18.600: Lecture 24

Covariance and some conditional expectation exercises

Scott Sheffield

MIT

Outline

Covariance and correlation

Paradoxes: getting ready to think about conditional expectation

Outline

Covariance and correlation

Paradoxes: getting ready to think about conditional expectation

A property of independence

- If X and Y are independent then $E[g(X) h(Y)]=E[g(X)] E[h(Y)]$.

A property of independence

- If X and Y are independent then $E[g(X) h(Y)]=E[g(X)] E[h(Y)]$.
- Just write $E[g(X) h(Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x) h(y) f(x, y) d x d y$.

A property of independence

- If X and Y are independent then $E[g(X) h(Y)]=E[g(X)] E[h(Y)]$.
- Just write $E[g(X) h(Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x) h(y) f(x, y) d x d y$.
- Since $f(x, y)=f_{X}(x) f_{Y}(y)$ this factors as $\int_{-\infty}^{\infty} h(y) f_{Y}(y) d y \int_{-\infty}^{\infty} g(x) f_{X}(x) d x=E[h(Y)] E[g(X)]$.

Defining covariance and correlation

- Now define covariance of X and Y by $\operatorname{Cov}(X, Y)=E[(X-E[X])(Y-E[Y])$.

Defining covariance and correlation

- Now define covariance of X and Y by $\operatorname{Cov}(X, Y)=E[(X-E[X])(Y-E[Y])$.
- Note: by definition $\operatorname{Var}(X)=\operatorname{Cov}(X, X)$.

Defining covariance and correlation

- Now define covariance of X and Y by $\operatorname{Cov}(X, Y)=E[(X-E[X])(Y-E[Y])$.
- Note: by definition $\operatorname{Var}(X)=\operatorname{Cov}(X, X)$.
- Covariance (like variance) can also written a different way. Write $\mu_{X}=E[X]$ and $\mu_{Y}=E[Y]$. If laws of X and Y are known, then μ_{X} and μ_{Y} are just constants.

Defining covariance and correlation

- Now define covariance of X and Y by $\operatorname{Cov}(X, Y)=E[(X-E[X])(Y-E[Y])$.
- Note: by definition $\operatorname{Var}(X)=\operatorname{Cov}(X, X)$.
- Covariance (like variance) can also written a different way. Write $\mu_{X}=E[X]$ and $\mu_{Y}=E[Y]$. If laws of X and Y are known, then μ_{X} and μ_{Y} are just constants.
- Then

$$
\begin{aligned}
& \operatorname{Cov}(X, Y)=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=E\left[X Y-\mu_{X} Y-\mu_{Y} X+\mu_{X} \mu_{Y}\right]= \\
& E[X Y]-\mu_{X} E[Y]-\mu_{Y} E[X]+\mu_{X} \mu_{Y}=E[X Y]-E[X] E[Y] .
\end{aligned}
$$

Defining covariance and correlation

- Now define covariance of X and Y by $\operatorname{Cov}(X, Y)=E[(X-E[X])(Y-E[Y])$.
- Note: by definition $\operatorname{Var}(X)=\operatorname{Cov}(X, X)$.
- Covariance (like variance) can also written a different way. Write $\mu_{X}=E[X]$ and $\mu_{Y}=E[Y]$. If laws of X and Y are known, then μ_{X} and μ_{Y} are just constants.
- Then

$$
\begin{aligned}
& \operatorname{Cov}(X, Y)=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=E\left[X Y-\mu_{X} Y-\mu_{Y} X+\mu_{X} \mu_{Y}\right]= \\
& E[X Y]-\mu_{X} E[Y]-\mu_{Y} E[X]+\mu_{X} \mu_{Y}=E[X Y]-E[X] E[Y] .
\end{aligned}
$$

- Covariance formula $E[X Y]-E[X] E[Y]$, or "expectation of product minus product of expectations" is frequently useful.

