18.642 Lecture Notes One-Period Financial Models

Peter J. Kempthorne

September 8, 2020

${\bf Contents}$

1	One-Period Economy with Two Assets		2
	1.1	Prices and Returns	2
	1.2	Portfolios of Assets	2
	1.3	Contingent Claims and Replicating Portfolios	3
2	One-Period Economy: General Case		
	2.1	Single-Period Financial Model	6
	2.2	Portfolios	7
	2.3	Contingent Claims	8
	2.4	Arbitrage-Free Market Models and Pricing Measures	10
3	Visualizing Assets/Portfolios with ggplot2		13
	3.1	Simple Two-Asset Portfolios	13
	3.2		18
	3.3	Portfolios Allowing Shorting	20
4	Ref	erences	23

1 One-Period Economy with Two Assets

1.1 Prices and Returns

Consider a one-period economy beginning at t=0 and ending at t=T. Suppose there are two assets:

• B: bond with prices B_t , at times t = 0, T

At t = 0, the price B_0 is known. At the end of the period (t = T), the price of the bond is also known:

$$B_T = B_0 \times (1 + r_f T).$$

The bond is a risk-free asset which has an absolute return

$$R_B = B_T - B_0 = B_0(r_f T)$$

and a percentage return

$$r_B = \frac{R_B}{B_0} = r_f T.$$

Also, the simple rate of return is $r_f = \frac{1}{T} \frac{B_T - B_0}{B_0} = \frac{1}{T} (\frac{B_T}{B_0} - 1)$.

• Stock S: with prices S_t at times t = 0, T. At t = 0, the stock price S_0 is known. At the end of the period (t = T), the price of the stock is uncertain, depending on the state of the economy.

To model the state of the economy, let ω_t denote the state of the economy at time t. At the beginning of the period, the state of the economy ω_0 is known, i.e., the prices of B and S are known. At the end of the period (t = T), suppose the economy could have two states $\omega \in \Omega_T = \{d, u\}$:

 $\omega = u$: market improves (stock goes up)

 $\omega = d$: market declines (stock goes down)

and the price of the stock is

$$S_T = \left\{ \begin{array}{ll} S_T^u, & if & \omega_T = u \\ S_T^d, & if & \omega_T = d. \end{array} \right.$$

where $S_T^d < S_T^u$.

The stock has an **absolute return** of $R_S = S_T - S_0$ and a **percentage return** of $r_S = \frac{S_T}{S_0} - 1$. These are uncertain, depending on the state of the economy at t = T.

1.2 Portfolios of Assets

Suppose an investor has a portfolio at the beginning of the period consisting of π_S shares of the stock S and π_B units of the bond B.

It is convenient to represent the portfolio as a 2-vector:

$$ec{\pi} = \left[egin{array}{c} \pi_B \ \pi_S \end{array}
ight].$$

Let V_0 be the value (cost) of the portfolio at t = 0 and V_T be the value (payoff) of the portfolio at t = T. These are given by the known value at t = 0:

$$V_0 = \pi_B B_0 + \pi_S S_0$$

and the state-dependent value at t = T:

$$V_T = \begin{cases} \pi_B B_T + \pi_S S_T^u, & if \quad \omega_T = u \\ \pi_B B_T + \pi_S S_T^d, & if \quad \omega_T = d \end{cases}$$

Contingent Claims and Replicating Portfolios 1.3

For the One-Period Simple economy, consider a **contingent claim** C with value/cost C_0 at t=0 and payoff C_T at t=T. The payoff at t=T is state dependent given by

$$\vec{C}_T = \left[egin{array}{c} C_T^d \ C_T^u \end{array}
ight].$$

 $\vec{C}_T = \left[\begin{array}{c} C_T^d \\ C_T^u \end{array} \right].$ where we assume that C_T^d and C_T^u are known.

With respect to the contingent claim C, a portfolio

$$\vec{\pi} = \begin{bmatrix} \pi_B \\ \pi_S \end{bmatrix}$$

 $\vec{\pi} = \left[\begin{array}{c} \pi_B \\ \pi_S \end{array}\right]$ of the assets B and S is a **replicating portfolio** if it satisfies:

$$\pi_B B_T + \pi_S S_T^d = C_T^d$$

$$\pi_B B_T + \pi_S S_T^u = C_T^u$$

Replicating portfolios of contingent claims are critical features of financial market models. Consider the following questions:

- For known, given payoffs of the contingent claim $\vec{C}_T = (C_T^u, C_T^d)$, depending on the state, solve this system of equations for π_S and π_B the units of B and S in the replicating portfolio.
- Under what conditions is (i) the solution unique; (ii) the solution is not unique; (iii) the solution does not exist. (These are linear algebra questions)
- What additional assumptions are required for any contingent claim to have a replicating portfolio?

