MIT 18.642 Linear Algebra

Dr. Kempthorne

Fall 2024

Linear Algebra: Basic Concepts

Vectors

- Vector $\mathbf{v} \in R^m$
- Ordered list of m numbers: $\mathbf{v} = (v_1, v_2, \dots, v_m)$
- Column vector / 1-column matrix:

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_m \end{bmatrix}$$

Special vectors:

Zero vector
$$\mathbf{0} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$
 Ones vector $\mathbf{1} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$

• Graphical Representation:

Point
$$\mathbf{v} \in R^m$$
 or

Directed segment: from $\mathbf{0}$ to \mathbf{v}

Examples of Vectors:

 Closing prices on a given day t of all stocks in the S&P 500 stock index

$$\mathbf{p} = \left[egin{array}{c} p_1(t) \ dots \ p_{500}(t) \end{array}
ight] \in R_+^{500}$$

where for stock j (= 1, ..., 500) the series of daily closing prices is given by the time series $\{p_i(t), \text{ over days } t\}$

 For a portfolio holding only S&P 500 stocks, the number of shares held at start of day t

$$\mathbf{q} = \left[egin{array}{c} q_1(t) \ dots \ q_{500}(t) \end{array}
ight]$$

• Value of the portfolio at end of day t $V = \sum_{i=1}^{500} q_i(t) P_i(t).$

Vectors for Portfolios

• Include cash as asset i=0 with value $p_0(t)\equiv \$1$ and time t cash position $q_0(t)$

$$\mathbf{p} = egin{bmatrix} p_0(t) \ p_1(t) \ dots \ p_{500}(t) \end{bmatrix} \in R_+^{501} \qquad \qquad \mathbf{q} = egin{bmatrix} q_0(t) \ q_1(t) \ dots \ q_{500}(t) \end{bmatrix}$$

- Portfolio Value at end of day t (no intra-day trading) $V_t = \sum_{i=0}^{500} q_i(t)p_i(t)$.
- Rebalance portfolio at end of day t, trade $\Delta_j(t)$ shares of each asset j with no net contribution/distribution: $q_j(t+1) = q_j(t) + \Delta_j(t)$ subject to $\sum_{j=0}^{500} \Delta_j(t) p_j(t) = 0$. Note: $V_t = \sum_{j=0}^{500} q_j(t+1) p_j(t)$
- Portfolio Net Gain (PnL) on day t+1: $PnL(t+1) = V_{t+1} V_t = \sum_{1}^{n} q_j(t+1)[p_j(t+1) p_j(t)]$

Vector Algebra

• Scalar multiplication: for *m*-vector $\mathbf{v} \in R^m$ and scalar $c \in R$,

$$c\mathbf{v} = c \times \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_m \end{bmatrix} = \begin{bmatrix} c \times v_1 \\ c \times v_2 \\ \vdots \\ c \times v_m \end{bmatrix}$$

• Addition of vectors: for two *m*-vectors \mathbf{v} and $\mathbf{w} \in R^m$,

$$\mathbf{v} + \mathbf{w} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_m \end{bmatrix} + \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_m \end{bmatrix} = \begin{bmatrix} v_1 + w_1 \\ v_2 + w_2 \\ \vdots \\ v_m + w_m \end{bmatrix}$$

• Inner Product / Dot Product: for *m*-vectors \mathbf{v} and $\mathbf{w} \in R^m$, $\langle \langle \mathbf{v}, \mathbf{w} \rangle \rangle = \mathbf{v} \cdot \mathbf{w} = v_1 w_1 + v_2 w_2 + \cdots v_m w_m = \sum_{i=1}^m v_i w_i$

6/35

Vector Algebra with Portfolios

• Two portfolios: (m+1)-vectors of cash and share holdings for each portfolio (m=501) start of day t (end of day t-1):

$$\mathbf{q}_t = egin{bmatrix} q_0(t) \\ q_1(t) \\ \vdots \\ q_{500}(t) \end{bmatrix} ext{ and } \mathbf{w}_t = egin{bmatrix} w_0(t) \\ w_1(t) \\ \vdots \\ w_{500}(t) \end{bmatrix}$$

• Beginning of Day (BOD) Values of two portfolios: $V_BOD(\mathbf{q}_t, t) = \langle \langle \mathbf{q}_t, \mathbf{p}_{t-1} \rangle \rangle = \mathbf{q}_t \cdot \mathbf{p}_{t-1}$

$$V_{-BOD}(\mathbf{w}_{t}, t) = \langle \langle \mathbf{w}_{t}, \mathbf{p}_{t-1} \rangle \rangle = \mathbf{w}_{t} \cdot \mathbf{p}_{t-1}$$
$$V_{-BOD}(\mathbf{w}_{t}, t) = \langle \langle \mathbf{w}_{t}, \mathbf{p}_{t-1} \rangle \rangle = \mathbf{w}_{t} \cdot \mathbf{p}_{t-1}$$

• End of Day (EOD) Values of two portfolios:

$$V_EOD(\mathbf{q}_t, t) = \langle \langle \mathbf{q}_t, \mathbf{p}_t \rangle \rangle = \mathbf{q}_t \cdot \mathbf{p}_t$$

$$V_EOD(\mathbf{w}_t, t) = \langle \langle \mathbf{w}_t, \mathbf{p}_t \rangle \rangle = \mathbf{w}_t \cdot \mathbf{p}_t$$