Defining covariance and correlation

- Now define covariance of X and Y by $\operatorname{Cov}(X, Y)=E[(X-E[X])(Y-E[Y])$.
- Note: by definition $\operatorname{Var}(X)=\operatorname{Cov}(X, X)$.
- Covariance (like variance) can also written a different way. Write $\mu_{X}=E[X]$ and $\mu_{Y}=E[Y]$. If laws of X and Y are known, then μ_{X} and μ_{Y} are just constants.
- Then

$$
\begin{aligned}
& \operatorname{Cov}(X, Y)=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=E\left[X Y-\mu_{X} Y-\mu_{Y} X+\mu_{X} \mu_{Y}\right]= \\
& E[X Y]-\mu_{X} E[Y]-\mu_{Y} E[X]+\mu_{X} \mu_{Y}=E[X Y]-E[X] E[Y] .
\end{aligned}
$$

- Covariance formula $E[X Y]-E[X] E[Y]$, or "expectation of product minus product of expectations" is frequently useful.
- Note: if X and Y are indepéndent then $\operatorname{Cov}(X, Y)=0$.

Basic covariance facts

- Using $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]$ as a definition, certain facts are immediate.

Basic covariance facts

- Using $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]$ as a definition, certain facts are immediate.
- $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$

Basic covariance facts

- Using $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]$ as a definition, certain facts are immediate.
- $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$
- $\operatorname{Cov}(X, X)=\operatorname{Var}(X)$

Basic covariance facts

- Using $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]$ as a definition, certain facts are immediate.
- $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$
- $\operatorname{Cov}(X, X)=\operatorname{Var}(X)$
- $\operatorname{Cov}(a X, Y)=a \operatorname{Cov}(X, Y)$.

Basic covariance facts

- Using $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]$ as a definition, certain facts are immediate.
- $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$
- $\operatorname{Cov}(X, X)=\operatorname{Var}(X)$
- $\operatorname{Cov}(a X, Y)=a \operatorname{Cov}(X, Y)$.
- $\operatorname{Cov}\left(X_{1}+X_{2}, Y\right)=\operatorname{Cov}\left(X_{1}, Y\right)+\operatorname{Cov}\left(X_{2}, Y\right)$.

Basic covariance facts

- Using $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]$ as a definition, certain facts are immediate.
- $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$
- $\operatorname{Cov}(X, X)=\operatorname{Var}(X)$
- $\operatorname{Cov}(a X, Y)=a \operatorname{Cov}(X, Y)$.
- $\operatorname{Cov}\left(X_{1}+X_{2}, Y\right)=\operatorname{Cov}\left(X_{1}, Y\right)+\operatorname{Cov}\left(X_{2}, Y\right)$.
- General statement of bilinearity of covariance:

$$
\operatorname{Cov}\left(\sum_{i=1}^{m} a_{i} X_{i}, \sum_{j=1}^{n} b_{j} Y_{j}\right)=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i} b_{j} \operatorname{Cov}\left(X_{i}, Y_{j}\right)
$$

Basic covariance facts

- Using $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]$ as a definition, certain facts are immediate.
- $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$
- $\operatorname{Cov}(X, X)=\operatorname{Var}(X)$
- $\operatorname{Cov}(a X, Y)=a \operatorname{Cov}(X, Y)$.
- $\operatorname{Cov}\left(X_{1}+X_{2}, Y\right)=\operatorname{Cov}\left(X_{1}, Y\right)+\operatorname{Cov}\left(X_{2}, Y\right)$.
- General statement of bilinearity of covariance:

$$
\operatorname{Cov}\left(\sum_{i=1}^{m} a_{i} X_{i}, \sum_{j=1}^{n} b_{j} Y_{j}\right)=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i} b_{j} \operatorname{Cov}\left(X_{i}, Y_{j}\right)
$$

- Special case:

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}_{19}\left(X_{i}\right)+2 \sum_{(i, j): i<j} \operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

Defining correlation

- Again, by definition $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]$.