Allowing π_S and π_B to take arbitrary real numbers relates to unlimited liquidity (i.e., asset prices do not depend on quantity traded), divisibility of investments (i.e., allowing shares/unit π_B and π_S to be fractional), ability to short sell assets (i.e., allowing π_B and/or π_S to be negative).

Exercises (1-3):

1. In the general case of the One-Period Economy, prove that the hypothesis of no arbitrage is satisfied only if the following strict inequality is satisfied:

$$\frac{S_T^d}{1 + rT} < S_0 < \frac{S_T^u}{1 + r_f T}.$$

Hint: Consider a violation of either inequality and construct a portfolio and trading strategy with arbitrage (i.e., its cost C_0 at t = 0 is lower than its payoffs at t = T).

2. Consider the special case of the simple economy with

$$B_0 = 100$$
 and $B_T = 103$.

$$S_0 = 100$$
 and $S_T^u = 130$, $S_T^d = 90$.

and the space of vector payoffs at t=T of portfolios $\vec{\pi}=\begin{bmatrix} \pi_B \\ \pi_S \end{bmatrix}$

$$\vec{C}_T = \begin{bmatrix} \pi_B B_0 + \pi_S S_T^d \\ \pi_B B_0 + \pi_S S_T^u \end{bmatrix}$$
, subject to constraints on $\vec{\pi}$.

Consider the contingent claim P corresponding to the simple \mathbf{Put} option with \mathbf{Strike} price K=100. This option gives the holder the option to sell the stock S for strike price at t=T. The payoff at t=T depends on the state and is given by

$$P_T = max(0, K - S_T)$$

- (a) Find the portfolio $\vec{\pi}^* = (\pi_B^*, \pi_S^*)^T$ which replicates the payoffs at t=T of the put option.
- (b) Solve the t = 0 price of the replicating portfolio in (a).
- (c) Is the price in (b) an arbitrage-free price? Hint: see problem 3.
- 3. In the general case of exercise 1, suppose the contingent claim (derivative) C is arbitrage free.
 - (a) Show that the cost/value of C at t=0 is given by

$$C_0 = \pi_B^* B_0 + \pi_S^* S_0$$

(b) This formula can be reexpressed as

$$C_0 = \left(\frac{S_0 - (1 + rT)^{-1} S_T^d}{S_T^u - S_T^d}\right) C_T^u + \left(\frac{(1 + rT)^{-1} S_T^u - S_0}{S_T^u - S_T^d}\right) C_T^d$$

(c) Note that

$$(1+rT)^{-1}S_T^u$$

is the discounted price of S_T at t = T if $\omega = u$, and

$$(1+rT)^{-1}S_T^d$$

is the discounted price of S_T at t = T if $\omega = d$.

Also, $S_0(1+rT)$ is the **Forward Value** of a bond B position bought at t=0 by selling one unit of stock S at t=0.

Show that the arbitrage-free cost of the contingent claim can be expressed as:

$$C_0 = (1+rT)^{-1} \left[\left(\frac{(1+rT)S_0 - S_T^d}{S_T^u - S_T^d} \right) C_T^u + \left(\frac{S_T^u - (1+rT)S_0}{S_T^u - S_T^d} \right) C_T^d \right]$$

= $(1+rT)^{-1} [q^u C_T^u + q^d C_T^d]$

where

$$\begin{array}{rcl} q^u & = & \left(\frac{(1+rT)S_0 - S_T^d}{S_T^u - S_T^d}\right) \\ q^d & = & \left(\frac{S_T^u - (1+rT)S_0}{S_T^u - S_T^d}\right). \end{array}$$

Note: the measure Q on $\Omega = \{d, u\}$ such that

$$Q(u) = q^u = Prob(\omega = u)$$
, and

$$Q(d) = q^d = Prob(\omega = d),$$

is a probability measure/distribution. It is called the **Pricing Measure** and the probabilities q^u, q^d (which sum to 1) are called **risk-neutral probabilities**. In the next secton we will see that contingent claims can be expressed as discounted expected payoffs with respect to the risk-neutral/Pricing measure

$$C_0 = B_0 E^Q (C_T / B_T),$$

where the expection (E^P) for general probability measures P uses Q.

2 One-Period Economy: General Case

The simple one-period economy with two assets and two states extends to a general case of n assets and m states at period end.