• Portfolio Net Gain (PnL) of two portfolios $PnL(\mathbf{q}_t, t) = V_-EOD(\mathbf{q}_t, t) - V_-BOD(\mathbf{q}_t, t)$ $= \mathbf{q}_t \cdot [\mathbf{p}_t - \mathbf{p}_{t-1}]$ $PnL(\mathbf{w}_t, t) = \mathbf{w}_t \cdot [\mathbf{p}_t - \mathbf{p}_{t-1}]$

Vector Algebra with Portfolios

• Difference of two portfolios: Long/Short Portfolio

$$\begin{aligned} \mathbf{d}_t &= \mathbf{q}_t - \mathbf{w}_t \\ PnL(\mathbf{d}_t, t) &= V_-EOD(\mathbf{d}_t, t) - V_-BOD(\mathbf{d}_t, t)]] \\ &= \mathbf{d}_t \cdot \mathbf{p}_t - \mathbf{d}_t \cdot \mathbf{p}_{t-1} \\ &= PnL(\mathbf{q}_t, t) - PnL(\mathbf{w}_t, t) \end{aligned}$$

Vector Algebra with Portfolios

Difference of two portfolios: Long/Short Portfolio

$$\begin{aligned} \mathbf{d}_t &= \mathbf{q}_t - \mathbf{w}_t \\ PnL(\mathbf{d}_t, t) &= V_-EOD(\mathbf{d}_t, t) - V_-BOD(\mathbf{d}_t, t)]] \\ &= \mathbf{d}_t \cdot \mathbf{p}_t - \mathbf{d}_t \cdot \mathbf{p}_{t-1} \\ &= PnL(\mathbf{q}_t, t) - PnL(\mathbf{w}_t, t) \end{aligned}$$

Zero-Cost Portfolio d_t:

$$0 = V_{-}BOD(\mathbf{d}_{t}, t) = \mathbf{d}_{t} \cdot \mathbf{p}_{t-1}.$$

Vector Algebra with Portfolios

Difference of two portfolios: Long/Short Portfolio

$$\begin{aligned} \mathbf{d}_t &= \mathbf{q}_t - \mathbf{w}_t \\ PnL(\mathbf{d}_t, t) &= V_-EOD(\mathbf{d}_t, t) - V_-BOD(\mathbf{d}_t, t)]] \\ &= \mathbf{d}_t \cdot \mathbf{p}_t - \mathbf{d}_t \cdot \mathbf{p}_{t-1} \\ &= PnL(\mathbf{q}_t, t) - PnL(\mathbf{w}_t, t) \end{aligned}$$

Zero-Cost Portfolio d_t:

$$0 = V_{-}BOD(\mathbf{d}_{t}, t) = \mathbf{d}_{t} \cdot \mathbf{p}_{t-1}.$$

Zero-Cost Arbitrage Portfolio d_t*:

$$V_{-}BOD(\mathbf{d}_{t}^{*},t) = 0.$$

 $PnL(\mathbf{d}_{t}^{*},t) > 0$

Vector Algebra with Portfolios

Difference of two portfolios: Long/Short Portfolio

$$\begin{aligned} \mathbf{d}_t &= \mathbf{q}_t - \mathbf{w}_t \\ PnL(\mathbf{d}_t, t) &= V_-EOD(\mathbf{d}_t, t) - V_-BOD(\mathbf{d}_t, t)]] \\ &= \mathbf{d}_t \cdot \mathbf{p}_t - \mathbf{d}_t \cdot \mathbf{p}_{t-1} \\ &= PnL(\mathbf{q}_t, t) - PnL(\mathbf{w}_t, t) \end{aligned}$$

Zero-Cost Portfolio d_t:

$$0 = V_{-}BOD(\mathbf{d}_{t}, t) = \mathbf{d}_{t} \cdot \mathbf{p}_{t-1}.$$

Zero-Cost Arbitrage Portfolio d_t*:

$$V_BOD(\mathbf{d}_t^*, t) = 0.$$

 $PnL(\mathbf{d}_t^*, t) > 0$

Issue(!): At time
$$(t-1)$$

Prices \mathbf{p}_t are Random.
 $\Rightarrow PnL(\mathbf{d}_t^*, t)$ is Random.

Vector Algebra

• Norm of a Vector: $\mathbf{v} \in \mathbb{R}^m$.

$$||\mathbf{v}|| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$$
$$= \sqrt{\sum_{j=1}^{m} v_j^2}$$

- Geometric definition of dot product / inner product $\mathbf{v} \cdot \mathbf{w} = |\mathbf{v}| \times |\mathbf{w}| \times cos(\theta)$ where θ is the angle between \mathbf{v} and \mathbf{w}
- Orthogonal vectors: v and w are orthogonal if v·w = 0.

Linear Independence

Vectors v and w are linearly independent if

$$c_1\mathbf{v}+c_2\mathbf{w}=\mathbf{0}$$
 only if $c_1=c_2=0$

Vector Space: $S = \{ \text{ vectors } \}$

- If $\mathbf{v} \in \mathcal{S}$ then $c\mathbf{v} \in \mathcal{S}$, for all scalars $c \in R$.
- If $\mathbf{v} \in \mathcal{S}$ and $\mathbf{w} \in \mathcal{S}$ then $(\mathbf{v} + \mathbf{w}) \in \mathcal{S}$

Basis for a Vector Space: $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ is a basis for \mathcal{S} if

- For any $\mathbf{w} \in \mathcal{S}$ there exist $c_1, c_2, \dots c_p \in R$ $\mathbf{w} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_p \mathbf{v}_p$
- If $\mathbf{w} = \mathbf{0}$ then $c_1 = c_2 = \cdots = c_p = 0$.

