1. (20 points) Jill goes fishing. During each minute she fishes, there is a $1 / 600$ chance that she catches a fish (independently of all other minutes). Assume that she fishes for 15 hours (900 minutes). Let N be the total number of fish she catches.
(a) Compute $E[N]$ and $\operatorname{Var}[N]$. (Give exact answers, not approximate ones.) ANSWER: By additivity of expectation $E[N]=900 / 600=$ $3 / 2$. By variance additivity for independent random variables $\operatorname{Var}[N]=$ 900(1/600)(599/600)
(b) Compute the probability she catches exactly 3 fish. Give an exact answer. ANSWER: $\binom{900}{3}(1 / 600)^{3}(599 / 600)^{897}$
(c) Now use a Poisson random variable calculation to approximate the probability that she catches exactly 3 fish. ANSWER: N is approximately Poisson with $\lambda=900 / 600=3 / 2$. So $P\{N=3\} \approx e^{-\lambda} \lambda^{3} / 3!=$ $e^{-3 / 2} \frac{9}{16}$.
2. (10 points) Given ten people in a room, what is the probability that no two were born in the same month? (Assume that all of the 12^{10} ways of assigning birthday months to the ten people are equally likely.) ANSWER: $\frac{\binom{12}{10} 10 \text { ! }}{12^{10}}$
3. (10 points) Suppose that X, Y and Z are independent random variables such that each is equal to 0 with probability .5 and 1 with probability . 5.
(a) Compute the conditional probability $P[X+Y+Z=1 \mid X-Y=0]$. ANSWER: Both events occur if and only if both $X=Y=0$ and $Z=1$. So $P\{X+Y+Z=1, X-Y=0\}=1 / 8$ and $P\{X-Y=$ $0\}=1 / 2$. Thus $P[X+Y+Z=1 \mid X-Y=0]=(1 / 8) /(1 / 2)=1 / 4$.
(b) Are the events $\{X=Y\}$ and $\{Y=Z\}$ and $\{X=Z\}$ independent? Are they pairwise independent? Explain. ANSWER: Not independent. Each event has probability $1 / 2$ but probability all events occur is $1 / 4 \neq(1 / 2)^{3}$. Are pairwise independent, since probability of any two occurring is $(1 / 2)^{2}=1 / 4$.
4. (20 points) Consider an infinite sequence of independent tosses of a coin that comes up heads with probability p.
(a) Let X be such that the first heads appears on the X th toss. In other words, X is the number of tosses required to obtain a heads.
Compute (in terms of p) the expectation and variance of X.
ANSWER: Recall or derive: $E[X]=\sum_{k=1}^{\infty} q^{k-1} p k$, where $q=1-p$. Cute trick: write $E[X-1]=\sum_{k=1}^{\infty} q^{k-1} p(k-1)$. Setting $j=k-1$, we have $E[X-1]=q \sum_{j=0}^{\infty} q^{j-1} p j=q E[X]$. Thus $E[X]-1=q E[X]$ and solving for $E[X]$ gives $E[X]=1 /(1-q)=1 / p$.
Similarly, recall or derive: $E\left[X^{2}\right]=\sum_{k=1}^{\infty} q^{k-1} p k^{2}$. Cute trick: $E\left[(X-1)^{2}\right]=\sum_{k=1}^{\infty} q^{k-1} p(k-1)^{2}$. Setting $j=k-1$, we have $E\left[(X-1)^{2}\right]=q \sum_{j=0}^{\infty} q^{j-1} p j^{2}=q E\left[X^{2}\right]$. Thus $E\left[(X-1)^{2}\right]=E\left[X^{2}-2 X+1\right]=E\left[X^{2}\right]-2 / p+1=q E\left[X^{2}\right]$. Solving for $E\left[X^{2}\right]$ gives $(1-q) E\left[X^{2}\right]=p E\left[X^{2}\right]=2 / p-1$, so $E\left[X^{2}\right]=(2-p) / p^{2}$ and $\operatorname{Var}[X]=\frac{1-p}{p^{2}}$.
(b) Let Y be such that the fifth heads appears on the Y th toss. Compute (in terms of p) the expectation and variance of Y. ANSWER: By additivity of expectation and variance (for independent random variables) we obtain $E[Y]=5 / p$ and $\operatorname{Var}[Y]=5(1-p) / p^{2}$.
5. (20 points) Suppose that X is continuous random variable with probability density function $f_{X}(x)=\left\{\begin{array}{ll}e^{-x} & x>0 \\ 0 & x<0\end{array}\right.$. Compute the following:
(a) The expectation $E[X]$. ANSWER:

$$
E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x=\int_{0}^{\infty} e^{-x} x d x=1
$$

(b) The probability $P\{X \in[-50,50]\}$. ANSWER:

$$
P\{X \in[-50,50]\}=\int_{-50}^{50} f_{X}(x) d x=\int_{0}^{50} e^{-x} d x=1-e^{-50}
$$

(c) The cumulative distribution function F_{X}. ANSWER:

$$
F_{X}(a)=\int_{-\infty}^{a} f_{X}(x) d x= \begin{cases}0 & a \leq 0 \\ \int_{0}^{a} e^{-x} d x=1-e^{-a} & a>0\end{cases}
$$

6. (20 points) A group of 52 people (labeled $1,2,3, \ldots, 52$) toss their hats into a box, mix them up, and return one hat to each person (all 52! permutations equally likely). Compute the following:
(a) The probability that the first 26 people all get their own hats.

ANSWER: $\frac{1}{52} \frac{1}{51} \cdots \frac{1}{27}=\frac{26!}{52!}$
(b) The probability that there are 26 pairs of people whose hats are switched: i.e., each pair can be labeled (a, b), such that a got b 's hat and b got a 's hat. ANSWER: Have $\binom{52}{2,2,2, \ldots, 2}=52!/\left(2^{26}\right)$ ways to choose ordered list of 26 pairs. Dividing by 26 ! gives number of unordered collections of pairs. So we get $\frac{52!}{2^{26} 26!}$ permutations of desired type. Dividing by 52 ! gives probability $\frac{1}{2^{26} 26!}$.

MIT OpenCourseWare
https://ocw.mit.edu

18.600 Probability and Random Variables

Fall 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

