18.600: Lecture 28
 Lectures 17-27 Review

Scott Sheffield

MIT

Outline

Continuous random variables

Problems motivated by coin tossing

Random variable properties

Outline

Continuous random variables

Problems motivated by coin tossing

Random variable properties

Continuous random variables

- Say X is a continuous random variable if there exists a probability density function $f=f_{X}$ on \mathbb{R} such that $P\{X \in B\}=\int_{B} f(x) d x:=\int 1_{B}(x) f(x) d x$.

Continuous random variables

- Say X is a continuous random variable if there exists a probability density function $f=f_{X}$ on \mathbb{R} such that $P\{X \in B\}=\int_{B} f(x) d x:=\int 1_{B}(x) f(x) d x$.
- We may assume $\int_{\mathbb{R}} f(x) d x=\int_{-\infty}^{\infty} f(x) d x=1$ and f is non-negative.

Continuous random variables

- Say X is a continuous random variable if there exists a probability density function $f=f_{X}$ on \mathbb{R} such that $P\{X \in B\}=\int_{B} f(x) d x:=\int 1_{B}(x) f(x) d x$.
- We may assume $\int_{\mathbb{R}} f(x) d x=\int_{-\infty}^{\infty} f(x) d x=1$ and f is non-negative.
- Probability of interval $[a, b]$ is given by $\int_{a}^{b} f(x) d x$, the area under f between a and b.

Continuous random variables

- Say X is a continuous random variable if there exists a probability density function $f=f_{X}$ on \mathbb{R} such that $P\{X \in B\}=\int_{B} f(x) d x:=\int 1_{B}(x) f(x) d x$.
- We may assume $\int_{\mathbb{R}} f(x) d x=\int_{-\infty}^{\infty} f(x) d x=1$ and f is non-negative.
- Probability of interval $[a, b]$ is given by $\int_{a}^{b} f(x) d x$, the area under f between a and b.
- Probability of any single point is zero.

Continuous random variables

- Say X is a continuous random variable if there exists a probability density function $f=f_{X}$ on \mathbb{R} such that $P\{X \in B\}=\int_{B} f(x) d x:=\int 1_{B}(x) f(x) d x$.
- We may assume $\int_{\mathbb{R}} f(x) d x=\int_{-\infty}^{\infty} f(x) d x=1$ and f is non-negative.
- Probability of interval $[a, b]$ is given by $\int_{a}^{b} f(x) d x$, the area under f between a and b.
- Probability of any single point is zero.
- Define cumulative distribution function

$$
F(a)=F_{X}(a):=P\{X<a\}=P\{X \leq a\}=\int_{-\infty}^{a} f(x) d x
$$

Expectations of continuous random variables

- Recall that when X was a discrete random variable, with $p(x)=P\{X=x\}$, we wrote

$$
E[X]=\sum_{x: p(x)>0} p(x) x
$$

Expectations of continuous random variables

- Recall that when X was a discrete random variable, with $p(x)=P\{X=x\}$, we wrote

$$
E[X]=\sum_{x: p(x)>0} p(x) x
$$

- How should we define $E[X]$ when X is a continuous random variable?

Expectations of continuous random variables

- Recall that when X was a discrete random variable, with $p(x)=P\{X=x\}$, we wrote

$$
E[X]=\sum_{x: p(x)>0} p(x) x
$$

- How should we define $E[X]$ when X is a continuous random variable?
- Answer: $E[X]=\int_{-\infty}^{\infty} f(x) x d x$.

Expectations of continuous random variables

- Recall that when X was a discrete random variable, with $p(x)=P\{X=x\}$, we wrote

$$
E[X]=\sum_{x: p(x)>0} p(x) x
$$

- How should we define $E[X]$ when X is a continuous random variable?
- Answer: $E[X]=\int_{-\infty}^{\infty} f(x) x d x$.
- Recall that when X was a discrete random variable, with $p(x)=P\{X=x\}$, we wrote

$$
E[g(X)]=\sum_{x: p(x)>0} p(x) g(x)
$$

Expectations of continuous random variables

- Recall that when X was a discrete random variable, with $p(x)=P\{X=x\}$, we wrote

$$
E[X]=\sum_{x: p(x)>0} p(x) x
$$

- How should we define $E[X]$ when X is a continuous random variable?
- Answer: $E[X]=\int_{-\infty}^{\infty} f(x) x d x$.
- Recall that when X was a discrete random variable, with $p(x)=P\{X=x\}$, we wrote

$$
E[g(X)]=\sum_{x: p(x)>0} p(x) g(x)
$$

- What is the analog when X is a continuous random variable?

Expectations of continuous random variables

- Recall that when X was a discrete random variable, with $p(x)=P\{X=x\}$, we wrote

$$
E[X]=\sum_{x: p(x)>0} p(x) x
$$

- How should we define $E[X]$ when X is a continuous random variable?
- Answer: $E[X]=\int_{-\infty}^{\infty} f(x) x d x$.
- Recall that when X was a discrete random variable, with $p(x)=P\{X=x\}$, we wrote

$$
E[g(X)]=\sum_{x: p(x)>0} p(x) g(x)
$$

- What is the analog when $X_{i 申}$ a continuous random variable?
- Answer: we will write $E[g(X)]=\int_{-\infty}^{\infty} f(x) g(x) d x$.

Variance of continuous random variables

- Suppose X is a continuous random variable with mean μ.

Variance of continuous random variables

- Suppose X is a continuous random variable with mean μ.
- We can write $\operatorname{Var}[X]=E\left[(X-\mu)^{2}\right]$, same as in the discrete case.

Variance of continuous random variables

- Suppose X is a continuous random variable with mean μ.
- We can write $\operatorname{Var}[X]=E\left[(X-\mu)^{2}\right]$, same as in the discrete case.
- Next, if $g=g_{1}+g_{2}$ then $E[g(X)]=\int g_{1}(x) f(x) d x+\int g_{2}(x) f(x) d x=$ $\int\left(g_{1}(x)+g_{2}(x)\right) f(x) d x=E\left[g_{1}(X)\right]+E\left[g_{2}(X)\right]$.

Variance of continuous random variables

- Suppose X is a continuous random variable with mean μ.
- We can write $\operatorname{Var}[X]=E\left[(X-\mu)^{2}\right]$, same as in the discrete case.
- Next, if $g=g_{1}+g_{2}$ then $E[g(X)]=\int g_{1}(x) f(x) d x+\int g_{2}(x) f(x) d x=$ $\int\left(g_{1}(x)+g_{2}(x)\right) f(x) d x=E\left[g_{1}(X)\right]+E\left[g_{2}(X)\right]$.
- Furthermore, $E[a g(X)]=a E[g(X)]$ when a is a constant.

Variance of continuous random variables

- Suppose X is a continuous random variable with mean μ.
- We can write $\operatorname{Var}[X]=E\left[(X-\mu)^{2}\right]$, same as in the discrete case.
- Next, if $g=g_{1}+g_{2}$ then $E[g(X)]=\int g_{1}(x) f(x) d x+\int g_{2}(x) f(x) d x=$ $\int\left(g_{1}(x)+g_{2}(x)\right) f(x) d x=E\left[g_{1}(X)\right]+E\left[g_{2}(X)\right]$.
- Furthermore, $E[a g(X)]=a E[g(X)]$ when a is a constant.
- Just as in the discrete case, we can expand the variance expression as $\operatorname{Var}[X]=E\left[X^{2}-2 \mu X+\mu^{2}\right]$ and use additivity of expectation to say that
$\operatorname{Var}[X]=E\left[X^{2}\right]-2 \mu E[X]+E\left[\mu^{2}\right]=E\left[X^{2}\right]-2 \mu^{2}+\mu^{2}=$ $E\left[X^{2}\right]-E[X]^{2}$.

Variance of continuous random variables

- Suppose X is a continuous random variable with mean μ.
- We can write $\operatorname{Var}[X]=E\left[(X-\mu)^{2}\right]$, same as in the discrete case.
- Next, if $g=g_{1}+g_{2}$ then $E[g(X)]=\int g_{1}(x) f(x) d x+\int g_{2}(x) f(x) d x=$ $\int\left(g_{1}(x)+g_{2}(x)\right) f(x) d x=E\left[g_{1}(X)\right]+E\left[g_{2}(X)\right]$.
- Furthermore, $E[a g(X)]=a E[g(X)]$ when a is a constant.
- Just as in the discrete case, we can expand the variance expression as $\operatorname{Var}[X]=E\left[X^{2}-2 \mu X+\mu^{2}\right]$ and use additivity of expectation to say that
$\operatorname{Var}[X]=E\left[X^{2}\right]-2 \mu E[X]+E\left[\mu^{2}\right]=E\left[X^{2}\right]-2 \mu^{2}+\mu^{2}=$ $E\left[X^{2}\right]-E[X]^{2}$.
- Expectation of square minus square of expectation.

Variance of continuous random variables

- Suppose X is a continuous random variable with mean μ.
- We can write $\operatorname{Var}[X]=E\left[(X-\mu)^{2}\right]$, same as in the discrete case.
- Next, if $g=g_{1}+g_{2}$ then $E[g(X)]=\int g_{1}(x) f(x) d x+\int g_{2}(x) f(x) d x=$ $\int\left(g_{1}(x)+g_{2}(x)\right) f(x) d x=E\left[g_{1}(X)\right]+E\left[g_{2}(X)\right]$.
- Furthermore, $E[a g(X)]=a E[g(X)]$ when a is a constant.
- Just as in the discrete case, we can expand the variance expression as $\operatorname{Var}[X]=E\left[X^{2}-2 \mu X+\mu^{2}\right]$ and use additivity of expectation to say that
$\operatorname{Var}[X]=E\left[X^{2}\right]-2 \mu E[X]+E\left[\mu^{2}\right]=E\left[X^{2}\right]-2 \mu^{2}+\mu^{2}=$ $E\left[X^{2}\right]-E[X]^{2}$.
- Expectation of square minus square of expectation.
- This formula is often useful for calculations.

Outline

Continuous random variables

Problems motivated by coin tossing

Random variable properties

Outline

Continuous random variables

Problems motivated by coin tossing

Random variable properties

It's the coins, stupid

- Much of what we have done in this course can be motivated by the i.i.d. sequence X_{i} where each X_{i} is 1 with probability p and 0 otherwise. Write $S_{n}=\sum_{i=1}^{n} X_{n}$.