Defining correlation

- Again, by definition $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]$.
- Correlation of X and Y defined by

$$
\rho(X, Y):=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
$$

Defining correlation

- Again, by definition $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]$.
- Correlation of X and Y defined by

$$
\rho(X, Y):=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
$$

- Correlation doesn't care what units you use for X and Y. If $a>0$ and $c>0$ then $\rho(a X+b, c Y+d)=\rho(X, Y)$.

Defining correlation

- Again, by definition $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]$.
- Correlation of X and Y defined by

$$
\rho(X, Y):=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
$$

- Correlation doesn't care what units you use for X and Y. If $a>0$ and $c>0$ then $\rho(a X+b, c Y+d)=\rho(X, Y)$.
- Satisfies $-1 \leq \rho(X, Y) \leq 1$.

Defining correlation

- Again, by definition $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]$.
- Correlation of X and Y defined by

$$
\rho(X, Y):=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
$$

- Correlation doesn't care what units you use for X and Y. If $a>0$ and $c>0$ then $\rho(a X+b, c Y+d)=\rho(X, Y)$.
- Satisfies $-1 \leq \rho(X, Y) \leq 1$.
- Why is that? Something to do with $E\left[(X+Y)^{2}\right] \geq 0$ and $E\left[(X-Y)^{2}\right] \geq 0$?

Defining correlation

- Again, by definition $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]$.
- Correlation of X and Y defined by

$$
\rho(X, Y):=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
$$

- Correlation doesn't care what units you use for X and Y. If $a>0$ and $c>0$ then $\rho(a X+b, c Y+d)=\rho(X, Y)$.
- Satisfies $-1 \leq \rho(X, Y) \leq 1$.
- Why is that? Something to do with $E\left[(X+Y)^{2}\right] \geq 0$ and $E\left[(X-Y)^{2}\right] \geq 0$?
- If a and b are constants and $a>0$ then $\rho(a X+b, X)=1$.

Defining correlation

- Again, by definition $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]$.
- Correlation of X and Y defined by

$$
\rho(X, Y):=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
$$

- Correlation doesn't care what units you use for X and Y. If $a>0$ and $c>0$ then $\rho(a X+b, c Y+d)=\rho(X, Y)$.
- Satisfies $-1 \leq \rho(X, Y) \leq 1$.
- Why is that? Something to do with $E\left[(X+Y)^{2}\right] \geq 0$ and $E\left[(X-Y)^{2}\right] \geq 0$?
- If a and b are constants and $a>0$ then $\rho(a X+b, X)=1$.
- If a and b are constants and $a<0$ then $\rho(a X+b, X)=-1$.

Important point

- Say X and Y are uncorrelated when $\rho(X, Y)=0$.

Important point

- Say X and Y are uncorrelated when $\rho(X, Y)=0$.
- Are independent random variables X and Y always uncorrelated?

Important point

- Say X and Y are uncorrelated when $\rho(X, Y)=0$.
- Are independent random variables X and Y always uncorrelated?
- Yes, assuming variances are finite (so that correlation is defined).

Important point

- Say X and Y are uncorrelated when $\rho(X, Y)=0$.
- Are independent random variables X and Y always uncorrelated?
- Yes, assuming variances are finite (so that correlation is defined).
- Are uncorrelated random variables always independent?

Important point

- Say X and Y are uncorrelated when $\rho(X, Y)=0$.
- Are independent random variables X and Y always uncorrelated?
- Yes, assuming variances are finite (so that correlation is defined).
- Are uncorrelated random variables always independent?
- No. Uncorrelated just means $E[(X-E[X])(Y-E[Y])]=0$, i.e., the outcomes where $(X-E[X])(Y-E[Y])$ is positive (the upper right and lower left quadrants, if axes are drawn centered at $(E[X], E[Y])$) balance out the outcomes where this quantity is negative (upper left and lower right quadrants). This is a much weaker statement than independence.

Examples

- Suppose that X_{1}, \ldots, X_{n} are i.i.d. random variables with variance 1. For example, maybe each X_{j} takes values ± 1 according to a fair coin toss.

