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I We may assume
R
R f (x)dx =

R∞
−∞ f (x)dx = 1 and f is

non-negative.

I Probability of interval [a, b] is given by
R b
a f (x)dx , the area

under f between a and b.

I Probability of any single point is zero.

I Define cumulative distribution function
F (a) = FX (a) := P{X < a} = P{X ≤ a} =

R a
−∞ f (x)dx .

Continuous random variables 

I Say X is a continuous random variable if there exists a 
probability density function f = fX on R such that R R 
P{X ∈ B} = f (x)dx := 1B (x)f (x)dx . B 

4



I Probability of interval [a, b] is given by
R b
a f (x)dx , the area

under f between a and b.

I Probability of any single point is zero.

I Define cumulative distribution function
F (a) = FX (a) := P{X < a} = P{X ≤ a} =

R a
−∞ f (x)dx .

Continuous random variables 

I Say X is a continuous random variable if there exists a 
probability density function f = fX on R such that R R 
P{X ∈ B} = f (x)dx := 1B (x)f (x)dx . B R R ∞ I We may assume R f (x)dx = f (x)dx = 1 and f is −∞ 
non-negative. 

5



I Probability of any single point is zero.

I Define cumulative distribution function
F (a) = FX (a) := P{X < a} = P{X ≤ a} =

R a
−∞ f (x)dx .

Continuous random variables 

I Say X is a continuous random variable if there exists a 
probability density function f = fX on R such that R R 
P{X ∈ B} = f (x)dx := 1B (x)f (x)dx . B R R ∞ I We may assume R f (x)dx = f (x)dx = 1 and f is −∞ 
non-negative. R b I Probability of interval [a, b] is given by f (x)dx , the area a 
under f between a and b. 

6



I Define cumulative distribution function
F (a) = FX (a) := P{X < a} = P{X ≤ a} =

R a
−∞ f (x)dx .

Continuous random variables 

I Say X is a continuous random variable if there exists a 
probability density function f = fX on R such that R R 
P{X ∈ B} = f (x)dx := 1B (x)f (x)dx . B R R ∞ I We may assume R f (x)dx = f (x)dx = 1 and f is −∞ 
non-negative. R b I Probability of interval [a, b] is given by f (x)dx , the area a 
under f between a and b. 

I Probability of any single point is zero. 

7



Continuous random variables 

I Say X is a continuous random variable if there exists a 
probability density function f = fX on R such that R R 
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I How should we define E [X ] when X is a continuous random
variable?

I Answer: E [X ] =
R∞
−∞ f (x)xdx .

I Recall that when X was a discrete random variable, with
p(x) = P{X = x}, we wrote

E [g(X )] =
X

x :p(x)>0

p(x)g(x).

I What is the analog when X is a continuous random variable?

I Answer: we will write E [g(X )] =
R∞
−∞ f (x)g(x)dx .

Expectations of continuous random variables 

I Recall that when X was a discrete random variable, with 
p(x) = P{X = x}, we wrote X 

E [X ] = p(x)x . 
x :p(x)>0 
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I We can write Var[X ] = E [(X − µ)2], same as in the discrete
case.

I Next, if g = g1 + g2 then
E [g(X )] =

R
g1(x)f (x)dx +

R
g2(x)f (x)dx =R �

g1(x) + g2(x)
�
f (x)dx = E [g1(X )] + E [g2(X )].

I Furthermore, E [ag(X )] = aE [g(X )] when a is a constant.

I Just as in the discrete case, we can expand the variance
expression as Var[X ] = E [X 2 − 2µX + µ2] and use additivity
of expectation to say that
Var[X ] = E [X 2]− 2µE [X ] + E [µ2] = E [X 2]− 2µ2 + µ2 =
E [X 2]− E [X ]2.

I Expectation of square minus square of expectation.

I This formula is often useful for calculations.

Variance of continuous random variables 

I Suppose X is a continuous random variable with mean µ. 
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Variance of continuous random variables 

I Suppose X is a continuous random variable with mean µ. 
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I Binomial (Sn — number of heads in n tosses), geometric
(steps required to obtain one heads), negative binomial
(steps required to obtain n heads).

I Standard normal approximates law of Sn−E [Sn]
SD(Sn)

. Here

E [Sn] = np and SD(Sn) =
p
Var(Sn) =

√
npq where

q = 1− p.

I Poisson is limit of binomial as n→∞ when p = λ/n.

I Poisson point process: toss one λ/n coin during each length
1/n time increment, take n→∞ limit.

I Exponential: time till first event in λ Poisson point process.

I Gamma distribution: time till nth event in λ Poisson point
process.

It’s the coins, stupid 

I Much of what we have done in this course can be motivated 
by the i.i.d. sequence Xi where each Xi is 1 with probability p Pn and 0 otherwise. Write Sn = i=1 Xn. 
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I Gamma distribution: time till nth event in λ Poisson point
process.

It’s the coins, stupid 

I Much of what we have done in this course can be motivated 
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I Sum of n independent geometric random variables with
parameter p is negative binomial with parameter (n, p).

I Expectation of geometric random variable with parameter
p is 1/p.

I Expectation of binomial random variable with parameters
(n, p) is np.

I Variance of binomial random variable with parameters
(n, p) is np(1− p) = npq.

Discrete random variable properties derivable from coin 
toss intuition 

I Sum of two independent binomial random variables with 
parameters (n1, p) and (n2, p) is itself binomial (n1 + n2, p). 
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I Expectation of binomial random variable with parameters
(n, p) is np.

I Variance of binomial random variable with parameters
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I Variance of binomial random variable with parameters
(n, p) is np(1− p) = npq.

Discrete random variable properties derivable from coin 
toss intuition 
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Discrete random variable properties derivable from coin 
toss intuition 

I Sum of two independent binomial random variables with 
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I Memoryless properties: given that exponential random
variable X is greater than T > 0, the conditional law of
X − T is the same as the original law of X .

I Write p = λ/n. Poisson random variable expectation is
limn→∞ np = limn→∞ nλ

n = λ. Variance is
limn→∞ np(1− p) = limn→∞ n(1− λ/n)λ/n = λ.

I Sum of λ1 Poisson and independent λ2 Poisson is a
λ1 + λ2 Poisson.

I Times between successive events in λ Poisson process are
independent exponentials with parameter λ.

I Minimum of independent exponentials with parameters λ1
and λ2 is itself exponential with parameter λ1 + λ2.

Continuous random variable properties derivable from coin 
toss intuition 

I Sum of n independent exponential random variables each 
with parameter λ is gamma with parameters (n, λ). 
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I Minimum of independent exponentials with parameters λ1
and λ2 is itself exponential with parameter λ1 + λ2.
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Continuous random variable properties derivable from coin 
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I Sum of n independent exponential random variables each 
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variable X is greater than T > 0, the conditional law of 
X − T is the same as the original law of X . 

I Write p = λ/n. Poisson random variable expectation is 
λ limn→∞ np = limn→∞ n = λ. Variance is n 

limn→∞ np(1 − p) = limn→∞ n(1 − λ/n)λ/n = λ. 

I Sum of λ1 Poisson and independent λ2 Poisson is a 
λ1 + λ2 Poisson. 

I Times between successive events in λ Poisson process are 
independent exponentials with parameter λ. 

I Minimum of independent exponentials with parameters λ1 

and λ2 is itself exponential with parameter λ1 + λ2. 

41



I This is Φ(b)− Φ(a) = P{a ≤ X ≤ b} when X is a standard
normal random variable.

DeMoivre-Laplace Limit Theorem 

I DeMoivre-Laplace limit theorem (special case of central 
limit theorem): 

Sn − np 
lim P{a ≤ √ ≤ b} → Φ(b) − Φ(a). 
n→∞ npq 
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DeMoivre-Laplace Limit Theorem 

I DeMoivre-Laplace limit theorem (special case of central 
limit theorem): 

Sn − np 
lim P{a ≤ √ ≤ b} → Φ(b) − Φ(a). 
n→∞ npq 

I This is Φ(b) − Φ(a) = P{a ≤ X ≤ b} when X is a standard 
normal random variable. 
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I Answer: well,
√
npq =

√
106 × .5× .5 = 500. So we’re asking

for probability to be over two SDs above mean. This is
approximately 1− Φ(2) = Φ(−2).

I Roll 60000 dice. Expect to see 10000 sixes. What’s the
probability to see more than 9800?

I Here
√
npq =

q
60000× 1

6 ×
5
6 ≈ 91.28.

I And 200/91.28 ≈ 2.19. Answer is about 1− Φ(−2.19).

Problems 

I Toss a million fair coins. Approximate the probability that I 
get more than 501, 000 heads. 
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I Roll 60000 dice. Expect to see 10000 sixes. What’s the
probability to see more than 9800?

I Here
√
npq =

q
60000× 1

6 ×
5
6 ≈ 91.28.

I And 200/91.28 ≈ 2.19. Answer is about 1− Φ(−2.19).

Problems 

I Toss a million fair coins. Approximate the probability that I 
get more than 501, 000 heads. √ 

I Answer: well, 
√ 
npq = 106 × .5 × .5 = 500. So we’re asking 

for probability to be over two SDs above mean. This is 
approximately 1 − Φ(2) = Φ(−2). 
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I Here
√
npq =

q
60000× 1

6 ×
5
6 ≈ 91.28.

I And 200/91.28 ≈ 2.19. Answer is about 1− Φ(−2.19).

Problems 

I Toss a million fair coins. Approximate the probability that I 
get more than 501, 000 heads. √ 

I Answer: well, 
√ 
npq = 106 × .5 × .5 = 500. So we’re asking 

for probability to be over two SDs above mean. This is 
approximately 1 − Φ(2) = Φ(−2). 

I Roll 60000 dice. Expect to see 10000 sixes. What’s the 
probability to see more than 9800? 
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I And 200/91.28 ≈ 2.19. Answer is about 1− Φ(−2.19).

Problems 

I Toss a million fair coins. Approximate the probability that I 
get more than 501, 000 heads. √ 

I Answer: well, 
√ 
npq = 106 × .5 × .5 = 500. So we’re asking 

for probability to be over two SDs above mean. This is 
approximately 1 − Φ(2) = Φ(−2). 

I Roll 60000 dice. Expect to see 10000 sixes. What’s the 
probability to see more than 9800? q √ I Here npq = 60000 × 1 

6 × 5 
6 ≈ 91.28. 
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Problems 

I Toss a million fair coins. Approximate the probability that I 
get more than 501, 000 heads. √ 

I Answer: well, 
√ 
npq = 106 × .5 × .5 = 500. So we’re asking 

for probability to be over two SDs above mean. This is 
approximately 1 − Φ(2) = Φ(−2). 