2.1 Single-Period Financial Model

Consider the following setup and notation for the model of the economy:

One Period: The single period has duration T, with

period start (t = 0) and period end (t = T).

n Assets: j = 1, 2, ..., n

Asset Prices at Period Start (t = 0): $\{P_0^j, j = 1, ..., n\}$

These prices are known at t = 0. Define the $(1 \times n)$ matrix whose first row is the *n*-vector of prices:

Initial Price Matrix: $A_0 = \begin{bmatrix} P_0^1 & P_0^2 & \cdots & P_0^n \end{bmatrix}$ $(1 \times n)$

State-Space at Period End (t = T): $\Omega_T = \{\omega_i = 1, 2, ..., m\}$

Let ω denote the state of the economy at time t = T. At time t = 0, the end-period state ω is uncertain. However, suppose that Ω_T , the space of possible possible states (or scenarios) is known and of size m.

Ultimately, the model of the simple economy could specify a probability measure on Ω_T , giving the real-world conditional probability distribution of ω as a random variable given t=0. For now, we analyze the simple economy with knowledge of Ω_T , but no knowledge of the relative likelihood of different states at time t=T.

Prices at Period End: $\{P_T^j, j=1,\ldots,n\}$

For each asset j, let P_T^j denote the asset price at time t=T. At time t=0, the time t=T asset price value P_T^j is a random variable. Suppose this random variable depends only on the state ω at time t=T. For now we focus on the possible outcomes of the random variables, not their relative likelihoods (which would be given by an assumed probability model on Ω_T).

Denote the price of asset j at time t = T for state ω_i by:

$$A_{i,j} = P_T^j(\omega_i).$$

Define the time (t=T) price matrix A with dimension $(m \times n)$ as follows:

$$A = [\vec{a}_1 \ \vec{a}_2 \ \cdots \ \vec{a}_n] = \begin{bmatrix} A_{1,1} & A_{1,2} & \cdots & A_{1,n} \\ A_{2,1} & A_{2,2} & \cdots & A_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m,1} & A_{m,2} & \cdots & A_{m,n} \end{bmatrix}.$$

As indicated \vec{a}_j , the jth column-vector of A equals the m-vector of prices for asset j over the m states

$$\vec{a}_j = \begin{bmatrix} A_{1,j} \\ A_{2,j} \\ \vdots \\ A_{m,j} \end{bmatrix} = \begin{bmatrix} P_T^j(\omega_1) \\ P_T^j(\omega_2) \\ \vdots \\ P_T^j(\omega_m) \end{bmatrix} \in R^m.$$

For each asset j, the ith coordinate of \vec{a}_j equals its price at t = T, if the (t = T) state is ω_i .

Financial Model and Asset Price Processes:

Define the Asset Price Process:

$$\mathcal{A} = \{P_t^1, \dots, P_t^n; t = 0, T\},\$$

the collection of asset price processes for the n assets. The value P_0^j is the current price of the jth asset and P_T^j , the price of the jth asset at time T is a random variable determined by the state outcome $\omega \in \Omega_T$.

The Single-Period Financial Model $\mathcal{M} = (\Omega_T, \mathcal{A})$ is specified by the state-space Ω_T and the state-dependent prices of the n assets at time T.

2.2 Portfolios

The theory of asset pricing in single-period financial models works extensively with the pricing of portfolios. The following discussion develops useful terminology and notation.

Portfolio of Assets: Π and $\vec{\pi}$

Consider a portfolio of assets:

Portfolio
$$\Pi = \{\pi_i \text{ units of asset } j, j = 1, \dots, n\}$$

where π_j denotes the unit quantity of asset j. If j is a stock then the units are shares, and if j is a bond, or financial contract (e.g., option, future, or derivative), the units are number of bonds or contracts.

Define $\vec{\pi}$ to be the *n*-vector of asset quantities:

$$\vec{\pi} = \begin{bmatrix} \pi_1 \\ \pi_2 \\ \vdots \\ \pi_n \end{bmatrix} \in R^n$$

When the meaning is clear, it will be convenient to equate the portfolio Π and the *m*-vector $\vec{\pi}$. Trades buying a portfolio take place only at time t=0 and trades selling a portfolio take place only at time t=T.

Portfolio Cost (t=0) and Payoff (t=T): Values of Portfolio $\vec{\pi}$

To analyze a fixed portfolio $\vec{\pi}$ we work with its value $V_t(\vec{\pi})$, at period start (t=0) and end (t=T). Under the assumption of zero transactions costs,

 $V_0(\vec{\pi})$ is the **cost** of buying portfolio $\vec{\pi}$ at t=0 and $V_T(\vec{\pi})$ is the **payoff** from selling portfolio $\vec{\pi}$ at t=T.