It's the coins, stupid

- Much of what we have done in this course can be motivated by the i.i.d. sequence X_{i} where each X_{i} is 1 with probability p and 0 otherwise. Write $S_{n}=\sum_{i=1}^{n} X_{n}$.
- Binomial (S_{n} — number of heads in n tosses), geometric (steps required to obtain one heads), negative binomial (steps required to obtain n heads).

It's the coins, stupid

- Much of what we have done in this course can be motivated by the i.i.d. sequence X_{i} where each X_{i} is 1 with probability p and 0 otherwise. Write $S_{n}=\sum_{i=1}^{n} X_{n}$.
- Binomial (S_{n} — number of heads in n tosses), geometric (steps required to obtain one heads), negative binomial (steps required to obtain n heads).
- Standard normal approximates law of $\frac{S_{n}-E\left[S_{n}\right]}{\operatorname{SD}\left(S_{n}\right)}$. Here $E\left[S_{n}\right]=n p$ and $\operatorname{SD}\left(S_{n}\right)=\sqrt{\operatorname{Var}\left(S_{n}\right)}=\sqrt{n p q}$ where $q=1-p$.

It's the coins, stupid

- Much of what we have done in this course can be motivated by the i.i.d. sequence X_{i} where each X_{i} is 1 with probability p and 0 otherwise. Write $S_{n}=\sum_{i=1}^{n} X_{n}$.
- Binomial (S_{n} — number of heads in n tosses), geometric (steps required to obtain one heads), negative binomial (steps required to obtain n heads).
- Standard normal approximates law of $\frac{S_{n}-E\left[S_{n}\right]}{\operatorname{SD}\left(S_{n}\right)}$. Here $E\left[S_{n}\right]=n p$ and $\operatorname{SD}\left(S_{n}\right)=\sqrt{\operatorname{Var}\left(S_{n}\right)}=\sqrt{n p q}$ where $q=1-p$.
- Poisson is limit of binomial as $n \rightarrow \infty$ when $p=\lambda / n$.

It's the coins, stupid

- Much of what we have done in this course can be motivated by the i.i.d. sequence X_{i} where each X_{i} is 1 with probability p and 0 otherwise. Write $S_{n}=\sum_{i=1}^{n} X_{n}$.
- Binomial (S_{n} - number of heads in n tosses), geometric (steps required to obtain one heads), negative binomial (steps required to obtain n heads).
- Standard normal approximates law of $\frac{S_{n}-E\left[S_{n}\right]}{\operatorname{SD}\left(S_{n}\right)}$. Here $E\left[S_{n}\right]=n p$ and $\operatorname{SD}\left(S_{n}\right)=\sqrt{\operatorname{Var}\left(S_{n}\right)}=\sqrt{n p q}$ where $q=1-p$.
- Poisson is limit of binomial as $n \rightarrow \infty$ when $p=\lambda / n$.
- Poisson point process: toss one λ / n coin during each length $1 / n$ time increment, take $n \rightarrow \infty$ limit.

It's the coins, stupid

- Much of what we have done in this course can be motivated by the i.i.d. sequence X_{i} where each X_{i} is 1 with probability p and 0 otherwise. Write $S_{n}=\sum_{i=1}^{n} X_{n}$.
- Binomial (S_{n} - number of heads in n tosses), geometric (steps required to obtain one heads), negative binomial (steps required to obtain n heads).
- Standard normal approximates law of $\frac{S_{n}-E\left[S_{n}\right]}{\operatorname{SD}\left(S_{n}\right)}$. Here $E\left[S_{n}\right]=n p$ and $\operatorname{SD}\left(S_{n}\right)=\sqrt{\operatorname{Var}\left(S_{n}\right)}=\sqrt{n p q}$ where $q=1-p$.
- Poisson is limit of binomial as $n \rightarrow \infty$ when $p=\lambda / n$.
- Poisson point process: toss one λ / n coin during each length $1 / n$ time increment, take $n \rightarrow \infty$ limit.
- Exponential: time till first event in λ Poisson point process.

It's the coins, stupid

- Much of what we have done in this course can be motivated by the i.i.d. sequence X_{i} where each X_{i} is 1 with probability p and 0 otherwise. Write $S_{n}=\sum_{i=1}^{n} X_{n}$.
- Binomial (S_{n} — number of heads in n tosses), geometric (steps required to obtain one heads), negative binomial (steps required to obtain n heads).
- Standard normal approximates law of $\frac{S_{n}-E\left[S_{n}\right]}{\operatorname{SD}\left(S_{n}\right)}$. Here $E\left[S_{n}\right]=n p$ and $\operatorname{SD}\left(S_{n}\right)=\sqrt{\operatorname{Var}\left(S_{n}\right)}=\sqrt{n p q}$ where $q=1-p$.
- Poisson is limit of binomial as $n \rightarrow \infty$ when $p=\lambda / n$.
- Poisson point process: toss one λ / n coin during each length $1 / n$ time increment, take $n \rightarrow \infty$ limit.
- Exponential: time till first event in λ Poisson point process.
- Gamma distribution: time ${ }^{3}$ ill nth event in λ Poisson point process.

Discrete random variable properties derivable from coin toss intuition

- Sum of two independent binomial random variables with parameters $\left(n_{1}, p\right)$ and $\left(n_{2}, p\right)$ is itself binomial $\left(n_{1}+n_{2}, p\right)$.

Discrete random variable properties derivable from coin toss intuition

- Sum of two independent binomial random variables with parameters $\left(n_{1}, p\right)$ and $\left(n_{2}, p\right)$ is itself binomial $\left(n_{1}+n_{2}, p\right)$.
- Sum of n independent geometric random variables with parameter p is negative binomial with parameter (n, p).

Discrete random variable properties derivable from coin toss intuition

- Sum of two independent binomial random variables with parameters $\left(n_{1}, p\right)$ and $\left(n_{2}, p\right)$ is itself binomial $\left(n_{1}+n_{2}, p\right)$.
- Sum of n independent geometric random variables with parameter p is negative binomial with parameter (n, p).
- Expectation of geometric random variable with parameter p is $1 / p$.

Discrete random variable properties derivable from coin toss intuition

- Sum of two independent binomial random variables with parameters $\left(n_{1}, p\right)$ and ($\left.n_{2}, p\right)$ is itself binomial $\left(n_{1}+n_{2}, p\right)$.
- Sum of n independent geometric random variables with parameter p is negative binomial with parameter (n, p).
- Expectation of geometric random variable with parameter p is $1 / p$.
- Expectation of binomial random variable with parameters (n, p) is $n p$.

Discrete random variable properties derivable from coin toss intuition

- Sum of two independent binomial random variables with parameters $\left(n_{1}, p\right)$ and ($\left.n_{2}, p\right)$ is itself binomial $\left(n_{1}+n_{2}, p\right)$.
- Sum of n independent geometric random variables with parameter p is negative binomial with parameter (n, p).
- Expectation of geometric random variable with parameter p is $1 / p$.
- Expectation of binomial random variable with parameters (n, p) is $n p$.
- Variance of binomial random variable with parameters (n, p) is $n p(1-p)=n p q$.

Continuous random variable properties derivable from coin toss intuition

- Sum of n independent exponential random variables each with parameter λ is gamma with parameters (n, λ).

Continuous random variable properties derivable from coin toss intuition

- Sum of n independent exponential random variables each with parameter λ is gamma with parameters (n, λ).
- Memoryless properties: given that exponential random variable X is greater than $T>0$, the conditional law of $X-T$ is the same as the original law of X.

Continuous random variable properties derivable from coin toss intuition

- Sum of n independent exponential random variables each with parameter λ is gamma with parameters (n, λ).
- Memoryless properties: given that exponential random variable X is greater than $T>0$, the conditional law of $X-T$ is the same as the original law of X.
- Write $p=\lambda / n$. Poisson random variable expectation is $\lim _{n \rightarrow \infty} n p=\lim _{n \rightarrow \infty} n \frac{\lambda}{n}=\lambda$. Variance is $\lim _{n \rightarrow \infty} n p(1-p)=\lim _{n \rightarrow \infty} n(1-\lambda / n) \lambda / n=\lambda$.

Continuous random variable properties derivable from coin toss intuition

- Sum of n independent exponential random variables each with parameter λ is gamma with parameters (n, λ).
- Memoryless properties: given that exponential random variable X is greater than $T>0$, the conditional law of $X-T$ is the same as the original law of X.
- Write $p=\lambda / n$. Poisson random variable expectation is $\lim _{n \rightarrow \infty} n p=\lim _{n \rightarrow \infty} n \frac{\lambda}{n}=\lambda$. Variance is $\lim _{n \rightarrow \infty} n p(1-p)=\lim _{n \rightarrow \infty} n(1-\lambda / n) \lambda / n=\lambda$.
- Sum of λ_{1} Poisson and independent λ_{2} Poisson is a $\lambda_{1}+\lambda_{2}$ Poisson.

Continuous random variable properties derivable from coin toss intuition

- Sum of n independent exponential random variables each with parameter λ is gamma with parameters (n, λ).
- Memoryless properties: given that exponential random variable X is greater than $T>0$, the conditional law of $X-T$ is the same as the original law of X.
- Write $p=\lambda / n$. Poisson random variable expectation is $\lim _{n \rightarrow \infty} n p=\lim _{n \rightarrow \infty} n \frac{\lambda}{n}=\lambda$. Variance is $\lim _{n \rightarrow \infty} n p(1-p)=\lim _{n \rightarrow \infty} n(1-\lambda / n) \lambda / n=\lambda$.
- Sum of λ_{1} Poisson and independent λ_{2} Poisson is a $\lambda_{1}+\lambda_{2}$ Poisson.
- Times between successive events in λ Poisson process are independent exponentials with parameter λ.

Continuous random variable properties derivable from coin toss intuition

- Sum of n independent exponential random variables each with parameter λ is gamma with parameters (n, λ).
- Memoryless properties: given that exponential random variable X is greater than $T>0$, the conditional law of $X-T$ is the same as the original law of X.
- Write $p=\lambda / n$. Poisson random variable expectation is $\lim _{n \rightarrow \infty} n p=\lim _{n \rightarrow \infty} n \frac{\lambda}{n}=\lambda$. Variance is $\lim _{n \rightarrow \infty} n p(1-p)=\lim _{n \rightarrow \infty} n(1-\lambda / n) \lambda / n=\lambda$.
- Sum of λ_{1} Poisson and independent λ_{2} Poisson is a $\lambda_{1}+\lambda_{2}$ Poisson.
- Times between successive events in λ Poisson process are independent exponentials with parameter λ.
- Minimum of independent ${ }^{4}$ exponentials with parameters λ_{1} and λ_{2} is itself exponential with parameter $\lambda_{1}+\lambda_{2}$.