I Roll 60000 dice. Expect to see 10000 sixes. What’s the 
probability to see more than 9800? q √ I Here npq = 60000 × 1 

6 × 5 
6 ≈ 91.28. 

I And 200/91.28 ≈ 2.19. Answer is about 1 − Φ(−2.19). 
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I Mean zero and variance one.

I The random variable Y = σX + µ has variance σ2 and
expectation µ.

I Y is said to be normal with parameters µ and σ2. Its density
function is fY (x) =

1√
2πσ

e−(x−µ)
2/2σ2 .

I Function Φ(a) = 1√
2π

R a
−∞ e−x

2/2dx can’t be computed

explicitly.

I Values: Φ(−3) ≈ .0013, Φ(−2) ≈ .023 and Φ(−1) ≈ .159.

I Rule of thumb: “two thirds of time within one SD of mean,
95 percent of time within 2 SDs of mean.”

Properties of normal random variables 

I Say X is a (standard) normal random variable if 
√1 −x2/2 f (x) = e . 
2π 

49



I The random variable Y = σX + µ has variance σ2 and
expectation µ.

I Y is said to be normal with parameters µ and σ2. Its density
function is fY (x) =

1√
2πσ

e−(x−µ)
2/2σ2 .

I Function Φ(a) = 1√
2π

R a
−∞ e−x

2/2dx can’t be computed

explicitly.

I Values: Φ(−3) ≈ .0013, Φ(−2) ≈ .023 and Φ(−1) ≈ .159.

I Rule of thumb: “two thirds of time within one SD of mean,
95 percent of time within 2 SDs of mean.”

Properties of normal random variables 

I Say X is a (standard) normal random variable if 
√1 −x2/2 f (x) = e . 
2π 

I Mean zero and variance one. 
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I Y is said to be normal with parameters µ and σ2. Its density
function is fY (x) =

1√
2πσ

e−(x−µ)
2/2σ2 .

I Function Φ(a) = 1√
2π

R a
−∞ e−x

2/2dx can’t be computed

explicitly.

I Values: Φ(−3) ≈ .0013, Φ(−2) ≈ .023 and Φ(−1) ≈ .159.

I Rule of thumb: “two thirds of time within one SD of mean,
95 percent of time within 2 SDs of mean.”

Properties of normal random variables 

I Say X is a (standard) normal random variable if 
√1 −x2/2 f (x) = e . 
2π 

I Mean zero and variance one. 

I The random variable Y = σX + µ has variance σ2 and 
expectation µ. 
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I Function Φ(a) = 1√
2π

R a
−∞ e−x

2/2dx can’t be computed

explicitly.

I Values: Φ(−3) ≈ .0013, Φ(−2) ≈ .023 and Φ(−1) ≈ .159.

I Rule of thumb: “two thirds of time within one SD of mean,
95 percent of time within 2 SDs of mean.”

Properties of normal random variables 

I Say X is a (standard) normal random variable if 
√1 −x2/2 f (x) = e . 
2π 

I Mean zero and variance one. 

I The random variable Y = σX + µ has variance σ2 and 
expectation µ. 

I Y is said to be normal with parameters µ and σ2 . Its density 
√ 1 −(x−µ)2/2σ2 

function is fY (x) = e . 
2πσ 
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I Values: Φ(−3) ≈ .0013, Φ(−2) ≈ .023 and Φ(−1) ≈ .159.

I Rule of thumb: “two thirds of time within one SD of mean,
95 percent of time within 2 SDs of mean.”

Properties of normal random variables 

I Say X is a (standard) normal random variable if 
√1 −x2/2 f (x) = e . 
2π 

I Mean zero and variance one. 

I The random variable Y = σX + µ has variance σ2 and 
expectation µ. 

I Y is said to be normal with parameters µ and σ2 . Its density 
√ 1 −(x−µ)2/2σ2 

function is fY (x) = e . 
2Rπσ 

√1 −x a I Function Φ(a) = e 
2/2dx can’t be computed −∞ 2π 

explicitly. 
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I Rule of thumb: “two thirds of time within one SD of mean,
95 percent of time within 2 SDs of mean.”

Properties of normal random variables 

I Say X is a (standard) normal random variable if 
√1 −x2/2 f (x) = e . 
2π 

I Mean zero and variance one. 

I The random variable Y = σX + µ has variance σ2 and 
expectation µ. 

I Y is said to be normal with parameters µ and σ2 . Its density 
√ 1 −(x−µ)2/2σ2 

function is fY (x) = e . 
2Rπσ 

√1 −x a I Function Φ(a) = e 
2/2dx can’t be computed −∞ 2π 

explicitly. 

I Values: Φ(−3) ≈ .0013, Φ(−2) ≈ .023 and Φ(−1) ≈ .159. 
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Properties of normal random variables 

I Say X is a (standard) normal random variable if 
−x2/2 f (x) = √1 e . 

2π 

I Mean zero and variance one. 

I The random variable Y = σX + µ has variance σ2 and 
expectation µ. 

I Y is said to be normal with parameters µ and σ2 . Its density 
√ 1 −(x−µ)2/2σ2 

function is fY (x) = e . 
2Rπσ 

a −x I Function Φ(a) = √1 e 
2/2dx can’t be computed −∞ 2π 

explicitly. 

I Values: Φ(−3) ≈ .0013, Φ(−2) ≈ .023 and Φ(−1) ≈ .159. 

I Rule of thumb: “two thirds of time within one SD of mean, 
95 percent of time within 2 SDs of mean.” 55



I For a > 0 have

FX (a) =

Z a

0
f (x)dx =

Z a

0
λe−λxdx = −e−λx a

0
= 1− e−λa.

I Thus P{X < a} = 1− e−λa and P{X > a} = e−λa.

I Formula P{X > a} = e−λa is very important in practice.

I Repeated integration by parts gives E [X n] = n!/λn.

I If λ = 1, then E [X n] = n!. Value Γ(n) := E [X n−1] defined for
real n > 0 and Γ(n) = (n − 1)!.

��

Properties of exponential random variables 

I Say X is an exponential random variable of parameter λ 
when its probability distribution function is f (x) = λe−λx for 
x ≥ 0 (and f (x) = 0 if x < 0). 
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I Thus P{X < a} = 1− e−λa and P{X > a} = e−λa.

I Formula P{X > a} = e−λa is very important in practice.

I Repeated integration by parts gives E [X n] = n!/λn.

I If λ = 1, then E [X n] = n!. Value Γ(n) := E [X n−1] defined for
real n > 0 and Γ(n) = (n − 1)!.

��

Properties of exponential random variables 

I Say X is an exponential random variable of parameter λ 
when its probability distribution function is f (x) = λe−λx for 
x ≥ 0 (and f (x) = 0 if x < 0). 

I For a > 0 have Z Z a a 
−λx −λa a 

FX (a) = f (x)dx = λe −λx dx = −e = 1 − e . 
0 

0 0 
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I Formula P{X > a} = e−λa is very important in practice.

I Repeated integration by parts gives E [X n] = n!/λn.

I If λ = 1, then E [X n] = n!. Value Γ(n) := E [X n−1] defined for
real n > 0 and Γ(n) = (n − 1)!.

��

Properties of exponential random variables 

I Say X is an exponential random variable of parameter λ 
when its probability distribution function is f (x) = λe−λx for 
x ≥ 0 (and f (x) = 0 if x < 0). 

I For a > 0 have Z Z a a 
−λx −λa a 

FX (a) = f (x)dx = λe −λx dx = −e = 1 − e . 
0 

0 0 

−λa −λa I Thus P{X < a} = 1 − e and P{X > a} = e . 
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I Repeated integration by parts gives E [X n] = n!/λn.

I If λ = 1, then E [X n] = n!. Value Γ(n) := E [X n−1] defined for
real n > 0 and Γ(n) = (n − 1)!.

��

Properties of exponential random variables 

I Say X is an exponential random variable of parameter λ 
when its probability distribution function is f (x) = λe−λx for 
x ≥ 0 (and f (x) = 0 if x < 0). 

I For a > 0 have Z Z a a 
−λx −λa a 

FX (a) = f (x)dx = λe −λx dx = −e = 1 − e . 
0 

0 0 

−λa −λa I Thus P{X < a} = 1 − e and P{X > a} = e . 
−λa I Formula P{X > a} = e is very important in practice. 
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I If λ = 1, then E [X n] = n!. Value Γ(n) := E [X n−1] defined for
real n > 0 and Γ(n) = (n − 1)!.

��

Properties of exponential random variables 

I Say X is an exponential random variable of parameter λ 
when its probability distribution function is f (x) = λe−λx for 
x ≥ 0 (and f (x) = 0 if x < 0). 

I For a > 0 have Z Z a a 
−λx −λa a 

FX (a) = f (x)dx = λe −λx dx = −e = 1 − e . 
0 

0 0 

−λa −λa I Thus P{X < a} = 1 − e and P{X > a} = e . 
−λa I Formula P{X > a} = e is very important in practice. 

I Repeated integration by parts gives E [X n] = n!/λn . 
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��

Properties of exponential random variables 

I Say X is an exponential random variable of parameter λ 
when its probability distribution function is f (x) = λe−λx for 
x ≥ 0 (and f (x) = 0 if x < 0). 

I For a > 0 have Z Z a a 
−λx −λa a 

FX (a) = f (x)dx = λe −λx dx = −e = 1 − e . 
0 

0 0 

−λa −λa I Thus P{X < a} = 1 − e and P{X > a} = e . 
−λa I Formula P{X > a} = e is very important in practice. 

I Repeated integration by parts gives E [X n] = n!/λn . 

I If λ = 1, then E [X n] = n!. Value Γ(n) := E [X n−1] defined for 
real n > 0 and Γ(n) = (n − 1)!. 
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I Same as exponential distribution when α = 1. Otherwise,
multiply by xα−1 and divide by Γ(α). The fact that Γ(α) is
what you need to divide by to make the total integral one just
follows from the definition of Γ.

I Waiting time interpretation makes sense only for integer α,
but distribution is defined for general positive α.

Defining Γ distribution 

I Say that random variable X has gamma distribution with ( −λx λ (λx)α−1e x ≥ 0 Γ(α) parameters (α, λ) if fX (x) = . 
0 x < 0 
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I Waiting time interpretation makes sense only for integer α,
but distribution is defined for general positive α.