Examples

- Suppose that X_{1}, \ldots, X_{n} are i.i.d. random variables with variance 1. For example, maybe each X_{j} takes values ± 1 according to a fair coin toss.
- Compute $\operatorname{Cov}\left(X_{1}+X_{2}+X_{3}, X_{2}+X_{3}+X_{4}\right)$.

Examples

- Suppose that X_{1}, \ldots, X_{n} are i.i.d. random variables with variance 1. For example, maybe each X_{j} takes values ± 1 according to a fair coin toss.
- Compute $\operatorname{Cov}\left(X_{1}+X_{2}+X_{3}, X_{2}+X_{3}+X_{4}\right)$.
- Compute the correlation coefficient $\rho\left(X_{1}+X_{2}+X_{3}, X_{2}+X_{3}+X_{4}\right)$.

Examples

- Suppose that X_{1}, \ldots, X_{n} are i.i.d. random variables with variance 1. For example, maybe each X_{j} takes values ± 1 according to a fair coin toss.
- Compute $\operatorname{Cov}\left(X_{1}+X_{2}+X_{3}, X_{2}+X_{3}+X_{4}\right)$.
- Compute the correlation coefficient $\rho\left(X_{1}+X_{2}+X_{3}, X_{2}+X_{3}+X_{4}\right)$.
- Can we generalize this example?

Examples

- Suppose that X_{1}, \ldots, X_{n} are i.i.d. random variables with variance 1. For example, maybe each X_{j} takes values ± 1 according to a fair coin toss.
- Compute $\operatorname{Cov}\left(X_{1}+X_{2}+X_{3}, X_{2}+X_{3}+X_{4}\right)$.
- Compute the correlation coefficient $\rho\left(X_{1}+X_{2}+X_{3}, X_{2}+X_{3}+X_{4}\right)$.
- Can we generalize this example?
- What is variance of number of people who get their own hat in the hat problem?

Examples

- Suppose that X_{1}, \ldots, X_{n} are i.i.d. random variables with variance 1. For example, maybe each X_{j} takes values ± 1 according to a fair coin toss.
- Compute $\operatorname{Cov}\left(X_{1}+X_{2}+X_{3}, X_{2}+X_{3}+X_{4}\right)$.
- Compute the correlation coefficient $\rho\left(X_{1}+X_{2}+X_{3}, X_{2}+X_{3}+X_{4}\right)$.
- Can we generalize this example?
- What is variance of number of people who get their own hat in the hat problem?
- Define X_{i} to be 1 if i th person gets own hat, zero otherwise.

Examples

- Suppose that X_{1}, \ldots, X_{n} are i.i.d. random variables with variance 1. For example, maybe each X_{j} takes values ± 1 according to a fair coin toss.
- Compute $\operatorname{Cov}\left(X_{1}+X_{2}+X_{3}, X_{2}+X_{3}+X_{4}\right)$.
- Compute the correlation coefficient $\rho\left(X_{1}+X_{2}+X_{3}, X_{2}+X_{3}+X_{4}\right)$.
- Can we generalize this example?
- What is variance of number of people who get their own hat in the hat problem?
- Define X_{i} to be 1 if i th person gets own hat, zero otherwise.
- Recall formula
$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+2 \sum_{(i, j): i<j} \operatorname{Cov}\left(X_{i}, X_{j}\right)$.

Examples

- Suppose that X_{1}, \ldots, X_{n} are i.i.d. random variables with variance 1. For example, maybe each X_{j} takes values ± 1 according to a fair coin toss.
- Compute $\operatorname{Cov}\left(X_{1}+X_{2}+X_{3}, X_{2}+X_{3}+X_{4}\right)$.
- Compute the correlation coefficient $\rho\left(X_{1}+X_{2}+X_{3}, X_{2}+X_{3}+X_{4}\right)$.
- Can we generalize this example?
- What is variance of number of people who get their own hat in the hat problem?
- Define X_{i} to be 1 if i th person gets own hat, zero otherwise.
- Recall formula
$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+2 \sum_{(i, j): i<j} \operatorname{Cov}\left(X_{i}, X_{j}\right)$.
- Reduces problem to computijgg $\operatorname{Cov}\left(X_{i}, X_{j}\right)($ for $i \neq j)$ and $\operatorname{Var}\left(X_{i}\right)$.