Basis vectors are linearly independent

$$p = Dim(S)$$

Basic Concepts: Matrices

Def: An m by n matrix A is a rectangular array of $(m \times n)$ numbers $\{a_{i,j}, 1 \le i \le m, \text{ and } 1 \le j \le n\}$

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{bmatrix}$$

$$= ||a_{i,j}|| (m \times n)$$

Equivalent representations:

• Array of n column vectors: $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n]$ with

$$\mathbf{a}_{j} = \begin{vmatrix} a_{1,j} \\ a_{2,j} \\ \dots \\ a_{m,j} \end{vmatrix} \in R^{m}, j = 1, 2, \dots, n$$

• Scalar multiplication: for a matrix $A = ||a_{ij}||$, scalar $c \in R$, $cA = ||ca_{ij}|| = c [\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n]$ = $[c\mathbf{a}_1 \ c\mathbf{a}_2 \ \ldots \ c\mathbf{a}_n]$

- Matrix Transpose: for an m by n matrix $A = ||a_{ij}||$ the transpose of A is the n by m matrix $t(A) = A^{\top} = ||a_{ji}||$
- The transpose of each column vector \mathbf{a}_i is a row vector:

$$\mathbf{a}_j^ op = \left[egin{array}{c} a_{1,j} \ dots \ a_{m,j} \end{array}
ight]^ op = \left[a_{1j} \ a_{2j} \ \cdots \ a_{mj}
ight]$$

• The matrix transpose A^{\top} is the array of row-vectors

$$A^{\top} = \left[\mathbf{a}_1 \ \cdots \mathbf{a}_n \right]^{\top} = \left[egin{array}{c} \mathbf{a}_1^{\top} \ \vdots \ \mathbf{a}_n^{\top} \end{array}
ight]$$

Multiplication of a Matrix and a Vector

- $A = ||a_{ij}|| = [\mathbf{a}_1 \ \cdots \mathbf{a}_n]$ an m by n matrix
- $\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \in R^n$, an n-vector
 - The product of A times \mathbf{v} is the m-vector

$$\mathbf{y} = A\mathbf{v} = \mathbf{a}_1 v_1 + \mathbf{a}_2 v_2 + \cdots + \mathbf{a}_n v_n.$$

Linear combination of *A*'s columns Vector of dot-products of *A*'s rows

$$\mathbf{y} = \begin{bmatrix} \vdots \\ y_i \\ \vdots \end{bmatrix}, \text{ with } y_i = \sum_{j=1}^n a_{i,j} v_j = row_i(A) \cdot \mathbf{v}$$

Multiplication of Two Matrices

- $A = ||a_{ij}|| = [\mathbf{a}_1 \cdots \mathbf{a}_n]$ an m by n matrix
- $B = ||b_{ij}|| = [\mathbf{b}_1 \ \cdots \ \mathbf{b}_p]$ an n by p matrix
- The product of A times B is the m by p matrix $C = AB = A[\mathbf{b}_1 \ \mathbf{b}_2 \ \cdots \ \mathbf{b}_p] = [A\mathbf{b}_1 \ A\mathbf{b}_2 \ \cdots A\mathbf{b}_p]$
- $C = ||c_{ij}||$ is m by p with $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$
- A and B must be "conformal" (column-count of A = row-count of B)

Matrix Operations

• Addition of matrices $A = ||a_{ij}||$ and $B||b_{ij}||$, both m by n matrices

$$C = A + B = ||c_{ij}||$$
, where $c_{ij} = a_{ij} + b_{ij}$

• Transpose of matrix sum:

$$(A+B)^{\top} = A^{\top} + B^{\top}$$

Transpose of matrix product:

$$(AB)^{\top} = B^{\top}A^{\top}$$
 (order reverses!)

Associative/Distributive laws:

$$A(BC) = (AB)C$$

 $A(B+C) = AB + AC$

• Matrix multiplication typically not commutative:

$$AB \neq BA$$
, generally

Special Matrices

• A is a **Symmetric** Matrix if

$$A^T = A$$
, i.e., $a_{ii} = a_{ji}$ for all $1 \le i, j \le n = m$

7ero matrix

$$\mathbf{0} = \mathbf{0}_{m \times n}$$

Identity matrix: In

$$\begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vec{0} & \vec{0} & \cdots & \vec{0} \\ 0 & 0 & \cdots & 1 \end{bmatrix} = [\mathbf{e}_1 \ \mathbf{e}_2 \ \cdots \mathbf{e}_n]$$

- Matrix of ones: $J = ||J_{ii}||$, with $J_{ii} = 1$ for all i, j.
- Diagonal matrix (n by n matrix of all zeros except for diagonal)

$$D = diag(d_1, d_2, \ldots, d_n)$$

Stochastic Matrices

- A: $a_{i,j} \ge 0, \ 1 \le i, j \le m = n$
- Columns of A sum to 1.

Stochastic Matrices

- A: $a_{i,j} \ge 0, 1 \le i, j \le m = n$
- Columns of A sum to 1.

Markov Chain Model

- m possible states: s = 1, 2, ..., m
- S_t : state at time t = 0, 1, 2, ...
- Stationary transition probabilities

$$a_{i,j} = P(S_{t+1} = i \mid S_t = j)$$
 (same for all t)

• $\vec{\pi}(t)$: *m*-vector of probabilities

$$\pi_j(t) = P(S_t = j), j = 1, ..., m$$

 $\bullet \ \vec{\pi}(t+1) = A\vec{\pi}(t)$

Stochastic Matrices

- A: $a_{i,j} \ge 0, 1 \le i, j \le m = n$
- Columns of A sum to 1.