Defining Γ distribution 

I Say that random variable X has gamma distribution with (
(λx)α−1e−λx λ x ≥ 0 Γ(α) parameters (α, λ) if fX (x) = . 
0 x < 0 

I Same as exponential distribution when α = 1. Otherwise, 
multiply by xα−1 and divide by Γ(α). The fact that Γ(α) is 
what you need to divide by to make the total integral one just 
follows from the definition of Γ. 
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Defining Γ distribution 

I Say that random variable X has gamma distribution with ( −λx λ (λx)α−1e x ≥ 0 Γ(α) parameters (α, λ) if fX (x) = . 
0 x < 0 

I Same as exponential distribution when α = 1. Otherwise, 
multiply by xα−1 and divide by Γ(α). The fact that Γ(α) is 
what you need to divide by to make the total integral one just 
follows from the definition of Γ. 

I Waiting time interpretation makes sense only for integer α, 
but distribution is defined for general positive α. 
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Continuous random variables 

Problems motivated by coin tossing 

Random variable properties 
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I Then E [X ] = α+β
2 .

I And Var[X ] = Var[(β − α)Y + α] = Var[(β − α)Y ] =
(β − α)2Var[Y ] = (β − α)2/12.

Properties of uniform random variables 

I Suppose X is a random variable with probability density ( 
1 x ∈ [α, β] 

function f (x) = β−α 

0 x 6∈ [α, β]. 
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I And Var[X ] = Var[(β − α)Y + α] = Var[(β − α)Y ] =
(β − α)2Var[Y ] = (β − α)2/12.

Properties of uniform random variables 

I Suppose X is a random variable with probability density ( 
1 

β−α x ∈ [α, β] 
function f (x) = 

0 x 6∈ [α, β]. 
α+β I Then E [X ] = . 2 
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Properties of uniform random variables 

I Suppose X is a random variable with probability density ( 
1 

β−α x ∈ [α, β] 
function f (x) = 

0 x 6∈ [α, β]. 
α+β I Then E [X ] = . 2 

I And Var[X ] = Var[(β − α)Y + α] = Var[(β − α)Y ] = 
(β − α)2Var[Y ] = (β − α)2/12. 
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I Answer: note that Y ≤ 27 if and only if X ≤ 3. Hence
P{Y ≤ 27} = P{X ≤ 3} = FX (3).

I Generally FY (a) = P{Y ≤ a} = P{X ≤ a1/3} = FX (a
1/3)

I This is a general principle. If X is a continuous random
variable and g is a strictly increasing function of x and
Y = g(X ), then FY (a) = FX (g

−1(a)).

Distribution of function of random variable 

I Suppose P{X ≤ a} = FX (a) is known for all a. Write 
Y = X 3 . What is P{Y ≤ 27}? 
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I Generally FY (a) = P{Y ≤ a} = P{X ≤ a1/3} = FX (a
1/3)

I This is a general principle. If X is a continuous random
variable and g is a strictly increasing function of x and
Y = g(X ), then FY (a) = FX (g

−1(a)).

Distribution of function of random variable 

I Suppose P{X ≤ a} = FX (a) is known for all a. Write 
Y = X 3 . What is P{Y ≤ 27}? 

I Answer: note that Y ≤ 27 if and only if X ≤ 3. Hence 
P{Y ≤ 27} = P{X ≤ 3} = FX (3). 
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I This is a general principle. If X is a continuous random
variable and g is a strictly increasing function of x and
Y = g(X ), then FY (a) = FX (g

−1(a)).

Distribution of function of random variable 

I Suppose P{X ≤ a} = FX (a) is known for all a. Write 
Y = X 3 . What is P{Y ≤ 27}? 

I Answer: note that Y ≤ 27 if and only if X ≤ 3. Hence 
P{Y ≤ 27} = P{X ≤ 3} = FX (3). 

I Generally FY (a) = P{Y ≤ a} = P{X ≤ a1/3} = FX (a
1/3) 
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Distribution of function of random variable 

I Suppose P{X ≤ a} = FX (a) is known for all a. Write 
Y = X 3 . What is P{Y ≤ 27}? 

I Answer: note that Y ≤ 27 if and only if X ≤ 3. Hence 
P{Y ≤ 27} = P{X ≤ 3} = FX (3). 

I Generally FY (a) = P{Y ≤ a} = P{X ≤ a1/3} = FX (a
1/3) 

I This is a general principle. If X is a continuous random 
variable and g is a strictly increasing function of x and 
Y = g(X ), then FY (a) = FX (g

−1(a)). 

73



I Let’s say I don’t care about Y . I just want to know
P{X = i}. How do I figure that out from the matrix?

I Answer: P{X = i} =
Pn

j=1 Ai ,j .

I Similarly, P{Y = j} =
Pn

i=1 Ai ,j .

I In other words, the probability mass functions for X and Y
are the row and columns sums of Ai ,j .

I Given the joint distribution of X and Y , we sometimes call
distribution of X (ignoring Y ) and distribution of Y (ignoring
X ) the marginal distributions.

I In general, when X and Y are jointly defined discrete random
variables, we write p(x , y) = pX ,Y (x , y) = P{X = x ,Y = y}.

Joint probability mass functions: discrete random variables 

I If X and Y assume values in {1, 2, . . . , n} then we can view 
Ai ,j = P{X = i , Y = j} as the entries of an n × n matrix. 
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I Answer: P{X = i} =
Pn

j=1 Ai ,j .

I Similarly, P{Y = j} =
Pn

i=1 Ai ,j .

I In other words, the probability mass functions for X and Y
are the row and columns sums of Ai ,j .

I Given the joint distribution of X and Y , we sometimes call
distribution of X (ignoring Y ) and distribution of Y (ignoring
X ) the marginal distributions.

I In general, when X and Y are jointly defined discrete random
variables, we write p(x , y) = pX ,Y (x , y) = P{X = x ,Y = y}.

Joint probability mass functions: discrete random variables 

I If X and Y assume values in {1, 2, . . . , n} then we can view 
Ai ,j = P{X = i , Y = j} as the entries of an n × n matrix. 

I Let’s say I don’t care about Y . I just want to know 
P{X = i}. How do I figure that out from the matrix? 
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I Similarly, P{Y = j} =
Pn

i=1 Ai ,j .

I In other words, the probability mass functions for X and Y
are the row and columns sums of Ai ,j .

I Given the joint distribution of X and Y , we sometimes call
distribution of X (ignoring Y ) and distribution of Y (ignoring
X ) the marginal distributions.

I In general, when X and Y are jointly defined discrete random
variables, we write p(x , y) = pX ,Y (x , y) = P{X = x ,Y = y}.

Joint probability mass functions: discrete random variables 

I If X and Y assume values in {1, 2, . . . , n} then we can view 
Ai ,j = P{X = i , Y = j} as the entries of an n × n matrix. 

I Let’s say I don’t care about Y . I just want to know 
P{X = i}. How do I figure that out from the matrix? P n I Answer: P{X = i} = Ai ,j . j=1 
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I In other words, the probability mass functions for X and Y
are the row and columns sums of Ai ,j .

I Given the joint distribution of X and Y , we sometimes call
distribution of X (ignoring Y ) and distribution of Y (ignoring
X ) the marginal distributions.

I In general, when X and Y are jointly defined discrete random
variables, we write p(x , y) = pX ,Y (x , y) = P{X = x ,Y = y}.

Joint probability mass functions: discrete random variables 

I If X and Y assume values in {1, 2, . . . , n} then we can view 
Ai ,j = P{X = i , Y = j} as the entries of an n × n matrix. 

I Let’s say I don’t care about Y . I just want to know 
P{X = i}. How do I figure that out from the matrix? P n I Answer: P{X = i} = Ai ,j . j=1P n I Similarly, P{Y = j} = Ai ,j . i=1 
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I Given the joint distribution of X and Y , we sometimes call
distribution of X (ignoring Y ) and distribution of Y (ignoring
X ) the marginal distributions.

I In general, when X and Y are jointly defined discrete random
variables, we write p(x , y) = pX ,Y (x , y) = P{X = x ,Y = y}.

Joint probability mass functions: discrete random variables 

I If X and Y assume values in {1, 2, . . . , n} then we can view 
Ai ,j = P{X = i , Y = j} as the entries of an n × n matrix. 

I Let’s say I don’t care about Y . I just want to know 
P{X = i}. How do I figure that out from the matrix? P n I Answer: P{X = i} = Ai ,j . j=1P n I Similarly, P{Y = j} = Ai ,j . i=1 

I In other words, the probability mass functions for X and Y 
are the row and columns sums of Ai ,j . 
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I In general, when X and Y are jointly defined discrete random
variables, we write p(x , y) = pX ,Y (x , y) = P{X = x ,Y = y}.

Joint probability mass functions: discrete random variables 

I If X and Y assume values in {1, 2, . . . , n} then we can view 
Ai ,j = P{X = i , Y = j} as the entries of an n × n matrix. 

I Let’s say I don’t care about Y . I just want to know 
P{X = i}. How do I figure that out from the matrix? P n I Answer: P{X = i} = Ai ,j . j=1P n I Similarly, P{Y = j} = Ai ,j . i=1 

I In other words, the probability mass functions for X and Y 
are the row and columns sums of Ai ,j . 

I Given the joint distribution of X and Y , we sometimes call 
distribution of X (ignoring Y ) and distribution of Y (ignoring 
X ) the marginal distributions. 
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Joint probability mass functions: discrete random variables 

I If X and Y assume values in {1, 2, . . . , n} then we can view 
Ai ,j = P{X = i , Y = j} as the entries of an n × n matrix. 

I Let’s say I don’t care about Y . I just want to know 
P{X = i}. How do I figure that out from the matrix? P n I Answer: P{X = i} = Ai ,j . j=1P n I Similarly, P{Y = j} = Ai ,j . i=1 

I In other words, the probability mass functions for X and Y 
are the row and columns sums of Ai ,j . 

I Given the joint distribution of X and Y , we sometimes call 
distribution of X (ignoring Y ) and distribution of Y (ignoring 
X ) the marginal distributions. 

I In general, when X and Y are jointly defined discrete random 
variables, we write p(x , y) = pX ,Y (x , y) = P{X = x , Y = y}. 80



I The region {(x , y) : x ≤ a, y ≤ b} is the lower left “quadrant”
centered at (a, b).

I Refer to FX (a) = P{X ≤ a} and FY (b) = P{Y ≤ b} as
marginal cumulative distribution functions.