DeMoivre-Laplace Limit Theorem

- DeMoivre-Laplace limit theorem (special case of central limit theorem):

$$
\lim _{n \rightarrow \infty} P\left\{a \leq \frac{S_{n}-n p}{\sqrt{n p q}} \leq b\right\} \rightarrow \Phi(b)-\Phi(a)
$$

DeMoivre-Laplace Limit Theorem

- DeMoivre-Laplace limit theorem (special case of central limit theorem):

$$
\lim _{n \rightarrow \infty} P\left\{a \leq \frac{S_{n}-n p}{\sqrt{n p q}} \leq b\right\} \rightarrow \Phi(b)-\Phi(a)
$$

- This is $\Phi(b)-\Phi(a)=P\{a \leq X \leq b\}$ when X is a standard normal random variable.

Problems

- Toss a million fair coins. Approximate the probability that I get more than 501, 000 heads.

Problems

- Toss a million fair coins. Approximate the probability that I get more than 501, 000 heads.
- Answer: well, $\sqrt{n p q}=\sqrt{10^{6} \times .5 \times .5}=500$. So we're asking for probability to be over two SDs above mean. This is approximately $1-\Phi(2)=\Phi(-2)$.

Problems

- Toss a million fair coins. Approximate the probability that I get more than 501, 000 heads.
- Answer: well, $\sqrt{n p q}=\sqrt{10^{6} \times .5 \times .5}=500$. So we're asking for probability to be over two SDs above mean. This is approximately $1-\Phi(2)=\Phi(-2)$.
- Roll 60000 dice. Expect to see 10000 sixes. What's the probability to see more than 9800 ?

Problems

- Toss a million fair coins. Approximate the probability that I get more than 501, 000 heads.
- Answer: well, $\sqrt{n p q}=\sqrt{10^{6} \times .5 \times .5}=500$. So we're asking for probability to be over two SDs above mean. This is approximately $1-\Phi(2)=\Phi(-2)$.
- Roll 60000 dice. Expect to see 10000 sixes. What's the probability to see more than 9800 ?
- Here $\sqrt{n p q}=\sqrt{60000 \times \frac{1}{6} \times \frac{5}{6}} \approx 91.28$.

Problems

- Toss a million fair coins. Approximate the probability that I get more than 501, 000 heads.
- Answer: well, $\sqrt{n p q}=\sqrt{10^{6} \times .5 \times .5}=500$. So we're asking for probability to be over two SDs above mean. This is approximately $1-\Phi(2)=\Phi(-2)$.
- Roll 60000 dice. Expect to see 10000 sixes. What's the probability to see more than 9800 ?
- Here $\sqrt{n p q}=\sqrt{60000 \times \frac{1}{6} \times \frac{5}{6}} \approx 91.28$.
- And $200 / 91.28 \approx 2.19$. Answer is about $1-\Phi(-2.19)$.

Properties of normal random variables

- Say X is a (standard) normal random variable if $f(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$.

Properties of normal random variables

- Say X is a (standard) normal random variable if $f(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$.
- Mean zero and variance one.

Properties of normal random variables

- Say X is a (standard) normal random variable if $f(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$.
- Mean zero and variance one.
- The random variable $Y=\sigma X+\mu$ has variance σ^{2} and expectation μ.

Properties of normal random variables

- Say X is a (standard) normal random variable if $f(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$.
- Mean zero and variance one.
- The random variable $Y=\sigma X+\mu$ has variance σ^{2} and expectation μ.
- Y is said to be normal with parameters μ and σ^{2}. Its density function is $f_{Y}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$.

Properties of normal random variables

- Say X is a (standard) normal random variable if $f(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$.
- Mean zero and variance one.
- The random variable $Y=\sigma X+\mu$ has variance σ^{2} and expectation μ.
- Y is said to be normal with parameters μ and σ^{2}. Its density function is $f_{Y}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$.
- Function $\Phi(a)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{a} e^{-x^{2} / 2} d x$ can't be computed explicitly.

Properties of normal random variables

- Say X is a (standard) normal random variable if $f(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$.
- Mean zero and variance one.
- The random variable $Y=\sigma X+\mu$ has variance σ^{2} and expectation μ.
- Y is said to be normal with parameters μ and σ^{2}. Its density function is $f_{Y}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$.
- Function $\Phi(a)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{a} e^{-x^{2} / 2} d x$ can't be computed explicitly.
- Values: $\Phi(-3) \approx .0013, \Phi(-2) \approx .023$ and $\Phi(-1) \approx .159$.

Properties of normal random variables

- Say X is a (standard) normal random variable if $f(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$.
- Mean zero and variance one.
- The random variable $Y=\sigma X+\mu$ has variance σ^{2} and expectation μ.
- Y is said to be normal with parameters μ and σ^{2}. Its density function is $f_{Y}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$.
- Function $\Phi(a)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{a} e^{-x^{2} / 2} d x$ can't be computed explicitly.
- Values: $\Phi(-3) \approx .0013, \Phi(-2) \approx .023$ and $\Phi(-1) \approx .159$.
- Rule of thumb: "two thirds of time within one SD of mean, 95 percent of time within $2{ }_{55}{ }_{5}$ Ds of mean."

Properties of exponential random variables

- Say X is an exponential random variable of parameter λ when its probability distribution function is $f(x)=\lambda e^{-\lambda x}$ for $x \geq 0$ (and $f(x)=0$ if $x<0$).

Properties of exponential random variables

- Say X is an exponential random variable of parameter λ when its probability distribution function is $f(x)=\lambda e^{-\lambda x}$ for $x \geq 0$ (and $f(x)=0$ if $x<0$).
- For $a>0$ have

$$
F_{X}(a)=\int_{0}^{a} f(x) d x=\int_{0}^{a} \lambda e^{-\lambda x} d x=-e^{-\lambda x a}{ }_{0}^{a}=1-e^{-\lambda a} .
$$

Properties of exponential random variables

- Say X is an exponential random variable of parameter λ when its probability distribution function is $f(x)=\lambda e^{-\lambda x}$ for $x \geq 0$ (and $f(x)=0$ if $x<0$).
- For $a>0$ have

$$
F_{X}(a)=\int_{0}^{a} f(x) d x=\int_{0}^{a} \lambda e^{-\lambda x} d x=-e^{-\lambda x a}=1-e^{-\lambda a}
$$

- Thus $P\{X<a\}=1-e^{-\lambda a}$ and $P\{X>a\}=e^{-\lambda a}$.

Properties of exponential random variables

- Say X is an exponential random variable of parameter λ when its probability distribution function is $f(x)=\lambda e^{-\lambda x}$ for $x \geq 0$ (and $f(x)=0$ if $x<0$).
- For $a>0$ have

$$
F_{X}(a)=\int_{0}^{a} f(x) d x=\int_{0}^{a} \lambda e^{-\lambda x} d x=-e^{-\lambda x a}=1-e^{-\lambda a}
$$

- Thus $P\{X<a\}=1-e^{-\lambda a}$ and $P\{X>a\}=e^{-\lambda a}$.
- Formula $P\{X>a\}=e^{-\lambda a}$ is very important in practice.

Properties of exponential random variables

- Say X is an exponential random variable of parameter λ when its probability distribution function is $f(x)=\lambda e^{-\lambda x}$ for $x \geq 0$ (and $f(x)=0$ if $x<0$).
- For $a>0$ have

$$
F_{X}(a)=\int_{0}^{a} f(x) d x=\int_{0}^{a} \lambda e^{-\lambda x} d x=-e^{-\lambda x a}=1-e^{-\lambda a}
$$

- Thus $P\{X<a\}=1-e^{-\lambda a}$ and $P\{X>a\}=e^{-\lambda a}$.
- Formula $P\{X>a\}=e^{-\lambda a}$ is very important in practice.
- Repeated integration by parts gives $E\left[X^{n}\right]=n!/ \lambda^{n}$.

Properties of exponential random variables

- Say X is an exponential random variable of parameter λ when its probability distribution function is $f(x)=\lambda e^{-\lambda x}$ for $x \geq 0($ and $f(x)=0$ if $x<0)$.
- For $a>0$ have

$$
F_{X}(a)=\int_{0}^{a} f(x) d x=\int_{0}^{a} \lambda e^{-\lambda x} d x=-e^{-\lambda x a}{ }_{0}^{a}=1-e^{-\lambda a} .
$$

- Thus $P\{X<a\}=1-e^{-\lambda a}$ and $P\{X>a\}=e^{-\lambda a}$.
- Formula $P\{X>a\}=e^{-\lambda a}$ is very important in practice.
- Repeated integration by parts gives $E\left[X^{n}\right]=n!/ \lambda^{n}$.
- If $\lambda=1$, then $E\left[X^{n}\right]=n!$. Value $\Gamma(n):=E\left[X^{n-1}\right]$ defined for real $n>0$ and $\Gamma(n)=(n-1)$!.

Defining Γ distribution

- Say that random variable X has gamma distribution with parameters (α, λ) if $f_{X}(x)=\left\{\begin{array}{ll}\frac{(\lambda x)^{\alpha-1} e^{-\lambda x} \lambda}{\Gamma(\alpha)} & x \geq 0 \\ 0 & x<0\end{array}\right.$.

Defining Γ distribution

- Say that random variable X has gamma distribution with parameters (α, λ) if $f_{X}(x)=\left\{\begin{array}{ll}\frac{(\lambda x)^{\alpha-1} e^{-\lambda x} \lambda}{\Gamma(\alpha)} & x \geq 0 \\ 0 & x<0\end{array}\right.$.
- Same as exponential distribution when $\alpha=1$. Otherwise, multiply by $x^{\alpha-1}$ and divide by $\Gamma(\alpha)$. The fact that $\Gamma(\alpha)$ is what you need to divide by to make the total integral one just follows from the definition of Γ.

Defining Γ distribution

- Say that random variable X has gamma distribution with parameters (α, λ) if $f_{X}(x)=\left\{\begin{array}{ll}\frac{(\lambda x)^{\alpha-1} e^{-\lambda x} \lambda}{\Gamma(\alpha)} & x \geq 0 \\ 0 & x<0\end{array}\right.$.
- Same as exponential distribution when $\alpha=1$. Otherwise, multiply by $x^{\alpha-1}$ and divide by $\Gamma(\alpha)$. The fact that $\Gamma(\alpha)$ is what you need to divide by to make the total integral one just follows from the definition of Γ.
- Waiting time interpretation makes sense only for integer α, but distribution is defined for general positive α.