In the simple economy, the value of portfolio $\vec{\pi}$ at time t=0 is known:

$$V_0(\vec{\pi}) = \sum_{j=1}^n \pi_j P_0^j = A_0 \vec{\pi}$$

This is the dot product of $\vec{\pi}$ and \vec{A}_0 , the *n*-vector corresponding to the row of the $(1 \times n)$ matrix A_0 .

The value of portfolio $\vec{\pi}$ at time t=T is uncertain with state-dependent values given by the m-vector:

$$\vec{V}_{T}(\vec{\pi}) = \begin{bmatrix} V_{T}(\vec{\pi}; \omega_{1}) \\ V_{T}(\vec{\pi}; \omega_{2}) \\ \vdots \\ V_{T}(\vec{\pi}; \omega_{m}) \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^{n} \pi_{j} P_{T}^{j}(\omega_{1}) \\ \sum_{j=1}^{n} \pi_{j} P_{T}^{j}(\omega_{2}) \\ \vdots \\ \sum_{j=1}^{n} \pi_{j} P_{T}^{j}(\omega_{m}) \end{bmatrix}$$
$$= \sum_{j=1}^{n} \pi_{j} \vec{a}_{j}$$
$$= A\vec{\pi}$$

Let us introduce the following notation for the row vectors of A:

$$\vec{A}_i = [A_{i,1} \quad A_{i,2} \quad \cdots \quad A_{i,m}], i = 1, \ldots, n$$

We can write:

$$A = \left[\begin{array}{c} \vec{A}_1 \\ \vec{A}_2 \\ \vdots \\ \vec{A}_m \end{array} \right]$$

If there are no transaction costs, the payoff from selling portfolio $\vec{\pi}$ at time t=T in state ω_i is

$$V_T^i = Payoff_T(\vec{\pi}, \omega_i) = \vec{A}_i \cdot \vec{\pi}.$$

The m-vector of payoffs of portfolio $\vec{\pi}$ for each of the m states at time t=T is

$$ec{V}_T = \left[egin{array}{c} V_T^1 \ V_T^2 \ dots \ V_T^m \end{array}
ight] = \left[egin{array}{c} ec{A}_1 ec{\pi} \ ec{A}_2 ec{\pi} \ dots \ ec{A}_m ec{\pi} \end{array}
ight].$$

This payoff/value vector is the vector of dot products of the row-vectors of A and the portfolio vector $\vec{\pi}$ (all n-vectors).

2.3 Contingent Claims

In context of the Single-Period Financial Model, define a **contingent claim** C to be financial security with price process $\{C_t, t = 0, T\}$.

$$C_0 =$$
Price of C at $t = 0$.
 $C_T =$ Price of C at $t = T$.

The price of C at time T is a random variable depending on the state, with values given by the m-vector:

$$\vec{C}_{\pmb{T}} = \left[\begin{array}{c} C_T^1 \\ C_T^2 \\ \vdots \\ C_T^m \end{array} \right]$$

The holder of contingent claim C realizes the payoff at time T given by \vec{C}_T : the payoff of C, contingent on the state ω_i is C_T^i .

A critical issue for a contingent claim is whether the financial security can be hedged. With a single-period financial model $\mathcal{M} = (\Omega_T, \mathcal{A})$, asset pricing theory provides a framework for analyzing the following questions:

- Can the contingent claim security be replicated by a portfolio of the n assets? If so the m-vector of state-dependent payoffs \vec{C}_T are equal to those of the portfolio.
- If the contingent claim security can be replicated by a portfolio, is the portfolio unique?
- Does the model \mathcal{M} determine C_0 , the price of the contingent claim security at t = 0?

Basic linear algebra theory for solving systems of linear equations resolves the first two questions. Suppose $\vec{C}_T \in R^m$ specifies the state-dependent payoff/value of a contingent claim C. A portfolio $\vec{\pi} \in R^n$ would replicate the payoffs if:

$$\vec{V}(\vec{\pi}) = \vec{C}_T$$

i.e., $A\vec{\pi} = \vec{C}_T$

- Such a replicating portfolio $\vec{\pi}$ exists if $\vec{C}_T \in colSpace(A)$.
- If it exists, the replicating portfolio $\vec{\pi}$ is unique if the column-vectors of A are linearly independent.

We can express these properties as a theorem:

Theorem: For the market model \mathcal{M} :

- 1. A replicating portfolio $\vec{\pi}$ exists for any contingent claim C with state-dependent payoffs $\vec{C}_T \in \mathbb{R}^m$, if and only if A, the $(m \times n)$ price matrix of the n assets in the m states, has full row rank equal to m.
- 2. The replicating portfolio $\vec{\pi}$ in (a) is unique if the column rank of A is also m, i.e., there market has m assets whose state-dependent price vectors are linearly independent.