I Question: if I tell you the two parameter function F , can you
use it to determine the marginals FX and FY ?

I Answer: Yes. FX (a) = limb→∞ F (a, b) and
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I Density: f (x , y) = ∂
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Joint distribution functions: continuous random variables 

I Given random variables X and Y , define 
F (a, b) = P{X ≤ a, Y ≤ b}. 

I The region {(x , y) : x ≤ a, y ≤ b} is the lower left “quadrant” 
centered at (a, b). 

I Refer to FX (a) = P{X ≤ a} and FY (b) = P{Y ≤ b} as 
marginal cumulative distribution functions. 

I Question: if I tell you the two parameter function F , can you 
use it to determine the marginals FX and FY ? 

I Answer: Yes. FX (a) = limb→∞ F (a, b) and 
FY (b) = lima→∞ F (a, b). 

∂ I Density: f (x , y) = ∂ F (x , y). ∂ x ∂ y 
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I When X and Y are discrete random variables, they are
independent if P{X = x ,Y = y} = P{X = x}P{Y = y} for
all x and y for which P{X = x} and P{Y = y} are non-zero.

I When X and Y are continuous, they are independent if
f (x , y) = fX (x)fY (y).

Independent random variables 

I We say X and Y are independent if for any two (measurable) 
sets A and B of real numbers we have 

P{X ∈ A, Y ∈ B} = P{X ∈ A}P{Y ∈ B}. 
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Independent random variables 
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I Now let’s try to find FX+Y (a) = P{X + Y ≤ a}.
I This is the integral over {(x , y) : x + y ≤ a} of

f (x , y) = fX (x)fY (y). Thus,

I

P{X + Y ≤ a} =
Z ∞

−∞

Z a−y

−∞
fX (x)fY (y)dxdy

=

Z ∞

−∞
FX (a− y)fY (y)dy .

I Differentiating both sides gives
fX+Y (a) =

d
da

R∞
−∞ FX (a−y)fY (y)dy =

R∞
−∞ fX (a−y)fY (y)dy .

I Latter formula makes some intuitive sense. We’re integrating
over the set of x , y pairs that add up to a.

Summing two random variables 

I Say we have independent random variables X and Y and we 
know their density functions fX and fY . 
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I Differentiating both sides gives
fX+Y (a) =

d
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f (x , y) = fX (x)fY (y). Thus, 

I Z ∞ Z a−y 

P{X + Y ≤ a} = fX (x)fY (y)dxdy 
−∞ −∞ Z ∞ 

= FX (a − y)fY (y)dy . 
−∞ 
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I Latter formula makes some intuitive sense. We’re integrating
over the set of x , y pairs that add up to a.

Summing two random variables 
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I This is the integral over {(x , y) : x + y ≤ a} of 
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Summing two random variables 

I Say we have independent random variables X and Y and we 
know their density functions fX and fY . 

I Now let’s try to find FX +Y (a) = P{X + Y ≤ a}. 
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P{X + Y ≤ a} = fX (x)fY (y)dxdy 
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= FX (a − y)fY (y)dy . 
−∞ 

I Differentiating both sides gives 
fX +Y (a) = d 

R ∞ R ∞ 
FX (a−y)fY (y)dy = fX (a−y)fY (y)dy . da −∞ −∞ 

I Latter formula makes some intuitive sense. We’re integrating 
over the set of x , y pairs that add up to a. 
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I We can define the conditional probability density of X given
that Y = y by fX |Y=y (x) =

f (x ,y)
fY (y)

.

I This amounts to restricting f (x , y) to the line corresponding
to the given y value (and dividing by the constant that makes
the integral along that line equal to 1).

Conditional distributions 

I Let’s say X and Y have joint probability density function 
f (x , y). 
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I This amounts to restricting f (x , y) to the line corresponding
to the given y value (and dividing by the constant that makes
the integral along that line equal to 1).
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Conditional distributions 

I Let’s say X and Y have joint probability density function 
f (x , y). 

I We can define the conditional probability density of X given 
f (x ,y) that Y = y by fX |Y =y (x) = fY (y) 

. 

I This amounts to restricting f (x , y) to the line corresponding 
to the given y value (and dividing by the constant that makes 
the integral along that line equal to 1). 
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I The n-tuple (X1,X2, . . . ,Xn) has a constant density function
on the n-dimensional cube [0, 1]n.

I What is the probability that the largest of the Xi is less than
a?

I ANSWER: an.

I So if X = max{X1, . . . ,Xn}, then what is the probability
density function of X?

I Answer: FX (a) =

⎧⎪⎨⎪⎩
0 a < 0

an a ∈ [0, 1]
1 a > 1

. And

fx(a) = F 0X (a) = nan−1.

Maxima: pick five job candidates at random, choose best 

I Suppose I choose n random variables X1, X2, . . . , Xn uniformly 
at random on [0, 1], independently of each other. 
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I Answer: FX (a) =
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Maxima: pick five job candidates at random, choose best 

I Suppose I choose n random variables X1, X2, . . . , Xn uniformly 
at random on [0, 1], independently of each other. 

I The n-tuple (X1, X2, . . . , Xn) has a constant density function 
on the n-dimensional cube [0, 1]n . 

I What is the probability that the largest of the Xi is less than 
a? 

n I ANSWER: a . 

I So if X = max{X1, . . . , Xn}, then what is the probability 
density function of X ? ⎧ ⎪0 a < 0 ⎨ 

n I Answer: FX (a) = a a ∈ [0, 1] . And ⎪⎩ 
1 a > 1 
n−1 (a) = F 0 (a) = na . fx X 

104



I Let Y1 < Y2 < Y3 . . . < Yn be list obtained by sorting the Xj .

I In particular, Y1 = min{X1, . . . ,Xn} and
Yn = max{X1, . . . ,Xn} is the maximum.

I What is the joint probability density of the Yi?

I Answer: f (x1, x2, . . . , xn) = n!
Qn

i=1 f (xi ) if x1 < x2 . . . < xn,
zero otherwise.

I Let σ : {1, 2, . . . , n} → {1, 2, . . . , n} be the permutation such
that Xj = Yσ(j)

I Are σ and the vector (Y1, . . . ,Yn) independent of each other?

I Yes.

General order statistics 

I Consider i.i.d random variables X1, X2, . . . , Xn with continuous 
probability density f . 
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I Let σ : {1, 2, . . . , n} → {1, 2, . . . , n} be the permutation such
that Xj = Yσ(j)

I Are σ and the vector (Y1, . . . ,Yn) independent of each other?
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I Yes.

General order statistics 
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zero otherwise. 
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General order statistics 

I Consider i.i.d random variables X1, X2, . . . , Xn with continuous 
probability density f . 

I Let Y1 < Y2 < Y3 . . . < Yn be list obtained by sorting the Xj . 

I In particular, Y1 = min{X1, . . . , Xn} and 
Yn = max{X1, . . . , Xn} is the maximum. 

I What is the joint probability density of the Yi ? Qn I Answer: f (x1, x2, . . . , xn) = n! f (xi ) if x1 < x2 . . . < xn, i=1 
zero otherwise. 

I Let σ : {1, 2, . . . , n} → {1, 2, . . . , n} be the permutation such 
that Xj = Yσ(j) 

I Are σ and the vector (Y1, . . . , Yn) independent of each other? 

I Yes. 
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I If X is discrete with mass function p(x) then
E [X ] =

P
x p(x)x .

I Similarly, if X is continuous with density function f (x) then
E [X ] =

R
f (x)xdx .

I If X is discrete with mass function p(x) then
E [g(x)] =

P
x p(x)g(x).

I Similarly, X if is continuous with density function f (x) then
E [g(X )] =

R
f (x)g(x)dx .

I If X and Y have joint mass function p(x , y) then
E [g(X ,Y )] =

P
y

P
x g(x , y)p(x , y).

I If X and Y have joint probability density function f (x , y) then
E [g(X ,Y )] =

R∞
−∞

R∞
−∞ g(x , y)f (x , y)dxdy .

Properties of expectation 

I Several properties we derived for discrete expectations 
continue to hold in the continuum. 
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continue to hold in the continuum. 

I If X is discrete with mass function p(x) then P 
E [X ] = p(x)x . x 

I Similarly, if X is continuous with density function f (x) then R 
E [X ] = f (x)xdx . 

I If X is discrete with mass function p(x) then P 
E [g(x)] = p(x)g(x). x 
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I If X and Y have joint mass function p(x , y) then
E [g(X ,Y )] =

P
y

P
x g(x , y)p(x , y).

I If X and Y have joint probability density function f (x , y) then
E [g(X ,Y )] =

R∞
−∞

R∞
−∞ g(x , y)f (x , y)dxdy .

Properties of expectation 

I Several properties we derived for discrete expectations 
continue to hold in the continuum. 

I If X is discrete with mass function p(x) then P 
E [X ] = p(x)x . x 

I Similarly, if X is continuous with density function f (x) then R 
E [X ] = f (x)xdx . 

I If X is discrete with mass function p(x) then P 
E [g(x)] = p(x)g(x). x 

I Similarly, X if is continuous with density function f (x) then R 
E [g(X )] = f (x)g(x)dx . 
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I If X and Y have joint probability density function f (x , y) then
E [g(X ,Y )] =

R∞
−∞

R∞
−∞ g(x , y)f (x , y)dxdy .

Properties of expectation 

I Several properties we derived for discrete expectations 
continue to hold in the continuum. 

I If X is discrete with mass function p(x) then P 
E [X ] = p(x)x . x 

I Similarly, if X is continuous with density function f (x) then R 
E [X ] = f (x)xdx . 

I If X is discrete with mass function p(x) then P 
E [g(x)] = p(x)g(x). x 

I Similarly, X if is continuous with density function f (x) then R 
E [g(X )] = f (x)g(x)dx . 

I If X and Y have joint mass function p(x , y) then P P 
E [g(X , Y )] = y x g(x , y)p(x , y). 
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Properties of expectation 

I Several properties we derived for discrete expectations 
continue to hold in the continuum. 

I If X is discrete with mass function p(x) then P 
E [X ] = p(x)x . x 

I Similarly, if X is continuous with density function f (x) then R 
E [X ] = f (x)xdx . 

I If X is discrete with mass function p(x) then P 
E [g(x)] = p(x)g(x). x 

I Similarly, X if is continuous with density function f (x) then R 
E [g(X )] = f (x)g(x)dx . 

I If X and Y have joint mass function p(x , y) then P P 
E [g(X , Y )] = y x g(x , y)p(x , y). 