Outline

Continuous random variables

Problems motivated by coin tossing

Random variable properties

Outline

Continuous random variables

 Problems motivated by coin tossing

 Problems motivated by coin tossing}

Random variable properties

Properties of uniform random variables

- Suppose X is a random variable with probability density
function $f(x)= \begin{cases}\frac{1}{\beta-\alpha} & x \in[\alpha, \beta] \\ 0 & x \notin[\alpha, \beta] .\end{cases}$

Properties of uniform random variables

- Suppose X is a random variable with probability density function $f(x)= \begin{cases}\frac{1}{\beta-\alpha} & x \in[\alpha, \beta] \\ 0 & x \notin[\alpha, \beta] .\end{cases}$
- Then $E[X]=\frac{\alpha+\beta}{2}$.

Properties of uniform random variables

- Suppose X is a random variable with probability density function $f(x)= \begin{cases}\frac{1}{\beta-\alpha} & x \in[\alpha, \beta] \\ 0 & x \notin[\alpha, \beta] .\end{cases}$
- Then $E[X]=\frac{\alpha+\beta}{2}$.
- And $\operatorname{Var}[X]=\operatorname{Var}[(\beta-\alpha) Y+\alpha]=\operatorname{Var}[(\beta-\alpha) Y]=$ $(\beta-\alpha)^{2} \operatorname{Var}[Y]=(\beta-\alpha)^{2} / 12$.

Distribution of function of random variable

- Suppose $P\{X \leq a\}=F_{X}(a)$ is known for all a. Write $Y=X^{3}$. What is $P\{Y \leq 27\}$?

Distribution of function of random variable

- Suppose $P\{X \leq a\}=F_{X}(a)$ is known for all a. Write $Y=X^{3}$. What is $P\{Y \leq 27\}$?
- Answer: note that $Y \leq 27$ if and only if $X \leq 3$. Hence $P\{Y \leq 27\}=P\{X \leq 3\}=F_{X}(3)$.

Distribution of function of random variable

- Suppose $P\{X \leq a\}=F_{X}(a)$ is known for all a. Write $Y=X^{3}$. What is $P\{Y \leq 27\}$?
- Answer: note that $Y \leq 27$ if and only if $X \leq 3$. Hence $P\{Y \leq 27\}=P\{X \leq 3\}=F_{X}(3)$.
- Generally $F_{Y}(a)=P\{Y \leq a\}=P\left\{X \leq a^{1 / 3}\right\}=F_{X}\left(a^{1 / 3}\right)$

Distribution of function of random variable

- Suppose $P\{X \leq a\}=F_{X}(a)$ is known for all a. Write $Y=X^{3}$. What is $P\{Y \leq 27\}$?
- Answer: note that $Y \leq 27$ if and only if $X \leq 3$. Hence $P\{Y \leq 27\}=P\{X \leq 3\}=F_{X}(3)$.
- Generally $F_{Y}(a)=P\{Y \leq a\}=P\left\{X \leq a^{1 / 3}\right\}=F_{X}\left(a^{1 / 3}\right)$
- This is a general principle. If X is a continuous random variable and g is a strictly increasing function of x and $Y=g(X)$, then $F_{Y}(a)=F_{X}\left(g^{-1}(a)\right)$.

Joint probability mass functions: discrete random variables

- If X and Y assume values in $\{1,2, \ldots, n\}$ then we can view $A_{i, j}=P\{X=i, Y=j\}$ as the entries of an $n \times n$ matrix.

Joint probability mass functions: discrete random variables

- If X and Y assume values in $\{1,2, \ldots, n\}$ then we can view $A_{i, j}=P\{X=i, Y=j\}$ as the entries of an $n \times n$ matrix.
- Let's say I don't care about Y. I just want to know $P\{X=i\}$. How do I figure that out from the matrix?

Joint probability mass functions: discrete random variables

- If X and Y assume values in $\{1,2, \ldots, n\}$ then we can view $A_{i, j}=P\{X=i, Y=j\}$ as the entries of an $n \times n$ matrix.
- Let's say I don't care about Y. I just want to know $P\{X=i\}$. How do I figure that out from the matrix?
- Answer: $P\{X=i\}=\sum_{j=1}^{n} A_{i, j}$.

Joint probability mass functions: discrete random variables

- If X and Y assume values in $\{1,2, \ldots, n\}$ then we can view $A_{i, j}=P\{X=i, Y=j\}$ as the entries of an $n \times n$ matrix.
- Let's say I don't care about Y. I just want to know $P\{X=i\}$. How do I figure that out from the matrix?
- Answer: $P\{X=i\}=\sum_{j=1}^{n} A_{i, j}$.
- Similarly, $P\{Y=j\}=\sum_{i=1}^{n} A_{i, j}$.

Joint probability mass functions: discrete random variables

- If X and Y assume values in $\{1,2, \ldots, n\}$ then we can view $A_{i, j}=P\{X=i, Y=j\}$ as the entries of an $n \times n$ matrix.
- Let's say I don't care about Y. I just want to know $P\{X=i\}$. How do I figure that out from the matrix?
- Answer: $P\{X=i\}=\sum_{j=1}^{n} A_{i, j}$.
- Similarly, $P\{Y=j\}=\sum_{i=1}^{n} A_{i, j}$.
- In other words, the probability mass functions for X and Y are the row and columns sums of $A_{i, j}$.

Joint probability mass functions: discrete random variables

- If X and Y assume values in $\{1,2, \ldots, n\}$ then we can view $A_{i, j}=P\{X=i, Y=j\}$ as the entries of an $n \times n$ matrix.
- Let's say I don't care about Y. I just want to know $P\{X=i\}$. How do I figure that out from the matrix?
- Answer: $P\{X=i\}=\sum_{j=1}^{n} A_{i, j}$.
- Similarly, $P\{Y=j\}=\sum_{i=1}^{n} A_{i, j}$.
- In other words, the probability mass functions for X and Y are the row and columns sums of $A_{i, j}$.
- Given the joint distribution of X and Y, we sometimes call distribution of X (ignoring Y) and distribution of Y (ignoring X) the marginal distributions.

Joint probability mass functions: discrete random variables

- If X and Y assume values in $\{1,2, \ldots, n\}$ then we can view $A_{i, j}=P\{X=i, Y=j\}$ as the entries of an $n \times n$ matrix.
- Let's say I don't care about Y. I just want to know $P\{X=i\}$. How do I figure that out from the matrix?
- Answer: $P\{X=i\}=\sum_{j=1}^{n} A_{i, j}$.
- Similarly, $P\{Y=j\}=\sum_{i=1}^{n} A_{i, j}$.
- In other words, the probability mass functions for X and Y are the row and columns sums of $A_{i, j}$.
- Given the joint distribution of X and Y, we sometimes call distribution of X (ignoring Y) and distribution of Y (ignoring X) the marginal distributions.
- In general, when X and Y are jointly defined discrete random variables, we write $p(x, y)=800_{X, Y}(x, y)=P\{X=x, Y=y\}$.

Joint distribution functions: continuous random variables

- Given random variables X and Y, define $F(a, b)=P\{X \leq a, Y \leq b\}$.

Joint distribution functions: continuous random variables

- Given random variables X and Y, define $F(a, b)=P\{X \leq a, Y \leq b\}$.
- The region $\{(x, y): x \leq a, y \leq b\}$ is the lower left "quadrant" centered at (a, b).

Joint distribution functions: continuous random variables

- Given random variables X and Y, define $F(a, b)=P\{X \leq a, Y \leq b\}$.
- The region $\{(x, y): x \leq a, y \leq b\}$ is the lower left "quadrant" centered at (a, b).
- Refer to $F_{X}(a)=P\{X \leq a\}$ and $F_{Y}(b)=P\{Y \leq b\}$ as marginal cumulative distribution functions.

Joint distribution functions: continuous random variables

- Given random variables X and Y, define $F(a, b)=P\{X \leq a, Y \leq b\}$.
- The region $\{(x, y): x \leq a, y \leq b\}$ is the lower left "quadrant" centered at (a, b).
- Refer to $F_{X}(a)=P\{X \leq a\}$ and $F_{Y}(b)=P\{Y \leq b\}$ as marginal cumulative distribution functions.
- Question: if I tell you the two parameter function F, can you use it to determine the marginals F_{X} and F_{Y} ?

Joint distribution functions: continuous random variables

- Given random variables X and Y, define $F(a, b)=P\{X \leq a, Y \leq b\}$.
- The region $\{(x, y): x \leq a, y \leq b\}$ is the lower left "quadrant" centered at (a, b).
- Refer to $F_{X}(a)=P\{X \leq a\}$ and $F_{Y}(b)=P\{Y \leq b\}$ as marginal cumulative distribution functions.
- Question: if I tell you the two parameter function F, can you use it to determine the marginals F_{X} and F_{Y} ?
- Answer: Yes. $F_{X}(a)=\lim _{b \rightarrow \infty} F(a, b)$ and $F_{Y}(b)=\lim _{a \rightarrow \infty} F(a, b)$.

Joint distribution functions: continuous random variables

- Given random variables X and Y, define $F(a, b)=P\{X \leq a, Y \leq b\}$.
- The region $\{(x, y): x \leq a, y \leq b\}$ is the lower left "quadrant" centered at (a, b).
- Refer to $F_{X}(a)=P\{X \leq a\}$ and $F_{Y}(b)=P\{Y \leq b\}$ as marginal cumulative distribution functions.
- Question: if I tell you the two parameter function F, can you use it to determine the marginals F_{X} and F_{Y} ?
- Answer: Yes. $F_{X}(a)=\lim _{b \rightarrow \infty} F(a, b)$ and $F_{Y}(b)=\lim _{a \rightarrow \infty} F(a, b)$.
- Density: $f(x, y)=\frac{\partial}{\partial x} \frac{\partial}{\partial y} F(x, y)$.

Independent random variables

- We say X and Y are independent if for any two (measurable) sets A and B of real numbers we have

$$
P\{X \in A, Y \in B\}=P\{X \in A\} P\{Y \in B\}
$$

Independent random variables

- We say X and Y are independent if for any two (measurable) sets A and B of real numbers we have

$$
P\{X \in A, Y \in B\}=P\{X \in A\} P\{Y \in B\}
$$

- When X and Y are discrete random variables, they are independent if $P\{X=x, Y=y\}=P\{X=x\} P\{Y=y\}$ for all x and y for which $P\{X=x\}$ and $P\{Y=y\}$ are non-zero.