For the third question, we need the concepts of arbitrage and arbitragefree market models which we introduce in the next section.

2.4 Arbitrage-Free Market Models and Pricing Measures

An important concept in asset pricing is **arbitrage**: is it possible to implement a trading strategy in a market model which guarantees a profit?

Definition: Arbitrage In a single-period market model $\mathcal{M} = (\Omega_T, \mathcal{A})$ a portfolio $\vec{\pi} = (\pi_1, \dots, \pi_n)$ is an arbitrage portfolio if the net gain/loss from buying the portfolio at t = 0 and selling the portfolio at t = T satisfies:

$$V_T(\vec{\pi}) \geq 0$$

for all states ω_i with strict inequality for at least one i, and

$$V_0(\vec{\pi}) \le 0.$$

This definition applies a weak definition of *guaranteeing* a profit in that the trading strategy is guaranteed to never incur a loss and to incur a profit in at least one state ω_i .

As explained below, The absence of arbitrage in a single-period market model depends critically on the existence of a *Pricing Measure* which we now define.

Definition: Pricing Measure A probability measure Q on Ω_T given by

$$Q(\omega_i) = q_i > 0, i = 1, ..., m, \text{ and } \sum_{i=1}^m q_i = 1.$$

is a *Pricing Measure* if asset prices can be expressed as:

$$P_0^j = \alpha E^Q[P_T^j] = \alpha \sum_{i=1}^m q_i P_T^j(\omega_i), j = 1, \dots, n,$$

where $\alpha > 0$ is a discount factor applied to every asset.

This state-by-state expression can be written for all states in row-vector-matrix form as:

$$A_0 = \alpha \cdot \vec{q}^T A,$$

which states that the time t=0 prices are the probability-weighted statedependent outcomes (using probabilities in \vec{q}), discounted by the constant factor $\alpha > 0$.

With this definition, we can now state:

Fundamental Theorem of Asset Pricing (Part 1) In a discrete, single-period economy, if all states/scenarios in Ω_T are possible, then

1. There is no arbitrage if and only if there is a pricing measure for which all scenarios are possible.

See Albanese and Campolieti (2006, section 1.1) for a detailed proof of this theorem.

With this theorem we can determine whether a single-period market model $\mathcal{M} = (\Omega_T, \mathcal{A})$ is arbitrage free:

• Consider solving the system of equations:

$$A_0 = \vec{\psi}^T A$$
,

where $\vec{\psi} = (\psi_1, \dots, \psi_m)$.

- Suppose a solution vector $\vec{\psi}$ satisfies $\psi_i > 0$ for all i.
- Then a pricing measure Q can be defined with

$$q_i = \psi_i / \sum_{k=1}^m \psi_k$$
, and $\alpha = \sum_{k=1}^m \psi_k$

• By the theorem, there is no arbitrage in the market model \mathcal{M} .

An important concept in asset pricing theory is whether a financial model is *complete*.

Definition: A single-period financial model $\mathcal{M} = (\Omega_T, \mathcal{A})$ is *complete* if any contingent claim C can be replicated by a portfolio $\vec{\pi} \in \mathbb{R}^n$. That is, for any $\vec{C}_T \in \mathbb{R}^m$,

the $(m \times 1)$ vector of state-dependent payoffs for the contingent claim C, there exists a portfolio $\vec{\pi} \in R^n$ of the n-assets which replicates the time-T payoffs: $A\vec{\pi} = \vec{C}_T$.

The second part of the fundamental theorem details the condition for a market model to be complete.

Fundamental Theorem of Asset Pricing (Part 2) In a discrete, single-period economy, if all states/scenarios in Ω_T are possible, then

• The financial model is complete with no arbitrage if and only if the pricing measure is unique.

From the discussion of Part 1 of the theorem, the pricing measure is unique if the solution for $\vec{\psi}$ is unique. From linear algebra theory, the solution to the system of equations

$$A^T \vec{\psi} = A_0^T$$

is unique only if A_0 is in the rowspace of A, and the row-rank of A is m. This implies that the number of assets in \mathcal{M} is at least n=m. If n>m, then the all n assets j have payoffs and costs that are replicated, i.e., linearly dependent, on m assets whose time-T payoffs are linearly independent and time-0 costs all are positive.