I If X and Y have joint probability density function f (x , y) then R ∞ R ∞ 
E [g(X , Y )] = g(x , y)f (x , y)dxdy . −∞ −∞ 
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I In both discrete and continuous settings, E [aX ] = aE [X ]
when a is a constant. And E [

P
aiXi ] =

P
aiE [Xi ].

I But what about that delightful “area under 1− FX” formula
for the expectation?

I When X is non-negative with probability one, do we always
have E [X ] =

R∞
0 P{X > x}, in both discrete and continuous

settings?

I Define g(y) so that 1− FX (g(y)) = y . (Draw horizontal line
at height y and look where it hits graph of 1− FX .)

I Choose Y uniformly on [0, 1] and note that g(Y ) has the
same probability distribution as X .

I So E [X ] = E [g(Y )] =
R 1
0 g(y)dy , which is indeed the area

under the graph of 1− FX .

Properties of expectation 

I For both discrete and continuous random variables X and Y 
we have E [X + Y ] = E [X ] + E [Y ]. 
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I But what about that delightful “area under 1− FX” formula
for the expectation?

I When X is non-negative with probability one, do we always
have E [X ] =

R∞
0 P{X > x}, in both discrete and continuous

settings?

I Define g(y) so that 1− FX (g(y)) = y . (Draw horizontal line
at height y and look where it hits graph of 1− FX .)

I Choose Y uniformly on [0, 1] and note that g(Y ) has the
same probability distribution as X .

I So E [X ] = E [g(Y )] =
R 1
0 g(y)dy , which is indeed the area

under the graph of 1− FX .

Properties of expectation 

I For both discrete and continuous random variables X and Y 
we have E [X + Y ] = E [X ] + E [Y ]. 

I In both discrete and continuous settings, E [aX ] = aE [X ] P P 
when a is a constant. And E [ ai Xi ] = ai E [Xi ]. 
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I When X is non-negative with probability one, do we always
have E [X ] =

R∞
0 P{X > x}, in both discrete and continuous

settings?

I Define g(y) so that 1− FX (g(y)) = y . (Draw horizontal line
at height y and look where it hits graph of 1− FX .)

I Choose Y uniformly on [0, 1] and note that g(Y ) has the
same probability distribution as X .

I So E [X ] = E [g(Y )] =
R 1
0 g(y)dy , which is indeed the area

under the graph of 1− FX .

Properties of expectation 

I For both discrete and continuous random variables X and Y 
we have E [X + Y ] = E [X ] + E [Y ]. 

I In both discrete and continuous settings, E [aX ] = aE [X ] P P 
when a is a constant. And E [ ai Xi ] = ai E [Xi ]. 

I But what about that delightful “area under 1 − FX ” formula 
for the expectation? 
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I Define g(y) so that 1− FX (g(y)) = y . (Draw horizontal line
at height y and look where it hits graph of 1− FX .)

I Choose Y uniformly on [0, 1] and note that g(Y ) has the
same probability distribution as X .

I So E [X ] = E [g(Y )] =
R 1
0 g(y)dy , which is indeed the area

under the graph of 1− FX .

Properties of expectation 

I For both discrete and continuous random variables X and Y 
we have E [X + Y ] = E [X ] + E [Y ]. 

I In both discrete and continuous settings, E [aX ] = aE [X ] P P 
when a is a constant. And E [ ai Xi ] = ai E [Xi ]. 

I But what about that delightful “area under 1 − FX ” formula 
for the expectation? 

I When X is non-negative with probability one, do we always R ∞ 
have E [X ] = P{X > x}, in both discrete and continuous 0 
settings? 
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I Choose Y uniformly on [0, 1] and note that g(Y ) has the
same probability distribution as X .

I So E [X ] = E [g(Y )] =
R 1
0 g(y)dy , which is indeed the area

under the graph of 1− FX .

Properties of expectation 

I For both discrete and continuous random variables X and Y 
we have E [X + Y ] = E [X ] + E [Y ]. 

I In both discrete and continuous settings, E [aX ] = aE [X ] P P 
when a is a constant. And E [ ai Xi ] = ai E [Xi ]. 

I But what about that delightful “area under 1 − FX ” formula 
for the expectation? 

I When X is non-negative with probability one, do we always R ∞ 
have E [X ] = P{X > x}, in both discrete and continuous 0 
settings? 

I Define g(y) so that 1 − FX (g(y)) = y . (Draw horizontal line 
at height y and look where it hits graph of 1 − FX .) 

124



I So E [X ] = E [g(Y )] =
R 1
0 g(y)dy , which is indeed the area

under the graph of 1− FX .

Properties of expectation 

I For both discrete and continuous random variables X and Y 
we have E [X + Y ] = E [X ] + E [Y ]. 

I In both discrete and continuous settings, E [aX ] = aE [X ] P P 
when a is a constant. And E [ ai Xi ] = ai E [Xi ]. 

I But what about that delightful “area under 1 − FX ” formula 
for the expectation? 

I When X is non-negative with probability one, do we always R ∞ 
have E [X ] = P{X > x}, in both discrete and continuous 0 
settings? 

I Define g(y) so that 1 − FX (g(y)) = y . (Draw horizontal line 
at height y and look where it hits graph of 1 − FX .) 

I Choose Y uniformly on [0, 1] and note that g(Y ) has the 
same probability distribution as X . 
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Properties of expectation 

I For both discrete and continuous random variables X and Y 
we have E [X + Y ] = E [X ] + E [Y ]. 

I In both discrete and continuous settings, E [aX ] = aE [X ] P P 
when a is a constant. And E [ ai Xi ] = ai E [Xi ]. 

I But what about that delightful “area under 1 − FX ” formula 
for the expectation? 

I When X is non-negative with probability one, do we always R ∞ 
have E [X ] = P{X > x}, in both discrete and continuous 0 
settings? 

I Define g(y) so that 1 − FX (g(y)) = y . (Draw horizontal line 
at height y and look where it hits graph of 1 − FX .) 

I Choose Y uniformly on [0, 1] and note that g(Y ) has the 
same probability distribution as X . R 1 I So E [X ] = E [g(Y )] = g(y)dy , which is indeed the area 0 
under the graph of 1 − FX . 
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I Just write E [g(X )h(Y )] =
R∞
−∞

R∞
−∞ g(x)h(y)f (x , y)dxdy .

I Since f (x , y) = fX (x)fY (y) this factors asR∞
−∞ h(y)fY (y)dy

R∞
−∞ g(x)fX (x)dx = E [h(Y )]E [g(X )].

A property of independence 

I If X and Y are independent then 
E [g(X )h(Y )] = E [g(X )]E [h(Y )]. 
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I Since f (x , y) = fX (x)fY (y) this factors asR∞
−∞ h(y)fY (y)dy

R∞
−∞ g(x)fX (x)dx = E [h(Y )]E [g(X )].

A property of independence 

I If X and Y are independent then 
E [g(X )h(Y )] = E [g(X )]E [h(Y )]. R ∞ R ∞ I Just write E [g(X )h(Y )] = g(x)h(y)f (x , y)dxdy . −∞ −∞ 
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A property of independence 

I If X and Y are independent then 
E [g(X )h(Y )] = E [g(X )]E [h(Y )]. R ∞ R ∞ I Just write E [g(X )h(Y )] = g(x)h(y)f (x , y)dxdy . −∞ −∞ 

I Since f (x , y) = fX (x)fY (y) this factors as R ∞ R ∞ 
h(y)fY (y)dy g(x)fX (x)dx = E [h(Y )]E [g(X )]. −∞ −∞ 
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I Note: by definition Var(X ) = Cov(X ,X ).

I Covariance formula E [XY ]− E [X ]E [Y ], or “expectation of
product minus product of expectations” is frequently useful.

I If X and Y are independent then Cov(X ,Y ) = 0.

I Converse is not true.

Defining covariance and correlation 

I Now define covariance of X and Y by 
Cov(X , Y ) = E [(X − E [X ])(Y − E [Y ]). 
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I Covariance formula E [XY ]− E [X ]E [Y ], or “expectation of
product minus product of expectations” is frequently useful.

I If X and Y are independent then Cov(X ,Y ) = 0.

I Converse is not true.

Defining covariance and correlation 

I Now define covariance of X and Y by 
Cov(X , Y ) = E [(X − E [X ])(Y − E [Y ]). 

I Note: by definition Var(X ) = Cov(X , X ). 
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I If X and Y are independent then Cov(X ,Y ) = 0.

I Converse is not true.

Defining covariance and correlation 

I Now define covariance of X and Y by 
Cov(X , Y ) = E [(X − E [X ])(Y − E [Y ]). 

I Note: by definition Var(X ) = Cov(X , X ). 

I Covariance formula E [XY ] − E [X ]E [Y ], or “expectation of 
product minus product of expectations” is frequently useful. 

132



I Converse is not true.

Defining covariance and correlation 

I Now define covariance of X and Y by 
Cov(X , Y ) = E [(X − E [X ])(Y − E [Y ]). 

I Note: by definition Var(X ) = Cov(X , X ). 

I Covariance formula E [XY ] − E [X ]E [Y ], or “expectation of 
product minus product of expectations” is frequently useful. 

I If X and Y are independent then Cov(X , Y ) = 0. 
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Defining covariance and correlation 

I Now define covariance of X and Y by 
Cov(X , Y ) = E [(X − E [X ])(Y − E [Y ]). 

I Note: by definition Var(X ) = Cov(X , X ). 

I Covariance formula E [XY ] − E [X ]E [Y ], or “expectation of 
product minus product of expectations” is frequently useful. 

I If X and Y are independent then Cov(X , Y ) = 0. 

I Converse is not true. 
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I Cov(X ,X ) = Var(X )

I Cov(aX ,Y ) = aCov(X ,Y ).

I Cov(X1 + X2,Y ) = Cov(X1,Y ) + Cov(X2,Y ).

I General statement of bilinearity of covariance:

Cov(
mX
i=1

aiXi ,

nX
j=1

bjYj) =
mX
i=1

nX
j=1

aibjCov(Xi ,Yj).

I Special case:

Var(
nX

i=1

Xi ) =
nX

i=1

Var(Xi ) + 2
X

(i ,j):i<j

Cov(Xi ,Xj).

Basic covariance facts 

I Cov(X , Y ) = Cov(Y , X ) 
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I Cov(aX ,Y ) = aCov(X ,Y ).

I Cov(X1 + X2,Y ) = Cov(X1,Y ) + Cov(X2,Y ).