Markov Chain Model

- m possible states: $s = 1, 2, \ldots, m$
- S_t : state at time t = 0, 1, 2, ...
- Stationary transition probabilities

$$a_{i,j} = P(S_{t+1} = i \mid S_t = j)$$
 (same for all t)

• $\vec{\pi}(t)$: *m*-vector of probabilities

$$\pi_j(t) = P(S_t = j), j = 1, ..., m$$

 $\bullet \ \vec{\pi}(t+1) = A\vec{\pi}(t)$

Markov Chain Dynamics

- $\vec{\pi}(t+2) = A\vec{\pi}(t+1) = A[A\vec{\pi}(t)] = A^2\vec{\pi}(t)$
- Given $\vec{\pi}(0) = \vec{\pi}_0$: $\vec{\pi}(t) = A^t \vec{\pi}_0, \quad t = 1, 2, ...$
- Does: $\lim_{t\to\infty} \vec{\pi}(t) = \vec{\pi}_*$ exist?

Stochastic Matrices

- A: $a_{i,j} \ge 0, 1 \le i, j \le m = n$
- Columns of A sum to 1.

Markov Chain Model

- m possible states: s = 1, 2, ..., m
- S_t : state at time t = 0, 1, 2, ...
- Stationary transition probabilities

$$a_{i,j} = P(S_{t+1} = i \mid S_t = j)$$
 (same for all t)

• $\vec{\pi}(t)$: *m*-vector of probabilities

$$\pi_j(t) = P(S_t = j), j = 1, ..., m$$

 $\bullet \ \vec{\pi}(t+1) = A \vec{\pi}(t)$

Markov Chain Dynamics

- $\vec{\pi}(t+2) = A\vec{\pi}(t+1) = A[A\vec{\pi}(t)] = A^2\vec{\pi}(t)$
- Given $\vec{\pi}(0) = \vec{\pi}_0$: $\vec{\pi}(t) = A^t \vec{\pi}_0, \quad t = 1, 2, ...$
- Does: $\lim_{t\to\infty} \vec{\pi}(t) = \vec{\pi}_*$ exist? Stationary Distribution!

Positive matrices (prices/costs)

• A: $a_{i,j} > 0, 1 \le i \le m, 1 \le j \le n$

Positive matrices (prices/costs)

• A: $a_{i,j} > 0, 1 \le i \le m, 1 \le j \le n$

Single-Period Market Model

• *n* Assets: i = 1, ..., n

• Times: t = 0 (start) t = T (end)

Positive matrices (prices/costs)

• A: $a_{i,j} > 0, 1 \le i \le m, 1 \le j \le n$

Single-Period Market Model

- *n* Assets: i = 1, ..., n
- Times: t = 0 (start) t = T (end)
- Asset Price Processes:

$$A = \{A_t^1, A_t^2, \dots, A_t^n, \ t = 0, T\}$$

- A_0^j is known price of asset j at time t = 0
- A_T^j is random price of asset j at time t = T

Positive matrices (prices/costs)

• A: $a_{i,j} > 0, 1 \le i \le m, 1 \le j \le n$

Single-Period Market Model

- *n* Assets: i = 1, ..., n
- Times: t = 0 (start) t = T (end)
- Asset Price Processes:

$$A = \{A_t^1, A_t^2, \dots, A_t^n, \ t = 0, T\}$$

- A_0^j is known price of asset j at time t = 0
- A_T^j is random price of asset j at time t = T

m Possible Scenarios at time
$$t = T$$
: $\Omega = \{\omega_1, \ldots, \omega_m\}$

• Positive Price Matrix at t = T (Scenario-Dependent) : $A = ||a_{i,i}||$,

where
$$a_{i,j} = A_T^j(\omega_i) = Price(asset \ j \mid scenario \ \omega_i)$$

Portfolio of Assets

- Portfolio holdings in assets: $\vec{q} = (q_1, \dots, q_n)$
- Portfolio Cost at time t = 0:

$$V_0 = \sum_{i=1}^n A_0^i q_i = \vec{A}_0 \cdot \vec{q}$$

• Portfolio Pay-Off at time t = T in scenario ω_i :

$$V_T(\omega_i) = \sum_{j=1}^n A_T^i(\omega_i) q_j$$

m-vector of Pay-Offs for all scenarios

$$\vec{V}_{\mathcal{T}} = \begin{bmatrix} V_{\mathcal{T}}(\omega_{1}) \\ V_{\mathcal{T}}(\omega_{2}) \\ \vdots \\ V_{\mathcal{T}}(\omega_{m}) \end{bmatrix} = \begin{bmatrix} \vec{A}_{\mathcal{T}}(\omega_{1}) \cdot \vec{q} \\ \vec{A}_{\mathcal{T}}(\omega_{2}) \cdot \vec{q} \\ \vdots \\ \vec{A}_{\mathcal{T}}(\omega_{m}) \cdot \vec{q} \end{bmatrix} = A\vec{q}$$

Portfolio of Assets

- Portfolio holdings in assets: $\vec{q} = (q_1, \dots, q_n)$
- Portfolio Cost at time t = 0:

$$V_0 = \sum_{i=1}^n A_0^i q_i = \vec{A}_0 \cdot \vec{q}$$

• Portfolio Pay-Off at time t = T in scenario ω_i :

$$V_T(\omega_i) = \sum_{j=1}^n A_T^i(\omega_i)q_j$$

m-vector of Pay-Offs for all scenarios

$$\vec{V}_{T} = \begin{bmatrix} V_{T}(\omega_{1}) \\ V_{T}(\omega_{2}) \\ \vdots \\ V_{T}(\omega_{m}) \end{bmatrix} = \begin{bmatrix} \vec{A}_{T}(\omega_{1}) \cdot \vec{q} \\ \vec{A}_{T}(\omega_{2}) \cdot \vec{q} \\ \vdots \\ \vec{A}_{T}(\omega_{m}) \cdot \vec{q} \end{bmatrix} = A\vec{q}$$

