# HighYieldSpreadAutoregressiveFit
library(zoo)
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
library(xts)
names0<-load(file="casestudy_1_0.RData")
#apply(is.na(fred.data00),2,sum)
fred.data0.0<-na.omit(fred.data0)
dim(fred.data0.0)
## [1] 4399 7
Spread.HY=fred.data0.0[,"DBAA"]-fred.data0.0[,"DGS10"]
Spread.HY.1<-window(Spread.HY,
start = as.Date("2010-01-01"),
end=as.Date("2017-08-28"))
plot((time(Spread.HY.1)), Spread.HY.1,col='black',type="l",
xlab="Date", ylab="Spread",
main="High-Yield Spread\nMoody's Baa Yield minus US 10-Year Yield")
x=as.numeric(time(Spread.HY.1))
y=as.numeric(Spread.HY.1)
abline(h=mean(y),col='gray')

#
plot((time(Spread.HY.1)), Spread.HY.1,col='black',type="l",
xlab="Date", ylab="Spread",
main="High-Yield Spread\nMoody's Baa Yield minus US 10-Year Yield")
x=as.numeric(time(Spread.HY.1))
y=as.numeric(Spread.HY.1)
abline(h=mean(y),col='gray')
y.lag1<-c(NA,y[1:(length(y)-1)])
lmfitar1=lm(y~y.lag1)
lines(x[-1],lmfitar1$fitted.values,col='blue')

summary(lmfitar1)
##
## Call:
## lm(formula = y ~ y.lag1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.089554 -0.010525 0.000072 0.010821 0.139739
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.003604 0.004080 0.883 0.377
## y.lag1 0.998613 0.001469 679.720 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0234 on 1910 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.9959, Adjusted R-squared: 0.9959
## F-statistic: 4.62e+05 on 1 and 1910 DF, p-value: < 2.2e-16
hist(lmfitar1$residuals,nclass=50)

acf(lmfitar1$residuals,type="partial")
