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I Answer: 8!/(3!2!3!)

I One way to think of this: given any permutation of eight
elements (e.g., 12435876 or 87625431) declare first three as
breakfast, second two as lunch, last three as dinner. This
maps set of 8! permutations on to the set of food-meal
divisions in a many-to-one way: each food-meal division
comes from 3!2!3! permutations.

I How many 8-letter sequences with 3 A’s, 2 B’s, and 3 C ’s?

I Answer: 8!/(3!2!3!). Same as other problem. Imagine 8
“slots” for the letters. Choose 3 to be A’s, 2 to be B’s, and 3
to be C ’s.

Partition problems 

I You have eight distinct pieces of food. You want to choose 
three for breakfast, two for lunch, and three for dinner. How 
many ways to do that? 
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I Answer
� n
n1,n2,...,nr

�
:= n!

n1!n2!...nr !
.

Partition problems 

I In general, if you have n elements you wish to divide into r 
distinct piles of sizes n1, n2 . . . nr , how many ways to do that? 
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I 16 terms correspond to 16 length-4 sequences of A’s and B’s.

A1A2A3A4 + A1A2A3B4 + A1A2B3A4 + A1A2B3B4+

A1B2A3A4 + A1B2A3B4 + A1B2B3A4 + A1B2B3B4+

B1A2A3A4 + B1A2A3B4 + B1A2B3A4 + B1A2B3B4+

B1B2A3A4 + B1B2A3B4 + B1B2B3A4 + B1B2B3B4

I What happens to this sum if we erase subscripts?

I (A+ B)4 = B4 + 4AB3 + 6A2B2 + 4A3B + A4. Coefficient of
A2B2 is 6 because 6 length-4 sequences have 2 A’s and 2 B’s.

I Generally, (A+ B)n =
Pn

k=0

�n
k

�
AkBn−k , because there are�n

k

�
sequences with k A’s and (n − k) B’s.

One way to understand the binomial theorem 

I Expand the product (A1 + B1)(A2 + B2)(A3 + B3)(A4 + B4). 
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I Answer: 81, one for each length-4 sequence of A’s and B’s
and C ’s.

I We can also compute (A+ B + C )4 =
A4+4A3B+6A2B2+4AB3+B4+4A3C+12A2BC+12AB2C+
4B3C + 6A2C 2 + 12ABC 2 + 6B2C 2 + 4AC 3 + 4BC 3 + C 4

I What is the sum of the coefficients in this expansion? What is
the combinatorial interpretation of coefficient of, say, ABC 2?

I Answer 81 = (1 + 1 + 1)4. ABC 2 has coefficient 12 because
there are 12 length-4 words have one A, one B, two C ’s.

How about trinomials? 

I Expand 
(A1 + B1 + C1)(A2 + B2 + C2)(A3 + B3 + C3)(A4 + B4 + C4). 
How many terms? 
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I Answer: yes.

I Then what is it?

I

(x1+x2+. . .+xr )
n =

X
n1,...,nr :n1+...+nr=n

�
n

n1, . . . , nr

�
xn11 xn22 . . . xnrr

I The sum on the right is taken over all collections
(n1, n2, . . . , nr ) of r non-negative integers that add up to n.

I Pascal’s triangle gives coefficients in binomial expansions. Is
there something like a “Pascal’s pyramid” for trinomial
expansions?

I Yes (look it up) but it is a bit tricker to draw and visualize
than Pascal’s triangle.

Multinomial coefficients 

I Is there a higher dimensional analog of binomial theorem? 
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I Actually, we say 0! = 1. What are the reasons for that?

I Because there is one map from the empty set to itself.
I Because we want the formula

�n
k

�
= n!

k!(n−k)! to still make
sense when k = 0 and k = n. There is clearly 1 way to choose
n elements from a group of n elements. And 1 way to choose
0 elements from a group of n elements so n!

n!0! =
n!
0!n! = 1.

I Because we want the recursion n(n − 1)! = n! to hold for
n = 1. (We won’t define factorials of negative integers.)

I Because we want n! =
R∞
0 tne−tdt to hold for all

non-negative integers. (Check for positive integers by
integration by parts.) This is one of those formulas you should
just know. Can use it to define n! for non-integer n.

I Another common notation: write Γ(z) :=
R∞
0 tz−1e−tdt and

define n! := Γ(n + 1) =
R∞
0 tne−tdt, so that Γ(n) = (n − 1)!.

By the way... 