When a market model is not arbitrage free, this theorem motivates a simple approach to identifying arbitrage opportunities. This approach uses the concept of *Arrow-Debreu Securities* which have the following definition:

Definition: Arrow-Debreu Security In a market model $\mathcal{M} = (\Omega_T, \mathcal{A})$, an Arrow-Debreu Security for state $\omega_i \in \Omega_T$ is the contingent claim $E^{(i)}$ which has time T payoff equal to \$1 if $\omega = \omega_i$ and \$0 otherwise.

For a market model which is not arbitrage free, the following approach identifies Arrow-Debreu securities which can be replicated if the market is complete which have zero or negative cost. Every portfolio replicating an Arrow-Debreu security is an arbitrage opportunity in the market model.

- Let $\vec{\psi}$ be a solution to $A_0 = \vec{\psi}^T A$.
- If the market is complete and an arbitrage opportunity exists, it must be that at least one $\psi_i \leq 0$, else $\vec{\psi}$ would define a pricing measure and discount factor (as detailed above).
- For an index i with $\psi_i \leq 0$, define $\vec{\pi}$ to be the portfolio that replicates the ith Arrow-Debreu Security $E^{(i)}$ which has a payoff of \$1 in state ω_i and \$0 in all other states. The m-vector of time-T payoffs is:

$$\vec{E}_T^{(i)} = \vec{e}_i,$$

where \vec{e}_i is the *i*th column of the order-*m* identity matrix I_m .

Constructing the portfolio $\vec{\pi}$ to replicate $E^{(i)}$, the portfolio vector $\vec{\pi}$ must satisfy:

$$\vec{V}_T(\vec{\pi}) = A\vec{\pi} = \vec{e}_i = \vec{E}_T^{(i)}.$$

• The time t=0 price of the replicating portfolio $\vec{\pi}$ is:

$$V_0(\vec{\pi}) = A_0 \vec{\pi},$$

and substituting $A_0 = \vec{\psi}^T A$ from above we have

$$\begin{array}{rcl} V_0(\vec{\pi}) & = & [\vec{\psi}^T A] \vec{\pi} = \vec{\psi}^T [A \vec{\pi}] \\ & = & \vec{\psi}^T [\vec{e_i}] \\ & = & \psi_i \leq 0. \end{array}$$

Thus, the Arrow-Debreu security for state ω_i is an arbitrage opportunity.

3 Visualizing Assets/Portfolios with ggplot2

3.1 Simple Two-Asset Portfolios

Consider the two-asset, two-state model \mathcal{M} where asset 1 is the bond B and asset 2 is the stock S:

the special case of the simple economy with

$$B_0 = 100$$
 and $B_T = 103$.
 $S_0 = 100$ and $S_T^u = 130$, $S_T^d = 90$.

The space of vector payoffs at t=T of portfolios $\vec{\pi}=\begin{bmatrix} \pi_B \\ \pi_S \end{bmatrix}$ are given by

$$\vec{C}_T = \begin{bmatrix} \pi_B B_0 + \pi_S S_T^d \\ \pi_B B_0 + \pi_S S_T^u \end{bmatrix}$$
, subject to constraints on $\vec{\pi}$.

```
> # Define the row matrix of t=0 prices B_0 and S_0
> A0=matrix(c(100,100),nrow=1,ncol=2)
> # Add dimension names for rows and columns
> dimnames(A0)<-list(c("Price_0"), c("Bond", "Stock"))</pre>
> AO
        Bond Stock
Price_0 100
> # Define the matrix of t=T payoffs/prices for B_T and S_T
      where row 1 corresponds to state \omega=d and
            row 2 corresponds to state \omega=u
            column 1 corresponds to the Bond
            column 2 corresponds to the Stock
> A = cbind(as.matrix(c(103, 103)), as.matrix(c(90, 130)))
> # Add dimension names
> dimnames(A)<-list(c("Payoff_T_d", "Payoff_T_u"), c("Bond", "Stock"))</pre>
           Bond Stock
Payoff_T_d 103
Payoff_T_u 103
                  130
> # When using ggplot2, data are represented in data frames
> is.data.frame(A)
```

[1] FALSE

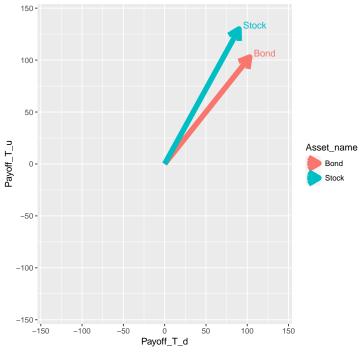
> A.df<-data.frame(A)