Independent random variables

- We say X and Y are independent if for any two (measurable) sets A and B of real numbers we have

$$
P\{X \in A, Y \in B\}=P\{X \in A\} P\{Y \in B\}
$$

- When X and Y are discrete random variables, they are independent if $P\{X=x, Y=y\}=P\{X=x\} P\{Y=y\}$ for all x and y for which $P\{X=x\}$ and $P\{Y=y\}$ are non-zero.
- When X and Y are continuous, they are independent if $f(x, y)=f_{X}(x) f_{Y}(y)$.

Summing two random variables

- Say we have independent random variables X and Y and we know their density functions f_{X} and f_{Y}.

Summing two random variables

- Say we have independent random variables X and Y and we know their density functions f_{X} and f_{Y}.
- Now let's try to find $F_{X+Y}(a)=P\{X+Y \leq a\}$.

Summing two random variables

- Say we have independent random variables X and Y and we know their density functions f_{X} and f_{Y}.
- Now let's try to find $F_{X+Y}(a)=P\{X+Y \leq a\}$.
- This is the integral over $\{(x, y): x+y \leq a\}$ of $f(x, y)=f_{X}(x) f_{Y}(y)$. Thus,

Summing two random variables

- Say we have independent random variables X and Y and we know their density functions f_{X} and f_{Y}.
- Now let's try to find $F_{X+Y}(a)=P\{X+Y \leq a\}$.
- This is the integral over $\{(x, y): x+y \leq a\}$ of $f(x, y)=f_{X}(x) f_{Y}(y)$. Thus,

$$
\begin{aligned}
P\{X+Y & \leq a\}=\int_{-\infty}^{\infty} \int_{-\infty}^{a-y} f_{X}(x) f_{Y}(y) d x d y \\
& =\int_{-\infty}^{\infty} F_{X}(a-y) f_{Y}(y) d y
\end{aligned}
$$

Summing two random variables

- Say we have independent random variables X and Y and we know their density functions f_{X} and f_{Y}.
- Now let's try to find $F_{X+Y}(a)=P\{X+Y \leq a\}$.
- This is the integral over $\{(x, y): x+y \leq a\}$ of $f(x, y)=f_{X}(x) f_{Y}(y)$. Thus,

$$
\begin{aligned}
P\{X+Y & \leq a\}=\int_{-\infty}^{\infty} \int_{-\infty}^{a-y} f_{X}(x) f_{Y}(y) d x d y \\
& =\int_{-\infty}^{\infty} F_{X}(a-y) f_{Y}(y) d y
\end{aligned}
$$

- Differentiating both sides gives $f_{X+Y}(a)=\frac{d}{d a} \int_{-\infty}^{\infty} F_{X}(a-y) f_{Y}(y) d y=\int_{-\infty}^{\infty} f_{X}(a-y) f_{Y}(y) d y$.

Summing two random variables

- Say we have independent random variables X and Y and we know their density functions f_{X} and f_{Y}.
- Now let's try to find $F_{X+Y}(a)=P\{X+Y \leq a\}$.
- This is the integral over $\{(x, y): x+y \leq a\}$ of $f(x, y)=f_{X}(x) f_{Y}(y)$. Thus,

$$
\begin{aligned}
P\{X+Y & \leq a\}=\int_{-\infty}^{\infty} \int_{-\infty}^{a-y} f_{X}(x) f_{Y}(y) d x d y \\
& =\int_{-\infty}^{\infty} F_{X}(a-y) f_{Y}(y) d y
\end{aligned}
$$

- Differentiating both sides gives $f_{X+Y}(a)=\frac{d}{d a} \int_{-\infty}^{\infty} F_{X}(a-y) f_{Y}(y) d y=\int_{-\infty}^{\infty} f_{X}(a-y) f_{Y}(y) d y$.
- Latter formula makes some intuitive sense. We're integrating over the set of x, y pairs that add up to a.

Conditional distributions

- Let's say X and Y have joint probability density function $f(x, y)$.

Conditional distributions

- Let's say X and Y have joint probability density function $f(x, y)$.
- We can define the conditional probability density of X given that $Y=y$ by $f_{X \mid Y=y}(x)=\frac{f(x, y)}{f_{Y}(y)}$.

Conditional distributions

- Let's say X and Y have joint probability density function $f(x, y)$.
- We can define the conditional probability density of X given that $Y=y$ by $f_{X \mid Y=y}(x)=\frac{f(x, y)}{f_{Y}(y)}$.
- This amounts to restricting $f(x, y)$ to the line corresponding to the given y value (and dividing by the constant that makes the integral along that line equal to 1).

Maxima: pick five job candidates at random, choose best

- Suppose I choose n random variables $X_{1}, X_{2}, \ldots, X_{n}$ uniformly at random on $[0,1]$, independently of each other.

Maxima: pick five job candidates at random, choose best

- Suppose I choose n random variables $X_{1}, X_{2}, \ldots, X_{n}$ uniformly at random on $[0,1]$, independently of each other.
- The n-tuple $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ has a constant density function on the n-dimensional cube $[0,1]^{n}$.

Maxima: pick five job candidates at random, choose best

- Suppose I choose n random variables $X_{1}, X_{2}, \ldots, X_{n}$ uniformly at random on $[0,1]$, independently of each other.
- The n-tuple $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ has a constant density function on the n-dimensional cube $[0,1]^{n}$.
- What is the probability that the largest of the X_{i} is less than a ?

Maxima: pick five job candidates at random, choose best

- Suppose I choose n random variables $X_{1}, X_{2}, \ldots, X_{n}$ uniformly at random on $[0,1]$, independently of each other.
- The n-tuple $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ has a constant density function on the n-dimensional cube $[0,1]^{n}$.
- What is the probability that the largest of the X_{i} is less than a?
- ANSWER: a^{n}.

Maxima: pick five job candidates at random, choose best

- Suppose I choose n random variables $X_{1}, X_{2}, \ldots, X_{n}$ uniformly at random on $[0,1]$, independently of each other.
- The n-tuple $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ has a constant density function on the n-dimensional cube $[0,1]^{n}$.
- What is the probability that the largest of the X_{i} is less than a?
- ANSWER: a^{n}.
- So if $X=\max \left\{X_{1}, \ldots, X_{n}\right\}$, then what is the probability density function of X ?

Maxima: pick five job candidates at random, choose best

- Suppose I choose n random variables $X_{1}, X_{2}, \ldots, X_{n}$ uniformly at random on $[0,1]$, independently of each other.
- The n-tuple $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ has a constant density function on the n-dimensional cube $[0,1]^{n}$.
- What is the probability that the largest of the X_{i} is less than a?
- ANSWER: a^{n}.
- So if $X=\max \left\{X_{1}, \ldots, X_{n}\right\}$, then what is the probability density function of X ?
- Answer: $F_{X}(a)= \begin{cases}0 & a<0 \\ a^{n} & a \in[0,1] . \text { And } \\ 1 & a>1\end{cases}$ $f_{x}(a)=F_{X}^{\prime}(a)=n a^{n-1} . \quad 104$

General order statistics

- Consider i.i.d random variables $X_{1}, X_{2}, \ldots, X_{n}$ with continuous probability density f.

General order statistics

- Consider i.i.d random variables $X_{1}, X_{2}, \ldots, X_{n}$ with continuous probability density f.
- Let $Y_{1}<Y_{2}<Y_{3} \ldots<Y_{n}$ be list obtained by sorting the X_{j}.

General order statistics

- Consider i.i.d random variables $X_{1}, X_{2}, \ldots, X_{n}$ with continuous probability density f.
- Let $Y_{1}<Y_{2}<Y_{3} \ldots<Y_{n}$ be list obtained by sorting the X_{j}.
- In particular, $Y_{1}=\min \left\{X_{1}, \ldots, X_{n}\right\}$ and $Y_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$ is the maximum.

General order statistics

- Consider i.i.d random variables $X_{1}, X_{2}, \ldots, X_{n}$ with continuous probability density f.
- Let $Y_{1}<Y_{2}<Y_{3} \ldots<Y_{n}$ be list obtained by sorting the X_{j}.
- In particular, $Y_{1}=\min \left\{X_{1}, \ldots, X_{n}\right\}$ and $Y_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$ is the maximum.
- What is the joint probability density of the Y_{i} ?

General order statistics

- Consider i.i.d random variables $X_{1}, X_{2}, \ldots, X_{n}$ with continuous probability density f.
- Let $Y_{1}<Y_{2}<Y_{3} \ldots<Y_{n}$ be list obtained by sorting the X_{j}.
- In particular, $Y_{1}=\min \left\{X_{1}, \ldots, X_{n}\right\}$ and $Y_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$ is the maximum.
- What is the joint probability density of the Y_{i} ?
- Answer: $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=n!\prod_{i=1}^{n} f\left(x_{i}\right)$ if $x_{1}<x_{2} \ldots<x_{n}$, zero otherwise.

General order statistics

- Consider i.i.d random variables $X_{1}, X_{2}, \ldots, X_{n}$ with continuous probability density f.
- Let $Y_{1}<Y_{2}<Y_{3} \ldots<Y_{n}$ be list obtained by sorting the X_{j}.
- In particular, $Y_{1}=\min \left\{X_{1}, \ldots, X_{n}\right\}$ and $Y_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$ is the maximum.
- What is the joint probability density of the Y_{i} ?
- Answer: $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=n!\prod_{i=1}^{n} f\left(x_{i}\right)$ if $x_{1}<x_{2} \ldots<x_{n}$, zero otherwise.
- Let $\sigma:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ be the permutation such that $X_{j}=Y_{\sigma(j)}$

General order statistics

- Consider i.i.d random variables $X_{1}, X_{2}, \ldots, X_{n}$ with continuous probability density f.
- Let $Y_{1}<Y_{2}<Y_{3} \ldots<Y_{n}$ be list obtained by sorting the X_{j}.
- In particular, $Y_{1}=\min \left\{X_{1}, \ldots, X_{n}\right\}$ and $Y_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$ is the maximum.
- What is the joint probability density of the Y_{i} ?
- Answer: $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=n!\prod_{i=1}^{n} f\left(x_{i}\right)$ if $x_{1}<x_{2} \ldots<x_{n}$, zero otherwise.
- Let $\sigma:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ be the permutation such that $X_{j}=Y_{\sigma(j)}$
- Are σ and the vector $\left(Y_{1}, \ldots, Y_{n}\right)$ independent of each other?