I If n! is the product of all integers in the interval with 
endpoints 1 and n, then 0! = 0. 
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I Because we want n! = 0 tne−t dt to hold for all 
non-negative integers. (Check for positive integers by 
integration by parts.) This is one of those formulas you should 
just know. Can use it to define n! for non-integer n. R ∞ 

I Another common notation: write Γ(z) := tz−1e−t dt and 0 R ∞ 
define n! := Γ(n + 1) = tne−t dt, so that Γ(n) = (n − 1)!. 0 
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I Answer:
�n+k−1

n

�
. Represent partition by k − 1 bars and n

stars, e.g., as ∗ ∗ | ∗ ∗|| ∗ ∗ ∗ ∗|∗.

Integer partitions 

I How many sequences a1, . . . , ak of non-negative integers 
satisfy a1 + a2 + . . . + ak = n? 
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Integer partitions 

I How many sequences a1, . . . , ak of non-negative integers 
satisfy a1 + a2 + . . . + ak = n? � � n+k−1 I Answer: . Represent partition by k − 1 bars and n n 
stars, e.g., as ∗ ∗ | ∗ ∗|| ∗ ∗ ∗ ∗|∗. 
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I 27!
(3!)99!

I You teach a class with 90 students. In a rather severe effort to
combat grade inflation, your department chair insists that you
assign the students exactly 10 A’s, 20 B’s, 30 C’s, 20 D’s, and
10 F’s. How many ways to do this?

I
� 90
10,20,30,20,10

�
= 90!

10!20!30!20!10!

I You have 90 (indistinguishable) pieces of pizza to divide
among the 90 (distinguishable) students. How many ways to
do that (giving each student a non-negative integer number of
slices)?

I
�179
90

�
=

�179
89

�

More counting problems 

I In 18.821, a class of 27 students needs to be divided into 9 
teams of three students each? How many ways are there to 
do that? 
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More counting problems 

I In 18.821, a class of 27 students needs to be divided into 9 
teams of three students each? How many ways are there to 
do that? 
27! I 

(3!)99! 

I You teach a class with 90 students. In a rather severe effort to 
combat grade inflation, your department chair insists that you 
assign the students exactly 10 A’s, 20 B’s, 30 C’s, 20 D’s, and 
10 F’s. How many ways to do this? � � 90 90! I = 10,20,30,20,10 10!20!30!20!10! 

I You have 90 (indistinguishable) pieces of pizza to divide 
among the 90 (distinguishable) students. How many ways to 
do that (giving each student a non-negative integer number of 
slices)?� � � � 179 179 I = 90 89 
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I 4!
�13
4

��13
3

��13
5

��13
1

�
I How many bridge hands have at most two suits represented?

I
�4
2

��26
13

�
− 8

I How many hands have either 3 or 4 cards in each suit?

I Need three 3-card suits, one 4-card suit, to make 13 cards
total. Answer is 4

�13
3

�3�13
4

�

More counting problems 

I How many 13-card bridge hands have 4 of one suit, 3 of one 
suit, 5 of one suit, 1 of one suit? 
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I How many bridge hands have at most two suits represented?

I
�4
2

��26
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�
− 8

I How many hands have either 3 or 4 cards in each suit?
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I How many hands have either 3 or 4 cards in each suit?

I Need three 3-card suits, one 4-card suit, to make 13 cards
total. Answer is 4

�13
3

�3�13
4

�

More counting problems 

I How many 13-card bridge hands have 4 of one suit, 3 of one 
suit, 5 of one suit, 1 of one suit? � �� �� �� � 13 13 13 13 I 4! 4 3 5 1 

I How many bridge hands have at most two suits represented? �4��26� 
I − 8 2 13 
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I Need three 3-card suits, one 4-card suit, to make 13 cards
total. Answer is 4

�13
3

�3�13
4

�

More counting problems 

I How many 13-card bridge hands have 4 of one suit, 3 of one 
suit, 5 of one suit, 1 of one suit? � �� �� �� � 13 13 13 13 I 4! 4 3 5 1 

I How many bridge hands have at most two suits represented? �4��26� 
I 

2 13 − 8 

I How many hands have either 3 or 4 cards in each suit? 
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More counting problems 

I How many 13-card bridge hands have 4 of one suit, 3 of one 
suit, 5 of one suit, 1 of one suit? � �� �� �� � 13 13 13 13 I 4! 4 3 5 1 

I How many bridge hands have at most two suits represented? �4��26� 
I 

2 13 − 8 

I How many hands have either 3 or 4 cards in each suit? 

I Need three 3-card suits, one 4-card suit, to make 13 cards � �3� � 13 13 total. Answer is 4 3 4 
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