> Atranspose.df

> Atranspose.df<-data.frame(t(A))

```
Payoff_T_d Payoff_T_u
Bond
             103
                        103
              90
                        130
Stock
> # Add Asset_name as a variable/field in Atranspose.df
> Atranspose.df$Asset_name<-dimnames(Atranspose.df)[[1]]</pre>
> Atranspose.df
      Payoff_T_d Payoff_T_u Asset_name
                        103
{\tt Bond}
             103
                                   Bond
Stock
              90
                        130
                                  Stock
> library(ggplot2)
> #
> # Figure AA: Plot payoff vectors of Two Assets at t=T
        Note: the function arrow() specifies the head of the arrows
> g1<-ggplot(data=Atranspose.df,
             aes(x=Payoff_T_d, y=Payoff_T_u,
                 label=Asset_name, color=Asset_name))
 g1 +geom_segment(aes(x=0,y=0,xend=Payoff_T_d,yend=Payoff_T_u),
                    size=3, arrow = arrow(length = unit(0.5, "cm")))+
      geom_text(aes(label=Asset_name), hjust=0.,vjust=1.,
            nudge_x=5, nudge_y=7) +xlim(-140,140) + ylim(-140,140) +
      ggtitle("Fig 1. Payoff_T Vectors of Two Assets")
```

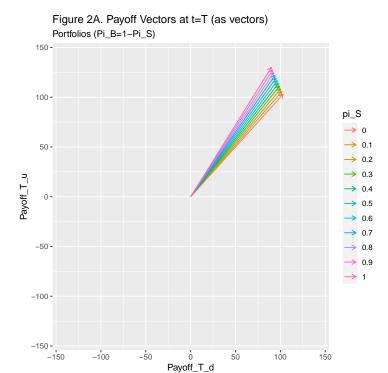
Fig 1. Payoff_T Vectors of Two Assets



Consider next plot equal to Payoff vectors of collection of portfolios

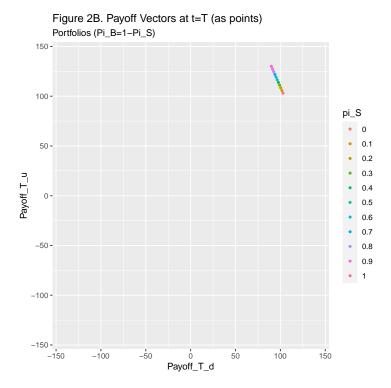
```
> # Create a data frame data.portfolios
> # with rows corresponding to
> # portfolio cases which contain variables
     pi_B
              portfolio weights of B
> #
     pi_S
              portfolio weight of S
     Value_0 value/cost of portfolio at t=0
     Payoff_T_u payoff of portfolio at t=T for \omega=u
     Payoff_T_d payoff of portfolio at t=T for \omega=d
     Profit_T_u profit of portfolio at t=T for \omega=u
     Profit_T_d profit of portfolio at t=T for \omega=d
> # pi_B and pi_S correspond to $\pi_B $ and $\pi_S$
> # Consider evaluating portfolios that let these fractions vary
> # For different cases of sets of portfolios, create a data frame
> # of the portfolio vectors in different rows
> # with weights in respective columns
> list.pi_S=seq(0,1,.1)
> df.pivecs.1<-data.frame(pi_B=1-list.pi_S,pi_S=list.pi_S)</pre>
> df.pivecs.1
   pi_B pi_S
   1.0 0.0
1
2
   0.9 0.1
   0.8 0.2
   0.7 0.3
5
   0.6 0.4
6
   0.5 0.5
7
   0.4 0.6
   0.3 0.7
8
9
   0.2 0.8
10 0.1 0.9
11 0.0 1.0
> # Create the data frame data.portfolios
> # with portfolio variables in the columns/fields
> for (i in 1:NROW(df.pivecs.1)){
     pivec=as.vector(df.pivecs.1[i,])
      Value_0=sum(A0*pivec)
     Payoff_T_d=sum(A[1,]*pivec)
     Payoff_T_u=sum(A[2,]*pivec)
     Profit_T_d=Payoff_T_d-Value_0
     Profit_T_u=Payoff_T_u-Value_0
```

```
new.data.portfolios<-data.frame(pi_B=pivec[1],</pre>
                                  pi_S=pivec[2],
                                  Value_0=Value_0,
                                  Payoff_T_d=Payoff_T_d,
                                  Payoff_T_u=Payoff_T_u,
                                  Profit_T_d=Profit_T_d,
                                  Profit_T_u=Profit_T_u)
        if (i==1){
          data.portfolios<-new.data.portfolios
                   }else{
        data.portfolios <- rbind (data.portfolios, new.data.portfolios)
+ }
> data.portfolios.1=data.portfolios
> # load library ggplot2
> library(ggplot2)
   We now use ggplot to plot the payoff vectors
           \vec{C}_t = (Payoff_T^d, Payoff_T^u)^T
for every portfolio in the set. Note that the color of the vectors varies with the
\pi_S = pi_S, portfolio weight on the stock S.
> data.portfolios.1$pi_S <-as.factor(data.portfolios.1$pi_S)</pre>
> # Figure 2A: Plot payoffs as vectors
> g1<-ggplot(data=data.portfolios.1,aes(x=Payoff_T_d,y=Payoff_T_u))</pre>
> g2<-g1 + geom_segment(aes(x=0,y=0,xend=Payoff_T_d,yend=Payoff_T_u,
                          col=pi_S),size=.5, arrow = arrow(length = unit(0.2, "cm")))+
    xlim(c(-140,140)) + ylim(c(-140,140))
> g2 + ggtitle("Figure 2A. Payoff Vectors at t=T (as vectors)",
                subtitle="Portfolios (Pi_B=1-Pi_S)")
```