General order statistics

- Consider i.i.d random variables $X_{1}, X_{2}, \ldots, X_{n}$ with continuous probability density f.
- Let $Y_{1}<Y_{2}<Y_{3} \ldots<Y_{n}$ be list obtained by sorting the X_{j}.
- In particular, $Y_{1}=\min \left\{X_{1}, \ldots, X_{n}\right\}$ and $Y_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$ is the maximum.
- What is the joint probability density of the Y_{i} ?
- Answer: $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=n!\prod_{i=1}^{n} f\left(x_{i}\right)$ if $x_{1}<x_{2} \ldots<x_{n}$, zero otherwise.
- Let $\sigma:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ be the permutation such that $X_{j}=Y_{\sigma(j)}$
- Are σ and the vector $\left(Y_{1}, \ldots, Y_{n}\right)$ independent of each other?
- Yes.

Properties of expectation

- Several properties we derived for discrete expectations continue to hold in the continuum.

Properties of expectation

- Several properties we derived for discrete expectations continue to hold in the continuum.
- If X is discrete with mass function $p(x)$ then $E[X]=\sum_{x} p(x) x$.

Properties of expectation

- Several properties we derived for discrete expectations continue to hold in the continuum.
- If X is discrete with mass function $p(x)$ then $E[X]=\sum_{x} p(x) x$.
- Similarly, if X is continuous with density function $f(x)$ then $E[X]=\int f(x) x d x$.

Properties of expectation

- Several properties we derived for discrete expectations continue to hold in the continuum.
- If X is discrete with mass function $p(x)$ then $E[X]=\sum_{x} p(x) x$.
- Similarly, if X is continuous with density function $f(x)$ then $E[X]=\int f(x) x d x$.
- If X is discrete with mass function $p(x)$ then $E[g(x)]=\sum_{x} p(x) g(x)$.

Properties of expectation

- Several properties we derived for discrete expectations continue to hold in the continuum.
- If X is discrete with mass function $p(x)$ then $E[X]=\sum_{x} p(x) x$.
- Similarly, if X is continuous with density function $f(x)$ then $E[X]=\int f(x) x d x$.
- If X is discrete with mass function $p(x)$ then $E[g(x)]=\sum_{x} p(x) g(x)$.
- Similarly, X if is continuous with density function $f(x)$ then $E[g(X)]=\int f(x) g(x) d x$.

Properties of expectation

- Several properties we derived for discrete expectations continue to hold in the continuum.
- If X is discrete with mass function $p(x)$ then $E[X]=\sum_{x} p(x) x$.
- Similarly, if X is continuous with density function $f(x)$ then $E[X]=\int f(x) x d x$.
- If X is discrete with mass function $p(x)$ then $E[g(x)]=\sum_{x} p(x) g(x)$.
- Similarly, X if is continuous with density function $f(x)$ then $E[g(X)]=\int f(x) g(x) d x$.
- If X and Y have joint mass function $p(x, y)$ then $E[g(X, Y)]=\sum_{y} \sum_{x} g(x, y) p(x, y)$.

Properties of expectation

- Several properties we derived for discrete expectations continue to hold in the continuum.
- If X is discrete with mass function $p(x)$ then $E[X]=\sum_{x} p(x) x$.
- Similarly, if X is continuous with density function $f(x)$ then $E[X]=\int f(x) x d x$.
- If X is discrete with mass function $p(x)$ then $E[g(x)]=\sum_{x} p(x) g(x)$.
- Similarly, X if is continuous with density function $f(x)$ then $E[g(X)]=\int f(x) g(x) d x$.
- If X and Y have joint mass function $p(x, y)$ then $E[g(X, Y)]=\sum_{y} \sum_{x} g(x, y) p(x, y)$.
- If X and Y have joint probability density function $f(x, y)$ then $E[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f(x, y) d x d y$.

Properties of expectation

- For both discrete and continuous random variables X and Y we have $E[X+Y]=E[X]+E[Y]$.

Properties of expectation

- For both discrete and continuous random variables X and Y we have $E[X+Y]=E[X]+E[Y]$.
- In both discrete and continuous settings, $E[a X]=a E[X]$ when a is a constant. And $E\left[\sum a_{i} X_{i}\right]=\sum a_{i} E\left[X_{i}\right]$.

Properties of expectation

- For both discrete and continuous random variables X and Y we have $E[X+Y]=E[X]+E[Y]$.
- In both discrete and continuous settings, $E[a X]=a E[X]$ when a is a constant. And $E\left[\sum a_{i} X_{i}\right]=\sum a_{i} E\left[X_{i}\right]$.
- But what about that delightful "area under $1-F_{X}$ " formula for the expectation?

Properties of expectation

- For both discrete and continuous random variables X and Y we have $E[X+Y]=E[X]+E[Y]$.
- In both discrete and continuous settings, $E[a X]=a E[X]$ when a is a constant. And $E\left[\sum a_{i} X_{i}\right]=\sum a_{i} E\left[X_{i}\right]$.
- But what about that delightful "area under $1-F_{X}$ " formula for the expectation?
- When X is non-negative with probability one, do we always have $E[X]=\int_{0}^{\infty} P\{X>x\}$, in both discrete and continuous settings?

Properties of expectation

- For both discrete and continuous random variables X and Y we have $E[X+Y]=E[X]+E[Y]$.
- In both discrete and continuous settings, $E[a X]=a E[X]$ when a is a constant. And $E\left[\sum a_{i} X_{i}\right]=\sum a_{i} E\left[X_{i}\right]$.
- But what about that delightful "area under $1-F_{X}$ " formula for the expectation?
- When X is non-negative with probability one, do we always have $E[X]=\int_{0}^{\infty} P\{X>x\}$, in both discrete and continuous settings?
- Define $g(y)$ so that $1-F_{X}(g(y))=y$. (Draw horizontal line at height y and look where it hits graph of $1-F_{X}$.)

Properties of expectation

- For both discrete and continuous random variables X and Y we have $E[X+Y]=E[X]+E[Y]$.
- In both discrete and continuous settings, $E[a X]=a E[X]$ when a is a constant. And $E\left[\sum a_{i} X_{i}\right]=\sum a_{i} E\left[X_{i}\right]$.
- But what about that delightful "area under $1-F_{X}$ " formula for the expectation?
- When X is non-negative with probability one, do we always have $E[X]=\int_{0}^{\infty} P\{X>x\}$, in both discrete and continuous settings?
- Define $g(y)$ so that $1-F_{X}(g(y))=y$. (Draw horizontal line at height y and look where it hits graph of $1-F_{X}$.)
- Choose Y uniformly on $[0,1]$ and note that $g(Y)$ has the same probability distribution as X.

Properties of expectation

- For both discrete and continuous random variables X and Y we have $E[X+Y]=E[X]+E[Y]$.
- In both discrete and continuous settings, $E[a X]=a E[X]$ when a is a constant. And $E\left[\sum a_{i} X_{i}\right]=\sum a_{i} E\left[X_{i}\right]$.
- But what about that delightful "area under $1-F_{X}$ " formula for the expectation?
- When X is non-negative with probability one, do we always have $E[X]=\int_{0}^{\infty} P\{X>x\}$, in both discrete and continuous settings?
- Define $g(y)$ so that $1-F_{X}(g(y))=y$. (Draw horizontal line at height y and look where it hits graph of $1-F_{X}$.)
- Choose Y uniformly on $[0,1]$ and note that $g(Y)$ has the same probability distribution as X.
- So $E[X]=E[g(Y)]=\int_{0}^{1} g(26) d y$, which is indeed the area under the graph of $1-F_{X}$.

A property of independence

- If X and Y are independent then $E[g(X) h(Y)]=E[g(X)] E[h(Y)]$.

A property of independence

- If X and Y are independent then $E[g(X) h(Y)]=E[g(X)] E[h(Y)]$.
- Just write $E[g(X) h(Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x) h(y) f(x, y) d x d y$.

A property of independence

- If X and Y are independent then $E[g(X) h(Y)]=E[g(X)] E[h(Y)]$.
- Just write $E[g(X) h(Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x) h(y) f(x, y) d x d y$.
- Since $f(x, y)=f_{X}(x) f_{Y}(y)$ this factors as $\int_{-\infty}^{\infty} h(y) f_{Y}(y) d y \int_{-\infty}^{\infty} g(x) f_{X}(x) d x=E[h(Y)] E[g(X)]$.

Defining covariance and correlation

- Now define covariance of X and Y by $\operatorname{Cov}(X, Y)=E[(X-E[X])(Y-E[Y])$.

Defining covariance and correlation

- Now define covariance of X and Y by $\operatorname{Cov}(X, Y)=E[(X-E[X])(Y-E[Y])$.
- Note: by definition $\operatorname{Var}(X)=\operatorname{Cov}(X, X)$.

Defining covariance and correlation

- Now define covariance of X and Y by $\operatorname{Cov}(X, Y)=E[(X-E[X])(Y-E[Y])$.
- Note: by definition $\operatorname{Var}(X)=\operatorname{Cov}(X, X)$.
- Covariance formula $E[X Y]-E[X] E[Y]$, or "expectation of product minus product of expectations" is frequently useful.

Defining covariance and correlation

- Now define covariance of X and Y by $\operatorname{Cov}(X, Y)=E[(X-E[X])(Y-E[Y])$.
- Note: by definition $\operatorname{Var}(X)=\operatorname{Cov}(X, X)$.
- Covariance formula $E[X Y]-E[X] E[Y]$, or "expectation of product minus product of expectations" is frequently useful.
- If X and Y are independent then $\operatorname{Cov}(X, Y)=0$.

Defining covariance and correlation

- Now define covariance of X and Y by $\operatorname{Cov}(X, Y)=E[(X-E[X])(Y-E[Y])$.
- Note: by definition $\operatorname{Var}(X)=\operatorname{Cov}(X, X)$.
- Covariance formula $E[X Y]-E[X] E[Y]$, or "expectation of product minus product of expectations" is frequently useful.
- If X and Y are independent then $\operatorname{Cov}(X, Y)=0$.
- Converse is not true.

Basic covariance facts

- $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$

Basic covariance facts

- $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$
- $\operatorname{Cov}(X, X)=\operatorname{Var}(X)$

Basic covariance facts

- $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$
- $\operatorname{Cov}(X, X)=\operatorname{Var}(X)$
- $\operatorname{Cov}(a X, Y)=a \operatorname{Cov}(X, Y)$.

Basic covariance facts

- $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$
- $\operatorname{Cov}(X, X)=\operatorname{Var}(X)$
- $\operatorname{Cov}(a X, Y)=a \operatorname{Cov}(X, Y)$.
- $\operatorname{Cov}\left(X_{1}+X_{2}, Y\right)=\operatorname{Cov}\left(X_{1}, Y\right)+\operatorname{Cov}\left(X_{2}, Y\right)$.