Arbitrage Portfolio \vec{q}

- Zero/Negative Cost: $V_0 = \vec{A}_0 \cdot \vec{q} \le 0$.
- Positive/Non-Zero Payoff:

$$V_T(\omega_i) \ge 0$$
, all $i = 1, ..., m$
> 0 at least one i

Important Theorems/Concepts

- Conditions ensuring No Arbitrage
 - Analyze space of (m+1)-tuples: cost/Payoffs $\mathcal{P} = \{[V_0, \vec{V}_T] \in R^{m+1}, \text{ for all portfolios } \vec{q} \in R^n.\}$

Important Theorems/Concepts

- Conditions ensuring No Arbitrage
 - Analyze space of (m+1)-tuples: cost/Payoffs $\mathcal{P} = \{[V_0, \vec{V}_T] \in R^{m+1}, \text{ for all portfolios } \vec{q} \in R^n.\}$
- Market Completeness (existence of portfolios realizing any pay-off vector $\vec{v} \in R^m$ at time T)

Important Theorems/Concepts

- Conditions ensuring No Arbitrage
 - Analyze space of (m+1)-tuples: cost/Payoffs $\mathcal{P} = \{[V_0, \vec{V}_T] \in R^{m+1}, \text{ for all portfolios } \vec{q} \in R^n.\}$
- Market Completeness (existence of portfolios realizing any pay-off vector $\vec{v} \in R^m$ at time T)
- Existence and uniqueness of Pricing Measure on scenarios:

$$\begin{array}{ll} Q^*: \, Q^*(\omega_i) = \textbf{\textit{q}}_i^* > 0, \, \sum_i \textbf{\textit{q}}_i^* = 1, \\ \text{which prices assets at } t = 0 \text{ by} \\ A_0^j = \alpha E^{Q^*}[A_T^j] = \alpha \sum_{i=1}^m A_T^j(\omega_i) \textbf{\textit{q}}_i^* \\ \text{for every asset } j = 1, \dots, n \text{ and} \end{array}$$

the scalar $\alpha > 0$ is a **Discount Factor**

Important Theorems/Concepts

- Conditions ensuring No Arbitrage
 - Analyze space of (m+1)-tuples: cost/Payoffs $\mathcal{P} = \{ [V_0, \vec{V}_T] \in \mathbb{R}^{m+1}, \text{ for all portfolios } \vec{q} \in \mathbb{R}^n. \}$
- Market Completeness (existence of portfolios realizing any pay-off vector $\vec{v} \in R^m$ at time T)
- Existence and uniqueness of Pricing Measure on scenarios:

$$Q^*: Q^*(\omega_i) = \mathbf{q}_i^* > 0, \sum_i \mathbf{q}_i^* = 1,$$
 rices assets at $t = 0$ by

which prices assets at t = 0 by

$$A_0^j = \alpha E^{Q^*}[A_T^j] = \alpha \sum_{i=1}^m A_T^j(\omega_i) q_i^*$$

for every asset j = 1, ..., n and

the scalar $\alpha > 0$ is a **Discount Factor**

• No Arbitrage if all $q_i^* > 0$

Important Theorems/Concepts

- Conditions ensuring No Arbitrage
 - Analyze space of (m+1)-tuples: $\cos t/P$ ayoffs $\mathcal{P} = \{[V_0, \vec{V}_T] \in R^{m+1}, \text{ for all portfolios } \vec{q} \in R^n.\}$
- Market Completeness (existence of portfolios realizing any pay-off vector $\vec{v} \in R^m$ at time T)
- Existence and uniqueness of Pricing Measure on scenarios:

$$Q^*: Q^*(\omega_i) = q_i^* > 0, \sum_i q_i^* = 1,$$

which prices assets at t = 0 by

$$A_0^j = \alpha E^{Q^*}[A_T^j] = \alpha \sum_{i=1}^m A_T^j(\omega_i) q_i^*$$

for every asset $j=1,\ldots,n$ and

the scalar $\alpha > 0$ is a **Discount Factor**

- No Arbitrage if all $q_i^* > 0$
- Market Complete with No Arbitrage if Pricing Measure Q^* is Unique.

Systems of Linear Equations

Solving a System of Equations:

$$A\vec{x} = \vec{b}$$
 where

- A is $m \times n$ (known)
- $\vec{b} \in R^m$ (known)
- $\vec{x} \in R^n$ (unknown)

Case 1: m = n and A has full rank n.

- $det(A) = |A| \neq 0$.
- A^{-1} exists:

$$AA^{-1} = A^{-1}A = I_n$$
.

