, 2, . . .} and define X (as a function
on S) by X (j) = j . The probability function would be
determined by P(S) =

P
k∈S e

−λλk/k!.

I Are there other choices of S and P — and other functions X
from S to P — for which the values of P{X = k} are the
same?

I Yes. “X is a Poisson random variable with intensity λ” is
statement only about the probability mass function of X .

Another example 

I Another example: let X be non-negative integer such that 
p(k) = P{X = k} = e−λλk /k!. 
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I n/(m + n)

I Gambler’s ruin: what if gambler one has an unlimited
amount of money?

I Wins eventually with probability one.

I Problem of points: in sequence of independent fair coin
tosses, what is probability Pn,m to see n heads before seeing m
tails?

I Observe: Pn,m is equivalent to the probability of having n or
more heads in first m + n − 1 trials.

I Probability of exactly n heads in m + n − 1 trials is
�m+n−1

n

�
.

I Famous correspondence by Fermat and Pascal. Led Pascal to
write Le Triangle Arithmétique.

Using Bayes’ rule to set up recursions 

I Gambler one has positive integer m dollars, gambler two has 
positive integer n dollars. Take turns making one dollar bets 
until one runs out of money. What is probability first gambler 
runs out of money first? 
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