Basic covariance facts

- $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$
- $\operatorname{Cov}(X, X)=\operatorname{Var}(X)$
- $\operatorname{Cov}(a X, Y)=a \operatorname{Cov}(X, Y)$.
- $\operatorname{Cov}\left(X_{1}+X_{2}, Y\right)=\operatorname{Cov}\left(X_{1}, Y\right)+\operatorname{Cov}\left(X_{2}, Y\right)$.
- General statement of bilinearity of covariance:

$$
\operatorname{Cov}\left(\sum_{i=1}^{m} a_{i} X_{i}, \sum_{j=1}^{n} b_{j} Y_{j}\right)=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i} b_{j} \operatorname{Cov}\left(X_{i}, Y_{j}\right)
$$

Basic covariance facts

- $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$
- $\operatorname{Cov}(X, X)=\operatorname{Var}(X)$
- $\operatorname{Cov}(a X, Y)=a \operatorname{Cov}(X, Y)$.
- $\operatorname{Cov}\left(X_{1}+X_{2}, Y\right)=\operatorname{Cov}\left(X_{1}, Y\right)+\operatorname{Cov}\left(X_{2}, Y\right)$.
- General statement of bilinearity of covariance:

$$
\operatorname{Cov}\left(\sum_{i=1}^{m} a_{i} X_{i}, \sum_{j=1}^{n} b_{j} Y_{j}\right)=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i} b_{j} \operatorname{Cov}\left(X_{i}, Y_{j}\right)
$$

- Special case:

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+2 \sum_{(i, j): i<j} \operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

Defining correlation

- Again, by definition $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]$.

Defining correlation

- Again, by definition $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]$.
- Correlation of X and Y defined by

$$
\rho(X, Y):=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
$$

Defining correlation

- Again, by definition $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]$.
- Correlation of X and Y defined by

$$
\rho(X, Y):=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}} .
$$

- Correlation doesn't care what units you use for X and Y. If $a>0$ and $c>0$ then $\rho(a X+b, c Y+d)=\rho(X, Y)$.

Defining correlation

- Again, by definition $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]$.
- Correlation of X and Y defined by

$$
\rho(X, Y):=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}} .
$$

- Correlation doesn't care what units you use for X and Y. If $a>0$ and $c>0$ then $\rho(a X+b, c Y+d)=\rho(X, Y)$.
- Satisfies $-1 \leq \rho(X, Y) \leq 1$.

Defining correlation

- Again, by definition $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]$.
- Correlation of X and Y defined by

$$
\rho(X, Y):=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}} .
$$

- Correlation doesn't care what units you use for X and Y. If $a>0$ and $c>0$ then $\rho(a X+b, c Y+d)=\rho(X, Y)$.
- Satisfies $-1 \leq \rho(X, Y) \leq 1$.
- If a and b are positive constants and $a>0$ then $\rho(a X+b, X)=1$.

Defining correlation

- Again, by definition $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]$.
- Correlation of X and Y defined by

$$
\rho(X, Y):=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}} .
$$

- Correlation doesn't care what units you use for X and Y. If $a>0$ and $c>0$ then $\rho(a X+b, c Y+d)=\rho(X, Y)$.
- Satisfies $-1 \leq \rho(X, Y) \leq 1$.
- If a and b are positive constants and $a>0$ then $\rho(a X+b, X)=1$.
- If a and b are positive constants and $a<0$ then $\rho(a X+b, X)=-1$.

Conditional probability distributions

- It all starts with the definition of conditional probability: $P(A \mid B)=P(A B) / P(B)$.

Conditional probability distributions

- It all starts with the definition of conditional probability: $P(A \mid B)=P(A B) / P(B)$.
- If X and Y are jointly discrete random variables, we can use this to define a probability mass function for X given $Y=y$.

Conditional probability distributions

- It all starts with the definition of conditional probability: $P(A \mid B)=P(A B) / P(B)$.
- If X and Y are jointly discrete random variables, we can use this to define a probability mass function for X given $Y=y$.
- That is, we write $p_{X \mid Y}(x \mid y)=P\{X=x \mid Y=y\}=\frac{p(x, y)}{p_{Y}(y)}$.

Conditional probability distributions

- It all starts with the definition of conditional probability: $P(A \mid B)=P(A B) / P(B)$.
- If X and Y are jointly discrete random variables, we can use this to define a probability mass function for X given $Y=y$.
- That is, we write $p_{X \mid Y}(x \mid y)=P\{X=x \mid Y=y\}=\frac{p(x, y)}{p_{Y}(y)}$.
- In words: first restrict sample space to pairs (x, y) with given y value. Then divide the original mass function by $p_{Y}(y)$ to obtain a probability mass function on the restricted space.

Conditional probability distributions

- It all starts with the definition of conditional probability: $P(A \mid B)=P(A B) / P(B)$.
- If X and Y are jointly discrete random variables, we can use this to define a probability mass function for X given $Y=y$.
- That is, we write $p_{X \mid Y}(x \mid y)=P\{X=x \mid Y=y\}=\frac{p(x, y)}{p_{Y}(y)}$.
- In words: first restrict sample space to pairs (x, y) with given y value. Then divide the original mass function by $p_{Y}(y)$ to obtain a probability mass function on the restricted space.
- We do something similar when X and Y are continuous random variables. In that case we write $f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}$.

Conditional probability distributions

- It all starts with the definition of conditional probability: $P(A \mid B)=P(A B) / P(B)$.
- If X and Y are jointly discrete random variables, we can use this to define a probability mass function for X given $Y=y$.
- That is, we write $p_{X \mid Y}(x \mid y)=P\{X=x \mid Y=y\}=\frac{p(x, y)}{p_{Y}(y)}$.
- In words: first restrict sample space to pairs (x, y) with given y value. Then divide the original mass function by $p_{Y}(y)$ to obtain a probability mass function on the restricted space.
- We do something similar when X and Y are continuous random variables. In that case we write $f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}$.
- Often useful to think of sampling (X, Y) as a two-stage process. First sample Y from its marginal distribution, obtain $Y=y$ for some particular y_{152} Then sample X from its probability distribution given $Y=y$.

Example

- Let X be a random variable of variance σ_{X}^{2} and Y an independent random variable of variance σ_{Y}^{2} and write $Z=X+Y$. Assume $E[X]=E[Y]=0$.

Example

- Let X be a random variable of variance σ_{X}^{2} and Y an independent random variable of variance σ_{Y}^{2} and write $Z=X+Y$. Assume $E[X]=E[Y]=0$.
- What are the covariances $\operatorname{Cov}(X, Y)$ and $\operatorname{Cov}(X, Z)$?

Example

- Let X be a random variable of variance σ_{X}^{2} and Y an independent random variable of variance σ_{Y}^{2} and write $Z=X+Y$. Assume $E[X]=E[Y]=0$.
- What are the covariances $\operatorname{Cov}(X, Y)$ and $\operatorname{Cov}(X, Z)$?
- How about the correlation coefficients $\rho(X, Y)$ and $\rho(X, Z)$?

Examples

- If X is binomial with parameters (p, n) then $M_{X}(t)=\left(p e^{t}+1-p\right)^{n}$.

Examples

- If X is binomial with parameters (p, n) then $M_{X}(t)=\left(p e^{t}+1-p\right)^{n}$.
- If X is Poisson with parameter $\lambda>0$ then $M_{X}(t)=\exp \left[\lambda\left(e^{t}-1\right)\right]$.

Examples

- If X is binomial with parameters (p, n) then $M_{X}(t)=\left(p e^{t}+1-p\right)^{n}$.
- If X is Poisson with parameter $\lambda>0$ then $M_{X}(t)=\exp \left[\lambda\left(e^{t}-1\right)\right]$.
- If X is normal with mean 0 , variance 1 , then $M_{X}(t)=e^{t^{2} / 2}$.

Examples

- If X is binomial with parameters (p, n) then $M_{X}(t)=\left(p e^{t}+1-p\right)^{n}$.
- If X is Poisson with parameter $\lambda>0$ then $M_{X}(t)=\exp \left[\lambda\left(e^{t}-1\right)\right]$.
- If X is normal with mean 0 , variance 1 , then $M_{X}(t)=e^{t^{2} / 2}$.
- If X is normal with mean μ, variance σ^{2}, then $M_{X}(t)=e^{\sigma^{2} t^{2} / 2+\mu t}$.

Examples

- If X is binomial with parameters (p, n) then $M_{X}(t)=\left(p e^{t}+1-p\right)^{n}$.
- If X is Poisson with parameter $\lambda>0$ then $M_{X}(t)=\exp \left[\lambda\left(e^{t}-1\right)\right]$.
- If X is normal with mean 0 , variance 1 , then $M_{X}(t)=e^{t^{2} / 2}$.
- If X is normal with mean μ, variance σ^{2}, then $M_{X}(t)=e^{\sigma^{2} t^{2} / 2+\mu t}$.
- If X is exponential with parameter $\lambda>0$ then $M_{X}(t)=\frac{\lambda}{\lambda-t}$.

Cauchy distribution

- A standard Cauchy random variable is a random real number with probability density $f(x)=\frac{1}{\pi} \frac{1}{1+x^{2}}$.

Cauchy distribution

- A standard Cauchy random variable is a random real number with probability density $f(x)=\frac{1}{\pi} \frac{1}{1+x^{2}}$.
- There is a "spinning flashlight" interpretation. Put a flashlight at $(0,1)$, spin it to a uniformly random angle in $[-\pi / 2, \pi / 2]$, and consider point X where light beam hits the x-axis.

Cauchy distribution

- A standard Cauchy random variable is a random real number with probability density $f(x)=\frac{1}{\pi} \frac{1}{1+x^{2}}$.
- There is a "spinning flashlight" interpretation. Put a flashlight at $(0,1)$, spin it to a uniformly random angle in $[-\pi / 2, \pi / 2]$, and consider point X where light beam hits the x-axis.
- $F_{X}(x)=P\{X \leq x\}=P\{\tan \theta \leq x\}=P\left\{\theta \leq \tan ^{-1} x\right\}=$ $\frac{1}{2}+\frac{1}{\pi} \tan ^{-1} x$.