Solution:

$$\vec{x} = A^{-1}\vec{b}$$

Other Cases:

- m < n (under-determined)
- m > n (over-determined)
- rank(A) < min(m, n)

Eigenvalues and Eigenvectors

Definition 1: Let $A = ||a_{ij}||$, an n by n matrix of real values a_{ij} Suppose

$$\lambda \in R
\vec{v} \in R^n
A\vec{v} = \lambda \vec{v}$$

Then:

- λ is an **eigenvalue** of A
- $\vec{v} \in R^n$ is an **eigenvector** of A corresponding to λ

Solving for Eigenvalues/Eigenvectors:

- $(A \lambda I)\vec{v} = \vec{0}$. System of equations (linear in \vec{v})
- $det(A \lambda I) = |A \lambda I| = 0$. Roots of polynomial in λ of degree n(May be real/complex/repeated)

Eigenvalues and Eigenvectors

Theorem.
$$\max_{|\vec{v}|=1} |A\vec{v}| = \max\{|\lambda(A)|, \}$$
 (maximum absolute eigenvalue of A)

Proof: (to come)

Theorem. Suppose that the *n* by *n* matrix *A* has *n* independent eigenvectors $\{\vec{v}_i, j = 1, ..., n\}$

$$\begin{array}{rcl}
A\vec{v}_1 &=& \lambda_1\vec{v}_1 \\
A\vec{v}_2 &=& \lambda_2\vec{v}_2 \\
&\vdots
\end{array}$$

$$A\vec{v}_n = \lambda_n \vec{v}_n$$

Define the n by n matrix $S = [\vec{v}_1 \ \vec{v}_2 \ \cdots \ \vec{v}_n]$

- $AS = S\Lambda$, where $\Lambda = diag(\lambda_1, \dots, \lambda_n)$
- S^{-1} , the inverse matrix of S exists
- $A = S \Lambda S^{-1}$
- $S^{-1}AS = \Lambda$, (A is diagonalized by S)

Eigenvalues and Eigenvectors

Powers of a Diagonalizable Matrix A

- $A = S\Lambda S^{-1}$, where $S = [\vec{v}_1 \ \vec{v}_2 \ \cdots \ \vec{v}_n]$ $\Lambda = diag(\lambda_1, \lambda_2, \dots, \lambda_n)$
- $A^k = S\Lambda^k S^{-1}$, for positive integer k

Eigenvectors: columns of S (unchanged!) **Eigenvalues:** $\lambda_i(A^k) = [\lambda_i(A)]^k = \lambda_i^k$

Eigenvalues and Eigenvectors

Powers of a Diagonalizable Matrix A

- $A = S\Lambda S^{-1}$, where $S = [\vec{v}_1 \ \vec{v}_2 \ \cdots \ \vec{v}_n]$ $\Lambda = diag(\lambda_1, \lambda_2, \dots, \lambda_n)$
- $A^k = S\Lambda^k S^{-1}$, for positive integer k

Eigenvectors: columns of *S* (unchanged!) **Eigenvalues:** $\lambda_j(A^k) = [\lambda_j(A)]^k = \lambda_i^k$

State Equations in Kalman Filters

- \vec{u}_t : the *n*-dimensional state of a dynamical system at time t
- \vec{u}_0 , the system state at time t=0.
- State equation (deterministic):

$$\vec{u}_t = A\vec{u}_{t-1}, \ t = 1, 2, \dots$$

General Solution: $\vec{u}_t = A^t \vec{u}_0$.

State Equations in Kalman Filters

State Equations:

- \vec{u}_0 : initial state
- $\vec{u}_t = A\vec{u}_{t-1}, t = 1, 2, ...$
- $\vec{u}_t = A^t \vec{u}_0 = S \Lambda^t S^{-1} \vec{u}_0$.

where

$$S = [\vec{v}_1 \ \vec{v}_2 \ \cdots \ \vec{v}_n]$$

$$\Lambda = diag(\lambda_1, \lambda_2, \dots, \lambda_n)$$

State Equations in Kalman Filters

State Equations:

- \vec{u}_0 : initial state
- $\vec{u}_t = A\vec{u}_{t-1}, t = 1, 2, ...$
- $\vec{u}_t = A^t \vec{u}_0 = S \Lambda^t S^{-1} \vec{u}_0$.

where

$$S = [\vec{v}_1 \ \vec{v}_2 \ \cdots \ \vec{v}_n]$$

$$\Lambda = diag(\lambda_1, \lambda_2, \dots, \lambda_n)$$

Explicit Solution:

- $\{\vec{v}_1, \vec{v}_2, \dots \vec{v}_n\}$ are independent $(S^{-1} \text{ exists})$ \implies form a basis for R^n
- \exists (unique) c_1, c_2, \dots, c_n : $\vec{u}_0 = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_n \vec{v}_n$

State Equations in Kalman Filters

State Equations:

- \vec{u}_0 : initial state
- $\vec{u}_t = A\vec{u}_{t-1}, t = 1, 2, ...$
- $\vec{u}_t = A^t \vec{u}_0 = S \Lambda^t S^{-1} \vec{u}_0$.

where

$$S = [\vec{v}_1 \ \vec{v}_2 \ \cdots \ \vec{v}_n]$$

$$\Lambda = diag(\lambda_1, \lambda_2, \dots, \lambda_n)$$

Explicit Solution:

- $\{\vec{v}_1, \vec{v}_2, \dots \vec{v}_n\}$ are independent $(S^{-1} \text{ exists})$ \implies form a basis for R^n
- \exists (unique) c_1, c_2, \dots, c_n : $\vec{u}_0 = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_n \vec{v}_n$ $\implies \vec{u}_t = A^t \vec{u}_0 = S \Lambda^t S^{-1} \vec{u}_0$ $= c_1 \lambda_1^t \vec{v}_1 + c_2 \lambda_2^t \vec{v}_2 + \dots + c_n \lambda_n^t \vec{v}_n$

Key Theorem

Theorem. Let *A* be a Real Symmetric Matrix. Then the following holds:

• All eigenvalues are real.