I General statement of bilinearity of covariance:

Cov(
mX
i=1

aiXi ,

nX
j=1

bjYj) =
mX
i=1

nX
j=1

aibjCov(Xi ,Yj).

I Special case:

Var(
nX

i=1

Xi ) =
nX

i=1

Var(Xi ) + 2
X

(i ,j):i<j

Cov(Xi ,Xj).

Basic covariance facts 

I Cov(X , Y ) = Cov(Y , X ) 

I Cov(X , X ) = Var(X ) 
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I Cov(X1 + X2,Y ) = Cov(X1,Y ) + Cov(X2,Y ).

I General statement of bilinearity of covariance:

Cov(
mX
i=1

aiXi ,

nX
j=1

bjYj) =
mX
i=1

nX
j=1

aibjCov(Xi ,Yj).

I Special case:

Var(
nX

i=1

Xi ) =
nX

i=1

Var(Xi ) + 2
X

(i ,j):i<j

Cov(Xi ,Xj).

Basic covariance facts 

I Cov(X , Y ) = Cov(Y , X ) 

I Cov(X , X ) = Var(X ) 

I Cov(aX , Y ) = aCov(X , Y ). 
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I General statement of bilinearity of covariance:

Cov(
mX
i=1

aiXi ,

nX
j=1

bjYj) =
mX
i=1

nX
j=1

aibjCov(Xi ,Yj).

I Special case:

Var(
nX

i=1

Xi ) =
nX

i=1

Var(Xi ) + 2
X

(i ,j):i<j

Cov(Xi ,Xj).

Basic covariance facts 

I Cov(X , Y ) = Cov(Y , X ) 

I Cov(X , X ) = Var(X ) 

I Cov(aX , Y ) = aCov(X , Y ). 

I Cov(X1 + X2, Y ) = Cov(X1, Y ) + Cov(X2, Y ). 
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I Special case:

Var(
nX

i=1

Xi ) =
nX

i=1

Var(Xi ) + 2
X

(i ,j):i<j

Cov(Xi ,Xj).

Basic covariance facts 

I Cov(X , Y ) = Cov(Y , X ) 

I Cov(X , X ) = Var(X ) 

I Cov(aX , Y ) = aCov(X , Y ). 

I Cov(X1 + X2, Y ) = Cov(X1, Y ) + Cov(X2, Y ). 

I General statement of bilinearity of covariance: 

m n m n X X XX 
Cov( ai Xi , bj Yj ) = ai bj Cov(Xi , Yj ). 

i=1 j=1 i=1 j=1 
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Basic covariance facts 

I Cov(X , Y ) = Cov(Y , X ) 

I Cov(X , X ) = Var(X ) 

I Cov(aX , Y ) = aCov(X , Y ). 

I Cov(X1 + X2, Y ) = Cov(X1, Y ) + Cov(X2, Y ). 

I General statement of bilinearity of covariance: 

m n m n X X XX 
Cov( ai Xi , bj Yj ) = ai bj Cov(Xi , Yj ). 

i=1 j=1 i=1 j=1 

I Special case: 

n n X X X 
Var( Xi ) = Var(Xi ) + 2 Cov(Xi , Xj ). 

i=1 i=1 (i ,j):i<j 
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I Correlation of X and Y defined by

ρ(X ,Y ) :=
Cov(X ,Y )p
Var(X )Var(Y )

.

I Correlation doesn’t care what units you use for X and Y . If
a > 0 and c > 0 then ρ(aX + b, cY + d) = ρ(X ,Y ).

I Satisfies −1 ≤ ρ(X ,Y ) ≤ 1.
I If a and b are positive constants and a > 0 then

ρ(aX + b,X ) = 1.

I If a and b are positive constants and a < 0 then
ρ(aX + b,X ) = −1.

Defining correlation 

I Again, by definition Cov(X , Y ) = E [XY ] − E [X ]E [Y ]. 

141



I Correlation doesn’t care what units you use for X and Y . If
a > 0 and c > 0 then ρ(aX + b, cY + d) = ρ(X ,Y ).

I Satisfies −1 ≤ ρ(X ,Y ) ≤ 1.
I If a and b are positive constants and a > 0 then

ρ(aX + b,X ) = 1.

I If a and b are positive constants and a < 0 then
ρ(aX + b,X ) = −1.

Defining correlation 

I Again, by definition Cov(X , Y ) = E [XY ] − E [X ]E [Y ]. 

I Correlation of X and Y defined by 

Cov(X , Y ) 
ρ(X , Y ) := p . 

Var(X )Var(Y ) 
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I Satisfies −1 ≤ ρ(X ,Y ) ≤ 1.
I If a and b are positive constants and a > 0 then

ρ(aX + b,X ) = 1.

I If a and b are positive constants and a < 0 then
ρ(aX + b,X ) = −1.

Defining correlation 

I Again, by definition Cov(X , Y ) = E [XY ] − E [X ]E [Y ]. 

I Correlation of X and Y defined by 

Cov(X , Y ) 
ρ(X , Y ) := p . 

Var(X )Var(Y ) 

I Correlation doesn’t care what units you use for X and Y . If 
a > 0 and c > 0 then ρ(aX + b, cY + d) = ρ(X , Y ). 
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I If a and b are positive constants and a > 0 then
ρ(aX + b,X ) = 1.

I If a and b are positive constants and a < 0 then
ρ(aX + b,X ) = −1.

Defining correlation 

I Again, by definition Cov(X , Y ) = E [XY ] − E [X ]E [Y ]. 

I Correlation of X and Y defined by 

Cov(X , Y ) 
ρ(X , Y ) := p . 

Var(X )Var(Y ) 

I Correlation doesn’t care what units you use for X and Y . If 
a > 0 and c > 0 then ρ(aX + b, cY + d) = ρ(X , Y ). 

I Satisfies −1 ≤ ρ(X , Y ) ≤ 1. 
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I If a and b are positive constants and a < 0 then
ρ(aX + b,X ) = −1.

Defining correlation 

I Again, by definition Cov(X , Y ) = E [XY ] − E [X ]E [Y ]. 

I Correlation of X and Y defined by 

Cov(X , Y ) 
ρ(X , Y ) := p . 

Var(X )Var(Y ) 

I Correlation doesn’t care what units you use for X and Y . If 
a > 0 and c > 0 then ρ(aX + b, cY + d) = ρ(X , Y ). 

I Satisfies −1 ≤ ρ(X , Y ) ≤ 1. 

I If a and b are positive constants and a > 0 then 
ρ(aX + b, X ) = 1. 
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Defining correlation 

I Again, by definition Cov(X , Y ) = E [XY ] − E [X ]E [Y ]. 

I Correlation of X and Y defined by 

Cov(X , Y ) 
ρ(X , Y ) := p . 

Var(X )Var(Y ) 

I Correlation doesn’t care what units you use for X and Y . If 
a > 0 and c > 0 then ρ(aX + b, cY + d) = ρ(X , Y ). 

I Satisfies −1 ≤ ρ(X , Y ) ≤ 1. 

I If a and b are positive constants and a > 0 then 
ρ(aX + b, X ) = 1. 

I If a and b are positive constants and a < 0 then 
ρ(aX + b, X ) = −1. 
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I If X and Y are jointly discrete random variables, we can use
this to define a probability mass function for X given Y = y .

I That is, we write pX |Y (x |y) = P{X = x |Y = y} = p(x ,y)
pY (y)

.

I In words: first restrict sample space to pairs (x , y) with given
y value. Then divide the original mass function by pY (y) to
obtain a probability mass function on the restricted space.

I We do something similar when X and Y are continuous
random variables. In that case we write fX |Y (x |y) =

f (x ,y)
fY (y)

.

I Often useful to think of sampling (X ,Y ) as a two-stage
process. First sample Y from its marginal distribution, obtain
Y = y for some particular y . Then sample X from its
probability distribution given Y = y .

Conditional probability distributions 

I It all starts with the definition of conditional probability: 
P(A|B) = P(AB)/P(B). 
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I That is, we write pX |Y (x |y) = P{X = x |Y = y} = p(x ,y)
pY (y)

.

I In words: first restrict sample space to pairs (x , y) with given
y value. Then divide the original mass function by pY (y) to
obtain a probability mass function on the restricted space.

I We do something similar when X and Y are continuous
random variables. In that case we write fX |Y (x |y) =

f (x ,y)
fY (y)

.

I Often useful to think of sampling (X ,Y ) as a two-stage
process. First sample Y from its marginal distribution, obtain
Y = y for some particular y . Then sample X from its
probability distribution given Y = y .

Conditional probability distributions 

I It all starts with the definition of conditional probability: 
P(A|B) = P(AB)/P(B). 

I If X and Y are jointly discrete random variables, we can use 
this to define a probability mass function for X given Y = y . 
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I In words: first restrict sample space to pairs (x , y) with given
y value. Then divide the original mass function by pY (y) to
obtain a probability mass function on the restricted space.

I We do something similar when X and Y are continuous
random variables. In that case we write fX |Y (x |y) =

f (x ,y)
fY (y)

.

I Often useful to think of sampling (X ,Y ) as a two-stage
process. First sample Y from its marginal distribution, obtain
Y = y for some particular y . Then sample X from its
probability distribution given Y = y .

Conditional probability distributions 

I It all starts with the definition of conditional probability: 
P(A|B) = P(AB)/P(B). 

I If X and Y are jointly discrete random variables, we can use 
this to define a probability mass function for X given Y = y . 

p(x ,y) I That is, we write pX |Y (x |y) = P{X = x |Y = y} = . pY (y ) 
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I We do something similar when X and Y are continuous
random variables. In that case we write fX |Y (x |y) =

f (x ,y)
fY (y)

.

I Often useful to think of sampling (X ,Y ) as a two-stage
process. First sample Y from its marginal distribution, obtain
Y = y for some particular y . Then sample X from its
probability distribution given Y = y .

Conditional probability distributions 

I It all starts with the definition of conditional probability: 
P(A|B) = P(AB)/P(B). 

I If X and Y are jointly discrete random variables, we can use 
this to define a probability mass function for X given Y = y . 

p(x ,y) I That is, we write pX |Y (x |y) = P{X = x |Y = y} = . pY (y ) 

I In words: first restrict sample space to pairs (x , y) with given 
y value. Then divide the original mass function by pY (y) to 
obtain a probability mass function on the restricted space. 
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I Often useful to think of sampling (X ,Y ) as a two-stage
process. First sample Y from its marginal distribution, obtain
Y = y for some particular y . Then sample X from its
probability distribution given Y = y .