Cauchy distribution

- A standard Cauchy random variable is a random real number with probability density $f(x)=\frac{1}{\pi} \frac{1}{1+x^{2}}$.
- There is a "spinning flashlight" interpretation. Put a flashlight at $(0,1)$, spin it to a uniformly random angle in $[-\pi / 2, \pi / 2]$, and consider point X where light beam hits the x-axis.
- $F_{X}(x)=P\{X \leq x\}=P\{\tan \theta \leq x\}=P\left\{\theta \leq \tan ^{-1} x\right\}=$ $\frac{1}{2}+\frac{1}{\pi} \tan ^{-1} x$.
- Find $f_{X}(x)=\frac{d}{d x} F(x)=\frac{1}{\pi} \frac{1}{1+x^{2}}$.

Cauchy distribution

- A standard Cauchy random variable is a random real number with probability density $f(x)=\frac{1}{\pi} \frac{1}{1+x^{2}}$.
- There is a "spinning flashlight" interpretation. Put a flashlight at $(0,1)$, spin it to a uniformly random angle in $[-\pi / 2, \pi / 2]$, and consider point X where light beam hits the x-axis.
- $F_{X}(x)=P\{X \leq x\}=P\{\tan \theta \leq x\}=P\left\{\theta \leq \tan ^{-1} x\right\}=$ $\frac{1}{2}+\frac{1}{\pi} \tan ^{-1} x$.
- Find $f_{X}(x)=\frac{d}{d x} F(x)=\frac{1}{\pi} \frac{1}{1+x^{2}}$.
- Cool fact: if $X_{1}, X_{2}, \ldots, X_{n}$ are i.i.d. Cauchy then their average $A=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}$ is also Cauchy.

Beta distribution

- Two part experiment: first let p be uniform random variable $[0,1]$, then let X be binomial (n, p) (number of heads when we toss n p-coins).

Beta distribution

- Two part experiment: first let p be uniform random variable $[0,1]$, then let X be binomial (n, p) (number of heads when we toss $n p$-coins).
- Given that $X=a-1$ and $n-X=b-1$ the conditional law of p is called the β distribution.

Beta distribution

- Two part experiment: first let p be uniform random variable $[0,1]$, then let X be binomial (n, p) (number of heads when we toss $n p$-coins).
- Given that $X=a-1$ and $n-X=b-1$ the conditional law of p is called the β distribution.
- The density function is a constant (that doesn't depend on x) times $x^{a-1}(1-x)^{b-1}$.

Beta distribution

- Two part experiment: first let p be uniform random variable $[0,1]$, then let X be binomial (n, p) (number of heads when we toss n p-coins).
- Given that $X=a-1$ and $n-X=b-1$ the conditional law of p is called the β distribution.
- The density function is a constant (that doesn't depend on x) times $x^{a-1}(1-x)^{b-1}$.
- That is $f(x)=\frac{1}{B(a, b)} x^{a-1}(1-x)^{b-1}$ on $[0,1]$, where $B(a, b)$ is constant chosen to make integral one. Can show $B(a, b)=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}$.

Beta distribution

- Two part experiment: first let p be uniform random variable $[0,1]$, then let X be binomial (n, p) (number of heads when we toss n p-coins).
- Given that $X=a-1$ and $n-X=b-1$ the conditional law of p is called the β distribution.
- The density function is a constant (that doesn't depend on x) times $x^{a-1}(1-x)^{b-1}$.
- That is $f(x)=\frac{1}{B(a, b)} x^{a-1}(1-x)^{b-1}$ on $[0,1]$, where $B(a, b)$ is constant chosen to make integral one. Can show $B(a, b)=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}$.
- Turns out that $E[X]=\frac{a}{a+b}$ and the mode of X is $\frac{(a-1)}{(a-1)+(b-1)}$.

Moment generating functions

- Let X be a random variable and $M(t)=E\left[e^{t X}\right]$.

Moment generating functions

- Let X be a random variable and $M(t)=E\left[e^{t X}\right]$.
- Then $M^{\prime}(0)=E[X]$ and $M^{\prime \prime}(0)=E\left[X^{2}\right]$. Generally, nth derivative of M at zero is $E\left[X^{n}\right]$.

Moment generating functions

- Let X be a random variable and $M(t)=E\left[e^{t X}\right]$.
- Then $M^{\prime}(0)=E[X]$ and $M^{\prime \prime}(0)=E\left[X^{2}\right]$. Generally, nth derivative of M at zero is $E\left[X^{n}\right]$.
- Let X and Y be independent random variables and $Z=X+Y$.

Moment generating functions

- Let X be a random variable and $M(t)=E\left[e^{t X}\right]$.
- Then $M^{\prime}(0)=E[X]$ and $M^{\prime \prime}(0)=E\left[X^{2}\right]$. Generally, nth derivative of M at zero is $E\left[X^{n}\right]$.
- Let X and Y be independent random variables and $Z=X+Y$.
- Write the moment generating functions as $M_{X}(t)=E\left[e^{t X}\right]$ and $M_{Y}(t)=E\left[e^{t Y}\right]$ and $M_{Z}(t)=E\left[e^{t Z}\right]$.

Moment generating functions

- Let X be a random variable and $M(t)=E\left[e^{t X}\right]$.
- Then $M^{\prime}(0)=E[X]$ and $M^{\prime \prime}(0)=E\left[X^{2}\right]$. Generally, nth derivative of M at zero is $E\left[X^{n}\right]$.
- Let X and Y be independent random variables and $Z=X+Y$.
- Write the moment generating functions as $M_{X}(t)=E\left[e^{t X}\right]$ and $M_{Y}(t)=E\left[e^{t Y}\right]$ and $M_{Z}(t)=E\left[e^{t Z}\right]$.
- If you knew M_{X} and M_{Y}, could you compute M_{Z} ?

Moment generating functions

- Let X be a random variable and $M(t)=E\left[e^{t X}\right]$.
- Then $M^{\prime}(0)=E[X]$ and $M^{\prime \prime}(0)=E\left[X^{2}\right]$. Generally, nth derivative of M at zero is $E\left[X^{n}\right]$.
- Let X and Y be independent random variables and $Z=X+Y$.
- Write the moment generating functions as $M_{X}(t)=E\left[e^{t X}\right]$ and $M_{Y}(t)=E\left[e^{t Y}\right]$ and $M_{Z}(t)=E\left[e^{t Z}\right]$.
- If you knew M_{X} and M_{Y}, could you compute M_{Z} ?
- By independence, $M_{Z}(t)=E\left[e^{t(X+Y)}\right]=E\left[e^{t X} e^{t Y}\right]=$ $E\left[e^{t X}\right] E\left[e^{t Y}\right]=M_{X}(t) M_{Y}(t)$ for all t.

Moment generating functions

- Let X be a random variable and $M(t)=E\left[e^{t X}\right]$.
- Then $M^{\prime}(0)=E[X]$ and $M^{\prime \prime}(0)=E\left[X^{2}\right]$. Generally, nth derivative of M at zero is $E\left[X^{n}\right]$.
- Let X and Y be independent random variables and $Z=X+Y$.
- Write the moment generating functions as $M_{X}(t)=E\left[e^{t X}\right]$ and $M_{Y}(t)=E\left[e^{t Y}\right]$ and $M_{Z}(t)=E\left[e^{t Z}\right]$.
- If you knew M_{X} and M_{Y}, could you compute M_{Z} ?
- By independence, $M_{Z}(t)=E\left[e^{t(X+Y)}\right]=E\left[e^{t X} e^{t Y}\right]=$ $E\left[e^{t X}\right] E\left[e^{t Y}\right]=M_{X}(t) M_{Y}(t)$ for all t.
- In other words, adding independent random variables corresponds to multiplying moment generating functions.

Moment generating functions for sums of i.i.d. random variables

- We showed that if $Z=X+Y$ and X and Y are independent, then $M_{Z}(t)=M_{X}(t) M_{Y}(t)$

Moment generating functions for sums of i.i.d. random variables

- We showed that if $Z=X+Y$ and X and Y are independent, then $M_{Z}(t)=M_{X}(t) M_{Y}(t)$
- If $X_{1} \ldots X_{n}$ are i.i.d. copies of X and $Z=X_{1}+\ldots+X_{n}$ then what is M_{Z} ?

Moment generating functions for sums of i.i.d. random

 variables- We showed that if $Z=X+Y$ and X and Y are independent, then $M_{Z}(t)=M_{X}(t) M_{Y}(t)$
- If $X_{1} \ldots X_{n}$ are i.i.d. copies of X and $Z=X_{1}+\ldots+X_{n}$ then what is M_{Z} ?
- Answer: M_{X}^{n}. Follows by repeatedly applying formula above.

Moment generating functions for sums of i.i.d. random

 variables- We showed that if $Z=X+Y$ and X and Y are independent, then $M_{Z}(t)=M_{X}(t) M_{Y}(t)$
- If $X_{1} \ldots X_{n}$ are i.i.d. copies of X and $Z=X_{1}+\ldots+X_{n}$ then what is M_{Z} ?
- Answer: M_{X}^{n}. Follows by repeatedly applying formula above.
- This a big reason for studying moment generating functions. It helps us understand what happens when we sum up a lot of independent copies of the same random variable.

Moment generating functions for sums of i.i.d. random

 variables- We showed that if $Z=X+Y$ and X and Y are independent, then $M_{Z}(t)=M_{X}(t) M_{Y}(t)$
- If $X_{1} \ldots X_{n}$ are i.i.d. copies of X and $Z=X_{1}+\ldots+X_{n}$ then what is M_{Z} ?
- Answer: M_{X}^{n}. Follows by repeatedly applying formula above.
- This a big reason for studying moment generating functions. It helps us understand what happens when we sum up a lot of independent copies of the same random variable.
- If $Z=a X$ then $M_{Z}(t)=E\left[e^{t Z}\right]=E\left[e^{t a X}\right]=M_{X}(a t)$.

Moment generating functions for sums of i.i.d. random

 variables- We showed that if $Z=X+Y$ and X and Y are independent, then $M_{Z}(t)=M_{X}(t) M_{Y}(t)$
- If $X_{1} \ldots X_{n}$ are i.i.d. copies of X and $Z=X_{1}+\ldots+X_{n}$ then what is M_{Z} ?
- Answer: M_{X}^{n}. Follows by repeatedly applying formula above.
- This a big reason for studying moment generating functions. It helps us understand what happens when we sum up a lot of independent copies of the same random variable.
- If $Z=a X$ then $M_{Z}(t)=E\left[e^{t Z}\right]=E\left[e^{t a X}\right]=M_{X}(a t)$.
- If $Z=X+b$ then $M_{Z}(t)=E\left[e^{t Z}\right]=E\left[e^{t X+b t}\right]=e^{b t} M_{X}(t)$.

MIT OpenCourseWare https://ocw.mit.edu

18.600 Probability and Random Variables

Fall 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