Outline

Covariance and correlation

Paradoxes: getting ready to think about conditional expectation

Outline

Covariance and correlation

Paradoxes: getting ready to think about conditional expectation

Famous paradox

- Certain corrupt and amoral banker dies, instructed to spend some number n (of banker's choosing) days in hell.

Famous paradox

- Certain corrupt and amoral banker dies, instructed to spend some number n (of banker's choosing) days in hell.
- At the end of this period, a (biased) coin will be tossed. Banker will be assigned to hell forever with probability $1 / n$ and heaven forever with probability $1-1 / n$.

Famous paradox

- Certain corrupt and amoral banker dies, instructed to spend some number n (of banker's choosing) days in hell.
- At the end of this period, a (biased) coin will be tossed. Banker will be assigned to hell forever with probability $1 / n$ and heaven forever with probability $1-1 / n$.
- After 10 days, banker reasons, "If I wait another day I reduce my odds of being here forever from $1 / 10$ to $1 / 11$. That's a reduction of $1 / 110$. A $1 / 110$ chance at infinity has infinite value. Worth waiting one more day."

Famous paradox

- Certain corrupt and amoral banker dies, instructed to spend some number n (of banker's choosing) days in hell.
- At the end of this period, a (biased) coin will be tossed. Banker will be assigned to hell forever with probability $1 / n$ and heaven forever with probability $1-1 / n$.
- After 10 days, banker reasons, "If I wait another day I reduce my odds of being here forever from $1 / 10$ to $1 / 11$. That's a reduction of $1 / 110$. A $1 / 110$ chance at infinity has infinite value. Worth waiting one more day."
- Repeats this reasoning every day, stays in hell forever.

Famous paradox

- Certain corrupt and amoral banker dies, instructed to spend some number n (of banker's choosing) days in hell.
- At the end of this period, a (biased) coin will be tossed. Banker will be assigned to hell forever with probability $1 / n$ and heaven forever with probability $1-1 / n$.
- After 10 days, banker reasons, "If I wait another day I reduce my odds of being here forever from $1 / 10$ to $1 / 11$. That's a reduction of $1 / 110$. A $1 / 110$ chance at infinity has infinite value. Worth waiting one more day."
- Repeats this reasoning every day, stays in hell forever.
- Standard punch line: this is actually what banker deserved.