Conditional probability distributions 

I It all starts with the definition of conditional probability: 
P(A|B) = P(AB)/P(B). 

I If X and Y are jointly discrete random variables, we can use 
this to define a probability mass function for X given Y = y . 

p(x ,y) I That is, we write pX |Y (x |y) = P{X = x |Y = y} = . pY (y ) 

I In words: first restrict sample space to pairs (x , y) with given 
y value. Then divide the original mass function by pY (y) to 
obtain a probability mass function on the restricted space. 

I We do something similar when X and Y are continuous 
f (x ,y) random variables. In that case we write fX |Y (x |y) = . fY (y) 
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Conditional probability distributions 

I It all starts with the definition of conditional probability: 
P(A|B) = P(AB)/P(B). 

I If X and Y are jointly discrete random variables, we can use 
this to define a probability mass function for X given Y = y . 

p(x ,y) I That is, we write pX |Y (x |y) = P{X = x |Y = y} = . pY (y ) 

I In words: first restrict sample space to pairs (x , y) with given 
y value. Then divide the original mass function by pY (y) to 
obtain a probability mass function on the restricted space. 

I We do something similar when X and Y are continuous 
f (x ,y) random variables. In that case we write fX |Y (x |y) = . fY (y) 

I Often useful to think of sampling (X , Y ) as a two-stage 
process. First sample Y from its marginal distribution, obtain 
Y = y for some particular y . Then sample X from its 
probability distribution given Y = y . 
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I What are the covariances Cov(X ,Y ) and Cov(X ,Z )?

I How about the correlation coefficients ρ(X ,Y ) and ρ(X ,Z )?

Example 

I Let X be a random variable of variance σ 2 
X and Y an 

independent random variable of variance σ 2 
Y and write 

Z = X + Y . Assume E [X ] = E [Y ] = 0. 
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I How about the correlation coefficients ρ(X ,Y ) and ρ(X ,Z )?

Example 

I Let X be a random variable of variance σ 2 
X and Y an 

independent random variable of variance σ 2 
Y and write 

Z = X + Y . Assume E [X ] = E [Y ] = 0. 

I What are the covariances Cov(X , Y ) and Cov(X , Z )? 
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Example 

I Let X be a random variable of variance σ 2 
X and Y an 

independent random variable of variance σ 2 
Y and write 

Z = X + Y . Assume E [X ] = E [Y ] = 0. 

I What are the covariances Cov(X , Y ) and Cov(X , Z )? 

I How about the correlation coefficients ρ(X , Y ) and ρ(X , Z )? 
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I If X is Poisson with parameter λ > 0 then
MX (t) = exp[λ(e

t − 1)].
I If X is normal with mean 0, variance 1, then MX (t) = et

2/2.

I If X is normal with mean µ, variance σ2, then
MX (t) = eσ

2t2/2+µt .

I If X is exponential with parameter λ > 0 then MX (t) =
λ

λ−t .

Examples 

I If X is binomial with parameters (p, n) then 
MX (t) = (pe

t + 1 − p)n . 
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I If X is normal with mean 0, variance 1, then MX (t) = et
2/2.

I If X is normal with mean µ, variance σ2, then
MX (t) = eσ

2t2/2+µt .

I If X is exponential with parameter λ > 0 then MX (t) =
λ

λ−t .

Examples 

I If X is binomial with parameters (p, n) then 
MX (t) = (pe

t + 1 − p)n . 

I If X is Poisson with parameter λ > 0 then 
MX (t) = exp[λ(et − 1)]. 
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I If X is normal with mean µ, variance σ2, then
MX (t) = eσ

2t2/2+µt .

I If X is exponential with parameter λ > 0 then MX (t) =
λ

λ−t .

Examples 

I If X is binomial with parameters (p, n) then 
MX (t) = (pe

t + 1 − p)n . 

I If X is Poisson with parameter λ > 0 then 
MX (t) = exp[λ(et − 1)]. 

I If X is normal with mean 0, variance 1, then MX (t) = et
2/2 . 
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I If X is exponential with parameter λ > 0 then MX (t) =
λ

λ−t .

Examples 

I If X is binomial with parameters (p, n) then 
MX (t) = (pe

t + 1 − p)n . 

I If X is Poisson with parameter λ > 0 then 
MX (t) = exp[λ(et − 1)]. 

I If X is normal with mean 0, variance 1, then MX (t) = et
2/2 . 

I If X is normal with mean µ, variance σ2 , then 
σ2t2/2+µt MX (t) = e . 
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Examples 

I If X is binomial with parameters (p, n) then 
MX (t) = (pe

t + 1 − p)n . 

I If X is Poisson with parameter λ > 0 then 
MX (t) = exp[λ(et − 1)]. 

I If X is normal with mean 0, variance 1, then MX (t) = et
2/2 . 

I If X is normal with mean µ, variance σ2 , then 
σ2t2/2+µt MX (t) = e . 

λ I If X is exponential with parameter λ > 0 then MX (t) = . λ−t 
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I There is a “spinning flashlight” interpretation. Put a flashlight
at (0, 1), spin it to a uniformly random angle in [−π/2, π/2],
and consider point X where light beam hits the x-axis.

I FX (x) = P{X ≤ x} = P{tan θ ≤ x} = P{θ ≤ tan−1x} =
1
2 +

1
π tan

−1 x .

I Find fX (x) =
d
dx F (x) =

1
π

1
1+x2

.

I Cool fact: if X1,X2, . . . ,Xn are i.i.d. Cauchy then their
average A = X1+X2+...+Xn

n is also Cauchy.

Cauchy distribution 

I A standard Cauchy random variable is a random real 
number with probability density f (x) = 1 1 

π 1+x2 . 
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I FX (x) = P{X ≤ x} = P{tan θ ≤ x} = P{θ ≤ tan−1x} =
1
2 +

1
π tan

−1 x .

I Find fX (x) =
d
dx F (x) =

1
π

1
1+x2

.

I Cool fact: if X1,X2, . . . ,Xn are i.i.d. Cauchy then their
average A = X1+X2+...+Xn

n is also Cauchy.

Cauchy distribution 

I A standard Cauchy random variable is a random real 
number with probability density f (x) = 1 1 

π 1+x2 . 

I There is a “spinning flashlight” interpretation. Put a flashlight 
at (0, 1), spin it to a uniformly random angle in [−π/2, π/2], 
and consider point X where light beam hits the x-axis. 
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I Find fX (x) =
d
dx F (x) =

1
π

1
1+x2

.

I Cool fact: if X1,X2, . . . ,Xn are i.i.d. Cauchy then their
average A = X1+X2+...+Xn

n is also Cauchy.

Cauchy distribution 

I A standard Cauchy random variable is a random real 
number with probability density f (x) = 1 1 

π 1+x2 . 

I There is a “spinning flashlight” interpretation. Put a flashlight 
at (0, 1), spin it to a uniformly random angle in [−π/2, π/2], 
and consider point X where light beam hits the x-axis. 

I FX (x) = P{X ≤ x} = P{tan θ ≤ x} = P{θ ≤ tan−1x} = 
1 1 
2 + π tan

−1 x . 
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I Cool fact: if X1,X2, . . . ,Xn are i.i.d. Cauchy then their
average A = X1+X2+...+Xn

n is also Cauchy.

Cauchy distribution 

I A standard Cauchy random variable is a random real 
1 1 number with probability density f (x) = 
1+x2 . π 

I There is a “spinning flashlight” interpretation. Put a flashlight 
at (0, 1), spin it to a uniformly random angle in [−π/2, π/2], 
and consider point X where light beam hits the x-axis. 

I FX (x) = P{X ≤ x} = P{tan θ ≤ x} = P{θ ≤ tan−1x} = 
1 + 1 tan−1 x . 2 π 

d I Find fX (x) = 1 1 F (x) = 
1+x2 . dx π 
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Cauchy distribution 

I A standard Cauchy random variable is a random real 
number with probability density f (x) = 1 1 

π 1+x2 . 

I There is a “spinning flashlight” interpretation. Put a flashlight 
at (0, 1), spin it to a uniformly random angle in [−π/2, π/2], 
and consider point X where light beam hits the x-axis. 

I FX (x) = P{X ≤ x} = P{tan θ ≤ x} = P{θ ≤ tan−1x} = 
1 1 
2 + π tan

−1 x . 
d 1 1 I Find fX (x) = F (x) = dx π 1+x2 . 

I Cool fact: if X1, X2, . . . , Xn are i.i.d. Cauchy then their 
X1+X2+...+Xn average A = is also Cauchy. n 
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I Given that X = a− 1 and n − X = b − 1 the conditional law
of p is called the β distribution.

I The density function is a constant (that doesn’t depend on x)
times xa−1(1− x)b−1.

I That is f (x) = 1
B(a,b)x

a−1(1− x)b−1 on [0, 1], where B(a, b)
is constant chosen to make integral one. Can show
B(a, b) = Γ(a)Γ(b)

Γ(a+b) .

I Turns out that E [X ] = a
a+b and the mode of X is (a−1)

(a−1)+(b−1) .

Beta distribution 

I Two part experiment: first let p be uniform random variable 
[0, 1], then let X be binomial (n, p) (number of heads when 
we toss n p-coins). 
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I The density function is a constant (that doesn’t depend on x)
times xa−1(1− x)b−1.

I That is f (x) = 1
B(a,b)x

a−1(1− x)b−1 on [0, 1], where B(a, b)
is constant chosen to make integral one. Can show
B(a, b) = Γ(a)Γ(b)

Γ(a+b) .

I Turns out that E [X ] = a
a+b and the mode of X is (a−1)

(a−1)+(b−1) .

Beta distribution 

I Two part experiment: first let p be uniform random variable 
[0, 1], then let X be binomial (n, p) (number of heads when 
we toss n p-coins). 

I Given that X = a − 1 and n − X = b − 1 the conditional law 
of p is called the β distribution. 
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I That is f (x) = 1
B(a,b)x

a−1(1− x)b−1 on [0, 1], where B(a, b)
is constant chosen to make integral one. Can show
B(a, b) = Γ(a)Γ(b)

Γ(a+b) .

I Turns out that E [X ] = a
a+b and the mode of X is (a−1)

(a−1)+(b−1) .

Beta distribution 

I Two part experiment: first let p be uniform random variable 
[0, 1], then let X be binomial (n, p) (number of heads when 
we toss n p-coins). 

I Given that X = a − 1 and n − X = b − 1 the conditional law 
of p is called the β distribution. 