Key Theorem

Theorem. Let *A* be a Real Symmetric Matrix. Then the following holds:

- All eigenvalues are real.
- If λ_1 and λ_2 are distinct eigenvalues with corresponding eigenvectors \vec{v}_1 and \vec{v}_2 , then

 \vec{v}_1 and \vec{v}_2 are orthogonal: $\vec{v}_1 \cdot \vec{v}_2 = 0$.

Key Theorem

Theorem. Let A be a Real Symmetric Matrix. Then the following holds:

- All eigenvalues are real.
- If λ_1 and λ_2 are distinct eigenvalues with corresponding eigenvectors \vec{v}_1 and \vec{v}_2 , then

$$\vec{v}_1$$
 and \vec{v}_2 are orthogonal: $\vec{v}_1 \cdot \vec{v}_2 = 0$.

• A is orthonormally diagonalizable

$$A = S\Lambda S^{-1} \text{ where}$$

$$\Lambda = diag(\lambda_1, \dots, \lambda_n)$$

$$S = [\vec{v}_1 \ \vec{v}_2 \ \cdots \ \vec{v}_n]$$

$$S^T = S^{-1}, \text{ i.e., } S^T S = I$$

$$\vec{v}_i^T \vec{v}_j = \delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

Theorem. Every m by n matrix A_{mn} of can be expressed as $A_{mn} = U_{mm} \Sigma_{mn} V_{nn}^T$, where

- U_{mm} is an $m \times m$ orthogonal matrix $(U_{mm}^T = U_{mm}^{-1})$
- Σ_{mn} is a (non-negative) diagonal matrix

$$\Sigma_{i,j} = \left\{ egin{array}{ll} \sigma_j, & i = j \ 0, & i
eq j \end{array}
ight. \left(egin{array}{ll} {\it each} \ \sigma_j \ge 0
ight) \end{array}
ight.$$

ullet V_{nn} is an n imes n orthogonal matrix $(V_{nn}^T = V_{nn}^{-1})$

Proof:

- Let $r \le n \le m$ be the rank of A.
- The symmetric matrix A^TA has rank r.
- Let $\sigma_1^2, \sigma_2^2, \dots, \sigma_r^2$ be the non-zero eigenvalues of $A^T A$.
- Let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_r$ be the orthonormal eigenvectors corresponding to the positive eigen values and let $\vec{v}_{r+1}, \ldots \vec{v}_n$ be orthonormal eigenvectors corresponding to the zero eigenvalues which are also orthogonal to the first $r \ \vec{v}_i$.

Proof (continued)

- For $1 \le j \le r$, define $\vec{u}_j = \frac{1}{\sigma_i} A \vec{v}_j$
- For any two i, j we have

$$\vec{u}_i^T \vec{u}_j = \frac{1}{\sigma_i \sigma_j} \vec{v}_i^T A^T A \vec{v}_j$$

$$= \frac{1}{\sigma_i \sigma_j} \vec{v}_i^T (A^T A \vec{v}_j)$$

$$= \frac{1}{\sigma_i \sigma_j} \vec{v}_i^T (\sigma_j^2 \vec{v}_j)$$

$$= \frac{\sigma_j}{\sigma_i} \vec{v}_i^T \vec{v}_j = \delta_{i,j} \quad (1 \text{ if } i = j, \text{ else } 0)$$

• Complete this collection of *m*-vectors to an orthonormal basis with $\vec{u}_{r+1},\ldots,\vec{u}_m$

$$U = [\vec{u}_1 \ \vec{u}_2 \ \cdots \vec{u}_m]$$

• Define the $n \times n$ matrix

$$V = [\vec{v}_1 \ \vec{v}_2 \ \cdots \vec{v}_n]$$

Proof (continued)

We can now write:

$$\begin{array}{lll} U^T A V & = & U^T [A \vec{v}_1 & A \vec{v}_2 & \cdots & A \vec{v}_n] \\ & = & U^T [\sigma_1 \vec{u}_1 & \sigma_2 \vec{u}_2 & \cdots & \sigma_n \vec{u}_n] \\ & = & [\sigma_1 U^T \vec{u}_1 \mid \sigma_2 U^T \vec{u}_2 \mid \cdots \mid \sigma_n U^T \vec{u}_n] \\ & = & [\sigma_1 \vec{e}_1 \mid \sigma_2 \vec{e}_2 \mid \cdots \mid \sigma_n \vec{e}_n] \\ & = & \Sigma \quad \text{note: upper-left block} & = diag(\sigma_1, \sigma_2, \dots, \sigma_n) \end{array}$$

Which gives:

$$A = (I_m)A(I_n)$$

$$= (UU^T)A(VV^T)$$

$$= (UU^T)A(VV^T)$$

$$= U(U^TAV)V^T$$

$$= U\Sigma V^T$$

Definition: The **singular values** of A are the square roots of the eigenvalues of A^TA . It is customary to order them:

$$\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n \ge 0$$
(last $n - r$ are equal to zero)

$$A = U\Sigma V^{T}$$

$$= [\vec{u}_{1} \mid \vec{u}_{2} \mid \cdots \mid \vec{u}_{n}] diag(\sigma_{1}, \sigma_{2}, \dots, \sigma_{n}) [\vec{v}_{1} \mid \vec{v}_{2} \mid \cdots \mid \vec{v}_{n}]^{T}$$

$$= \sigma_{1} \vec{u}_{1} \vec{v}_{1}^{T} + \sigma_{2} \vec{u}_{2} \vec{v}_{2}^{T} + \cdots + \sigma_{n} \vec{u}_{n} \vec{v}_{n}^{T}$$

$$= \sigma_{1} \vec{u}_{1} \vec{v}_{1}^{T} + \sigma_{2} \vec{u}_{2} \vec{v}_{2}^{T} + \cdots + \sigma_{r} \vec{u}_{r} \vec{v}_{r}^{T}$$
(Sum of r rank-1 matrices)

Note: The **reduced SVD** (for $n \le m$) can be written replacing the $m \times m$ U with the $m \times n$ sub-matrix consisting of the first n columns of U and replacing the $m \times n$ diagonal matrix Σ with the $n \times n$ upper-left sub matrix.