Famous paradox

- Certain corrupt and amoral banker dies, instructed to spend some number n (of banker's choosing) days in hell.
- At the end of this period, a (biased) coin will be tossed. Banker will be assigned to hell forever with probability $1 / n$ and heaven forever with probability $1-1 / n$.
- After 10 days, banker reasons, "If I wait another day I reduce my odds of being here forever from $1 / 10$ to $1 / 11$. That's a reduction of $1 / 110$. A $1 / 110$ chance at infinity has infinite value. Worth waiting one more day."
- Repeats this reasoning every day, stays in hell forever.
- Standard punch line: this is actually what banker deserved.
- Fairly dark as math humor goes (and no offense intended to anyone...) but dilemma is interesting.
- Paradox: decisions seem sound individually but together yield worst possible outcome. Why? Can we demystify this?
- Paradox: decisions seem sound individually but together yield worst possible outcome. Why? Can we demystify this?
- Variant without probability: Stay in hell for n (of your choice) days, and thereafter on days that are multiples of 2^{n}.
- Paradox: decisions seem sound individually but together yield worst possible outcome. Why? Can we demystify this?
- Variant without probability: Stay in hell for n (of your choice) days, and thereafter on days that are multiples of 2^{n}.
- When you agree to stay in hell k th day, you get (in exchange) heaven for all odd multiples of 2^{k-1}. Seems a good bargain...
- Paradox: decisions seem sound individually but together yield worst possible outcome. Why? Can we demystify this?
- Variant without probability: Stay in hell for n (of your choice) days, and thereafter on days that are multiples of 2^{n}.
- When you agree to stay in hell k th day, you get (in exchange) heaven for all odd multiples of 2^{k-1}. Seems a good bargain...
- Another variant: infinitely many identical money sacks with labels $1,2,3, \ldots$ I have sack 1 . You have all others.
- Paradox: decisions seem sound individually but together yield worst possible outcome. Why? Can we demystify this?
- Variant without probability: Stay in hell for n (of your choice) days, and thereafter on days that are multiples of 2^{n}.
- When you agree to stay in hell k th day, you get (in exchange) heaven for all odd multiples of 2^{k-1}. Seems a good bargain...
- Another variant: infinitely many identical money sacks with labels $1,2,3, \ldots$ I have sack 1 . You have all others.
- You offer me a deal. I give you sack 1, you give me sacks 2 and 3. I give you sack 2 and you give me sacks 4 and 5 . On the nth stage, I give you sack n and you give me sacks $2 n$ and $2 n+1$. Continue until I say stop.
- Paradox: decisions seem sound individually but together yield worst possible outcome. Why? Can we demystify this?
- Variant without probability: Stay in hell for n (of your choice) days, and thereafter on days that are multiples of 2^{n}.
- When you agree to stay in hell k th day, you get (in exchange) heaven for all odd multiples of 2^{k-1}. Seems a good bargain...
- Another variant: infinitely many identical money sacks with labels $1,2,3, \ldots$ I have sack 1 . You have all others.
- You offer me a deal. I give you sack 1, you give me sacks 2 and 3. I give you sack 2 and you give me sacks 4 and 5 . On the nth stage, I give you sack n and you give me sacks $2 n$ and $2 n+1$. Continue until I say stop.
- Lets me get arbitrarily rich. But if I go on forever, I return every sack given to me. If nth sack confers right to spend nth day in heaven, leads to hell-forever paradox.
- Paradox: decisions seem sound individually but together yield worst possible outcome. Why? Can we demystify this?
- Variant without probability: Stay in hell for n (of your choice) days, and thereafter on days that are multiples of 2^{n}.
- When you agree to stay in hell k th day, you get (in exchange) heaven for all odd multiples of 2^{k-1}. Seems a good bargain...
- Another variant: infinitely many identical money sacks with labels $1,2,3, \ldots$ I have sack 1 . You have all others.
- You offer me a deal. I give you sack 1, you give me sacks 2 and 3. I give you sack 2 and you give me sacks 4 and 5 . On the nth stage, I give you sack n and you give me sacks $2 n$ and $2 n+1$. Continue until I say stop.
- Lets me get arbitrarily rich. But if I go on forever, I return every sack given to me. If nth sack confers right to spend nth day in heaven, leads to hell-forever paradox.
- In both stories, make infinitely many good trades and end up with less than I started with ${ }^{54}$ "Paradox" is existence of 2-to-1 map from (smaller set) $\{2,3, \ldots\}$ to (bigger set) $\{1,2, \ldots\}$.

Money pile paradox

- You have an infinite collection of money piles with labels $0,1,2, \ldots$ from left to right.

Money pile paradox

- You have an infinite collection of money piles with labels $0,1,2, \ldots$ from left to right.
- Precise details not important, but let's say you have 5^{n} in the nth pile. Important thing is that pile size is increasing exponentially in n.

Money pile paradox

- You have an infinite collection of money piles with labels $0,1,2, \ldots$ from left to right.
- Precise details not important, but let's say you have 5^{n} in the nth pile. Important thing is that pile size is increasing exponentially in n.
- Banker proposes to transfer a fraction (say $2 / 3$) of each pile to the pile on its left and remainder to the pile on its right. Do this simultaneously for all piles.