I The density function is a constant (that doesn’t depend on x) 
times xa−1(1 − x)b−1 . 
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I Turns out that E [X ] = a
a+b and the mode of X is (a−1)

(a−1)+(b−1) .

Beta distribution 

I Two part experiment: first let p be uniform random variable 
[0, 1], then let X be binomial (n, p) (number of heads when 
we toss n p-coins). 

I Given that X = a − 1 and n − X = b − 1 the conditional law 
of p is called the β distribution. 

I The density function is a constant (that doesn’t depend on x) 
times xa−1(1 − x)b−1 . 

1 I That is f (x) = xa−1(1 − x)b−1 on [0, 1], where B(a, b) B(a,b) 
is constant chosen to make integral one. Can show 

Γ(a)Γ(b) B(a, b) = . Γ(a+b) 
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Beta distribution 

I Two part experiment: first let p be uniform random variable 
[0, 1], then let X be binomial (n, p) (number of heads when 
we toss n p-coins). 

I Given that X = a − 1 and n − X = b − 1 the conditional law 
of p is called the β distribution. 

I The density function is a constant (that doesn’t depend on x) 
times xa−1(1 − x)b−1 . 

1 I That is f (x) = xa−1(1 − x)b−1 on [0, 1], where B(a, b) B(a,b) 
is constant chosen to make integral one. Can show 

Γ(a)Γ(b) B(a, b) = . Γ(a+b) 

a (a−1) I Turns out that E [X ] = and the mode of X is . a+b (a−1)+(b−1) 
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I Then M 0(0) = E [X ] and M 00(0) = E [X 2]. Generally, nth
derivative of M at zero is E [X n].

I Let X and Y be independent random variables and
Z = X + Y .

I Write the moment generating functions as MX (t) = E [etX ]
and MY (t) = E [etY ] and MZ (t) = E [etZ ].

I If you knew MX and MY , could you compute MZ?

I By independence, MZ (t) = E [et(X+Y )] = E [etX etY ] =
E [etX ]E [etY ] = MX (t)MY (t) for all t.

I In other words, adding independent random variables
corresponds to multiplying moment generating functions.

Moment generating functions 

I Let X be a random variable and M(t) = E [etX ]. 
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I Let X and Y be independent random variables and
Z = X + Y .

I Write the moment generating functions as MX (t) = E [etX ]
and MY (t) = E [etY ] and MZ (t) = E [etZ ].

I If you knew MX and MY , could you compute MZ?

I By independence, MZ (t) = E [et(X+Y )] = E [etX etY ] =
E [etX ]E [etY ] = MX (t)MY (t) for all t.

I In other words, adding independent random variables
corresponds to multiplying moment generating functions.

Moment generating functions 

I Let X be a random variable and M(t) = E [etX ]. 

I Then M 0(0) = E [X ] and M 00(0) = E [X 2]. Generally, nth 
derivative of M at zero is E [X n]. 
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I Write the moment generating functions as MX (t) = E [etX ]
and MY (t) = E [etY ] and MZ (t) = E [etZ ].

I If you knew MX and MY , could you compute MZ?

I By independence, MZ (t) = E [et(X+Y )] = E [etX etY ] =
E [etX ]E [etY ] = MX (t)MY (t) for all t.

I In other words, adding independent random variables
corresponds to multiplying moment generating functions.

Moment generating functions 

I Let X be a random variable and M(t) = E [etX ]. 

I Then M 0(0) = E [X ] and M 00(0) = E [X 2]. Generally, nth 
derivative of M at zero is E [X n]. 

I Let X and Y be independent random variables and 
Z = X + Y . 
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I If you knew MX and MY , could you compute MZ?

I By independence, MZ (t) = E [et(X+Y )] = E [etX etY ] =
E [etX ]E [etY ] = MX (t)MY (t) for all t.

I In other words, adding independent random variables
corresponds to multiplying moment generating functions.

Moment generating functions 

I Let X be a random variable and M(t) = E [etX ]. 

I Then M 0(0) = E [X ] and M 00(0) = E [X 2]. Generally, nth 
derivative of M at zero is E [X n]. 

I Let X and Y be independent random variables and 
Z = X + Y . 

tX ] I Write the moment generating functions as MX (t) = E [e 
and MY (t) = E [etY ] and MZ (t) = E [etZ ]. 

174



I By independence, MZ (t) = E [et(X+Y )] = E [etX etY ] =
E [etX ]E [etY ] = MX (t)MY (t) for all t.

I In other words, adding independent random variables
corresponds to multiplying moment generating functions.

Moment generating functions 

I Let X be a random variable and M(t) = E [etX ]. 

I Then M 0(0) = E [X ] and M 00(0) = E [X 2]. Generally, nth 
derivative of M at zero is E [X n]. 

I Let X and Y be independent random variables and 
Z = X + Y . 

tX ] I Write the moment generating functions as MX (t) = E [e 
and MY (t) = E [etY ] and MZ (t) = E [etZ ]. 

I If you knew MX and MY , could you compute MZ ? 
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I In other words, adding independent random variables
corresponds to multiplying moment generating functions.

Moment generating functions 

I Let X be a random variable and M(t) = E [etX ]. 

I Then M 0(0) = E [X ] and M 00(0) = E [X 2]. Generally, nth 
derivative of M at zero is E [X n]. 

I Let X and Y be independent random variables and 
Z = X + Y . 

tX ] I Write the moment generating functions as MX (t) = E [e 
and MY (t) = E [etY ] and MZ (t) = E [etZ ]. 

I If you knew MX and MY , could you compute MZ ? 
tX tY ] = I By independence, MZ (t) = E [et(X +Y )] = E [e e 

tX ]E [e E [e tY ] = MX (t)MY (t) for all t. 

176



Moment generating functions 

I Let X be a random variable and M(t) = E [etX ]. 

I Then M 0(0) = E [X ] and M 00(0) = E [X 2]. Generally, nth 
derivative of M at zero is E [X n]. 

I Let X and Y be independent random variables and 
Z = X + Y . 

tX ] I Write the moment generating functions as MX (t) = E [e 
and MY (t) = E [etY ] and MZ (t) = E [etZ ]. 

I If you knew MX and MY , could you compute MZ ? 
t(X +Y )] = E [etX tY ] = I By independence, MZ (t) = E [e e 

tX ]E [e E [e tY ] = MX (t)MY (t) for all t. 

I In other words, adding independent random variables 
corresponds to multiplying moment generating functions. 
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I If X1 . . .Xn are i.i.d. copies of X and Z = X1 + . . .+ Xn then
what is MZ?

I Answer: Mn
X . Follows by repeatedly applying formula above.

I This a big reason for studying moment generating functions.
It helps us understand what happens when we sum up a lot of
independent copies of the same random variable.

I If Z = aX then MZ (t) = E [etZ ] = E [etaX ] = MX (at).

I If Z = X + b then MZ (t) = E [etZ ] = E [etX+bt ] = ebtMX (t).

Moment generating functions for sums of i.i.d. random 
variables 

I We showed that if Z = X + Y and X and Y are independent, 
then MZ (t) = MX (t)MY (t) 

178



I Answer: Mn
X . Follows by repeatedly applying formula above.

I This a big reason for studying moment generating functions.
It helps us understand what happens when we sum up a lot of
independent copies of the same random variable.

I If Z = aX then MZ (t) = E [etZ ] = E [etaX ] = MX (at).

I If Z = X + b then MZ (t) = E [etZ ] = E [etX+bt ] = ebtMX (t).

Moment generating functions for sums of i.i.d. random 
variables 

I We showed that if Z = X + Y and X and Y are independent, 
then MZ (t) = MX (t)MY (t) 

I If X1 . . . Xn are i.i.d. copies of X and Z = X1 + . . . + Xn then 
what is MZ ? 
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I This a big reason for studying moment generating functions.
It helps us understand what happens when we sum up a lot of
independent copies of the same random variable.

I If Z = aX then MZ (t) = E [etZ ] = E [etaX ] = MX (at).

I If Z = X + b then MZ (t) = E [etZ ] = E [etX+bt ] = ebtMX (t).

Moment generating functions for sums of i.i.d. random 
variables 

I We showed that if Z = X + Y and X and Y are independent, 
then MZ (t) = MX (t)MY (t) 

I If X1 . . . Xn are i.i.d. copies of X and Z = X1 + . . . + Xn then 
what is MZ ? 

I Answer: MX
n . Follows by repeatedly applying formula above. 
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I If Z = aX then MZ (t) = E [etZ ] = E [etaX ] = MX (at).

I If Z = X + b then MZ (t) = E [etZ ] = E [etX+bt ] = ebtMX (t).

Moment generating functions for sums of i.i.d. random 
variables 

I We showed that if Z = X + Y and X and Y are independent, 
then MZ (t) = MX (t)MY (t) 

I If X1 . . . Xn are i.i.d. copies of X and Z = X1 + . . . + Xn then 
what is MZ ? 

I Answer: MX
n . Follows by repeatedly applying formula above. 

I This a big reason for studying moment generating functions. 
It helps us understand what happens when we sum up a lot of 
independent copies of the same random variable. 
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I If Z = X + b then MZ (t) = E [etZ ] = E [etX+bt ] = ebtMX (t).

Moment generating functions for sums of i.i.d. random 
variables 

I We showed that if Z = X + Y and X and Y are independent, 
then MZ (t) = MX (t)MY (t) 

I If X1 . . . Xn are i.i.d. copies of X and Z = X1 + . . . + Xn then 
what is MZ ? 

I Answer: MX
n . Follows by repeatedly applying formula above. 

I This a big reason for studying moment generating functions. 
It helps us understand what happens when we sum up a lot of 
independent copies of the same random variable. 

tZ ] = E [etaX ] = MX (at). I If Z = aX then MZ (t) = E [e 
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Moment generating functions for sums of i.i.d. random 
variables 

I We showed that if Z = X + Y and X and Y are independent, 
then MZ (t) = MX (t)MY (t) 

I If X1 . . . Xn are i.i.d. copies of X and Z = X1 + . . . + Xn then 
what is MZ ? 

I Answer: MX
n . Follows by repeatedly applying formula above. 

I This a big reason for studying moment generating functions. 
It helps us understand what happens when we sum up a lot of 
independent copies of the same random variable. 

tZ ] = E [etaX ] = MX (at). I If Z = aX then MZ (t) = E [e 
tZ ] = E [etX +bt ] = e I If Z = X + b then MZ (t) = E [e bt MX (t). 
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