Perron-Frobenius Theorem

Theorem. Suppose $A = ||a_{i,j}||$ is an n by n Real Positive Matrix $(a_{i,j} > 0, \forall i, j)$. Then

• There is a real eigenvalue λ_0 such that all other eigenvalues satisfy

$$|\lambda| < \lambda_0$$
.

- There is a positive eigenvector \vec{v} corresponding to λ_0
- λ_0 is an eigenvalue of multiplicity 1.

Proof:

- Consider $\mathcal{T} = \{t : A\vec{x} \ge t\vec{x}, \text{ for some } \vec{x} \ge 0\}.$
- Claim: $t_{max} = sup\{t \in \mathcal{T}\}$ is the real eigenvalue λ_0

Perron-Frobenius Theorem

Proof (continued)

• Fix any $\vec{x} \ge 0$ ($\vec{x} \ne \vec{0}$). Then $A\vec{x} \ge t\vec{x}$ where $t = \min_j \{a_{j,j}\} > 0$. For each component i of $A\vec{x}$

$$[A\vec{x}]_i = \sum_{j=1}^n a_{i,j} x_j \ge a_{i,j} x_i$$

 $\ge \min_j (\{a_{j,j}\}) x_i = t x_i$

- The set $\mathcal{T} = \{t : A\vec{x} \ge t\vec{x}, \text{ for some } \vec{x} \ge 0\}$ must satisfy: $\{t : 0 < t \le \min_i \{a_{i,j}\}\} \subset \mathcal{T}$
- So $t_{max} = sup\{t \in \mathcal{T}\} > 0$
- Claim: $\exists \vec{x} > 0 : A\vec{x} = t_{max}\vec{x}$. $\Longrightarrow \lambda_0 = t_{max}$ is an eigenvalue with eigenvector \vec{x} .

Proof (continued)

• Suppose that \vec{x} is such that

$$A\vec{x} \geq t_{max}\vec{x}$$
 but $A\vec{x} \neq t_{max}\vec{x}$

- Define $\vec{y} = A\vec{x} t_{max}\vec{x} \ge \vec{0}$ (but $\ne \vec{0}$).
- $A\vec{y} > \vec{0}$ because A is strictly positive and $\vec{y} \ge \vec{0}$ and $\ne 0$. Consequently

$$egin{array}{lll} Aec{y} &>& ec{0} \ \Longrightarrow A(Aec{x}-t_{max}ec{x}) &>& ec{0} \ \Longrightarrow A(Aec{x}) &>& t_{max}(Aec{x}) \end{array}$$

but this contradicts the definition of t_{max} because it can be increased using the *n*-vector $(A\vec{x})$ instead of \vec{x} , It follows that there exists an $\vec{x} > \vec{0}$ (strictly) such that $A\vec{x} = t_{max}\vec{x}$.

Proof (continued)

Still to show: no eigenvalue is larger than $\lambda_0=t_{max}$ Suppose λ and \vec{z} are an eigenvalue/eigenvector pair:

$$A\vec{z} = \lambda \vec{z}$$
.

Note: λ may be complex and z may be complex and/or negative.

$$\lambda z = A\vec{z} \Longrightarrow |\lambda| \begin{bmatrix} |z_1| \\ |z_2| \\ \vdots \\ |z_n| \end{bmatrix} = \begin{bmatrix} |(Az)_1| \\ |(Az)_2| \\ \vdots \\ |(Az)_n| \end{bmatrix} \le A \begin{bmatrix} |z_1| \\ |z_2| \\ \vdots \\ |z_n| \end{bmatrix}$$

The last inequality follows because $|\sum_j a_{i,j}z_j| \leq \sum_j a_{i,j}|z_j|$, for each i. Thus it follows that $t = |\lambda| \in \mathcal{T}$ with

$$ec{x} = \left[egin{array}{c} |z_1| \ |z_2| \ dots \ |z_n| \end{array}
ight] ext{ such that } Aec{x} \geq tec{x}. ext{ Thus } |\lambda| \leq t_{max} = \lambda_0.$$

Proof (continued)

Suppose that eigenvalue $\lambda_0 = t_{max}$ has multiplicity at least 2.

- Let \vec{x} and \vec{y} be two distinct eigenvectors of norm 1.
- Since \vec{x} and \vec{y} are both eigenvectors of eigenvalue λ_0 , $\vec{x} \vec{y}$ must also be an eigenvector of eigenvalue λ_0 .
- Since \vec{x} and \vec{y} are distinct, the vector $\vec{x} \vec{y}$ has both positive and negative entries.
- But this is impossible because we showed that the eigenvector of λ_0 must have entries all with the same sign.

Financial News Sources

- Yahoo Finance: https://finance.yahoo.com/
- Wall Street Journal: https://www.wsj.com/
- Bloomberg: https://www.bloomberg.com/
- Marketwatch: https://www.marketwatch.com/
- Reuters: https://www.reuters.com/
- Zerohedge: https://www.zerohedge.com/
- CNBC: https://www.cnbc.com/

MIT OpenCourseWare https://ocw.mit.edu

18.642 Topics in Mathematics with Applications in Finance Fall 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.