Money pile paradox

- You have an infinite collection of money piles with labels $0,1,2, \ldots$ from left to right.
- Precise details not important, but let's say you have 5^{n} in the nth pile. Important thing is that pile size is increasing exponentially in n.
- Banker proposes to transfer a fraction (say $2 / 3$) of each pile to the pile on its left and remainder to the pile on its right. Do this simultaneously for all piles.
- Every pile is bigger after transfer (and this can be true even if banker takes a portion of each pile as a fee).

Money pile paradox

- You have an infinite collection of money piles with labels $0,1,2, \ldots$ from left to right.
- Precise details not important, but let's say you have 5^{n} in the nth pile. Important thing is that pile size is increasing exponentially in n.
- Banker proposes to transfer a fraction (say $2 / 3$) of each pile to the pile on its left and remainder to the pile on its right. Do this simultaneously for all piles.
- Every pile is bigger after transfer (and this can be true even if banker takes a portion of each pile as a fee).
- Banker seemed to make you richer (every pile got bigger) but really just reshuffled your infinite wealth.

Two envelope paradox

- X is geometric with parameter $1 / 2$. One envelope has 10^{X} dollars, one has 10^{X-1} dollars. Envelopes shuffled.

Two envelope paradox

- X is geometric with parameter $1 / 2$. One envelope has 10^{X} dollars, one has 10^{X-1} dollars. Envelopes shuffled.
- You choose an envelope and, after seeing contents, are allowed to choose whether to keep it or switch. (Maybe you have to pay a dollar to switch.)

Two envelope paradox

- X is geometric with parameter $1 / 2$. One envelope has 10^{X} dollars, one has 10^{X-1} dollars. Envelopes shuffled.
- You choose an envelope and, after seeing contents, are allowed to choose whether to keep it or switch. (Maybe you have to pay a dollar to switch.)
- Maximizing conditional expectation, it seems it's always better to switch. But if you always switch, why not just choose second-choice envelope first and avoid switching fee?

Two envelope paradox

- X is geometric with parameter $1 / 2$. One envelope has 10^{X} dollars, one has 10^{X-1} dollars. Envelopes shuffled.
- You choose an envelope and, after seeing contents, are allowed to choose whether to keep it or switch. (Maybe you have to pay a dollar to switch.)
- Maximizing conditional expectation, it seems it's always better to switch. But if you always switch, why not just choose second-choice envelope first and avoid switching fee?
- Kind of a disguised version of money pile paradox. But more subtle. One has to replace " j th pile of money" with "restriction of expectation sum to scenario that first chosen envelop has 10^{j} ". Switching indeed makes each pile bigger.

Two envelope paradox

- X is geometric with parameter $1 / 2$. One envelope has 10^{X} dollars, one has 10^{X-1} dollars. Envelopes shuffled.
- You choose an envelope and, after seeing contents, are allowed to choose whether to keep it or switch. (Maybe you have to pay a dollar to switch.)
- Maximizing conditional expectation, it seems it's always better to switch. But if you always switch, why not just choose second-choice envelope first and avoid switching fee?
- Kind of a disguised version of money pile paradox. But more subtle. One has to replace " j th pile of money" with "restriction of expectation sum to scenario that first chosen envelop has 10^{j} ". Switching indeed makes each pile bigger.
- However, "Higher expectation given amount in first envelope" may not be right notion of "better." If S is payout with switching, T is payout withớut switching, then S has same law as $T-1$. In that sense S is worse.

Two envelope paradox

Moral

- Beware infinite expectations.

Moral

- Beware infinite expectations.
- Beware unbounded utility functions.

Moral

- Beware infinite expectations.
- Beware unbounded utility functions.
- They can lead to strange conclusions, sometimes related to "reshuffling infinite (actual or expected) wealth to create more" paradoxes.

Moral

- Beware infinite expectations.
- Beware unbounded utility functions.
- They can lead to strange conclusions, sometimes related to "reshuffling infinite (actual or expected) wealth to create more" paradoxes.
- Paradoxes can arise even when total transaction is finite with probability one (as in envelope problem).

MIT OpenCourseWare https://ocw.mit.edu

18.600 Probability and Random Variables

Fall 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