In the next plot, we display the payoff vectors as points. When considering more complex sets of portfolios, the points display is useful because it conveys the same information in a simpler form.

```
> # Figure 2B: Plot payoffs as points
> g1<-ggplot(data=data.portfolios.1,aes(x=Payoff_T_d,y=Payoff_T_u))
> g2<-g1+ geom_point(aes(col=pi_S),size=1) + xlim(c(-140,140)) +ylim(c(-140,140))
> g2 + ggtitle("Figure 2B. Payoff Vectors at t=T (as points)",
+ subtitle="Portfolios (Pi_B=1-Pi_S)")
>
```



3.2 Portfolios Satisfying Simple Constraints

Now, we consider different constraints on the portfolios by defining sets of portfolios satisfying certain constraints

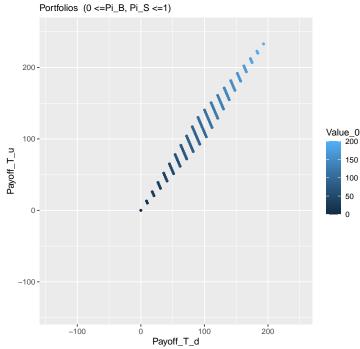
```
> # Consider df.pivecs that lets pi_B and pi_S range between 0 and 1
> list.pi_S=seq(0,1,.1)
> list.pi_B=seq(0,1,.1)
> for (i in 1:length(list.pi_B)){ for (j in 1:length(list.pi_S)){
    pivec=c(list.pi_B[i], list.pi_S[j])
    if ((i==1)&&(j==1)){
      df.pivecs<-data.frame(pi_B=pivec[1], pi_S=pivec[2])} else {</pre>
        df.pivecs<-rbind(df.pivecs,</pre>
                         data.frame(pi_B=pivec[1], pi_S=pivec[2]))}
+ }
+ }
> df.pivecs.2<-df.pivecs
    head(df.pivecs.2)
 pi_B pi_S
     0.0
     0 0.1
```

```
3
     0 0.2
4
     0 0.3
5
     0 0.4
6
     0 0.5
    tail(df.pivecs.2)
    pi_B pi_S
116
       1 0.5
117
       1 0.6
118
       1 0.7
119
       1 0.8
120
       1 0.9
121
       1 1.0
> # Write a function that creates data frame with portfolio
> # attributes corresponding to portfolio weights in row of input
> # data frame
> fcn.data.portfolios<-function(df.pivecs){
    for (i in 1:NROW(df.pivecs)){
      pivec=as.vector(df.pivecs[i,])
      Value_0=sum(A0*pivec)
      Payoff_T_d=sum(A[1,]*pivec)
      Payoff_T_u=sum(A[2,]*pivec)
      Profit_T_d=Payoff_T_d-Value_0
      Profit_T_u=Payoff_T_u-Value_0
      new.data.portfolios<-data.frame(pi_B=pivec[1],</pre>
                                pi_S=pivec[2],
                                 Value_0=Value_0,
                                 Payoff_T_d=Payoff_T_d,
                                 Payoff_T_u=Payoff_T_u,
                                 Profit_T_d=Profit_T_d,
                                 Profit_T_u = Profit_T_u
        if (i==1){
          data.portfolios<-new.data.portfolios
        data.portfolios <- rbind (data.portfolios, new.data.portfolios)
+ }
+ return(data.portfolios)
+ }
```

We use the new function and the data frame of portfolio vectors to create a new data frame of portfolio attributes for the set of portfolios. Note that the initial cost of the portfolio is a portfolio variable used to color the points. The greater the payoffs, the higher the initial cost.

```
> data.portfolios.2<-fcn.data.portfolios(df.pivecs.2)
> # Figure 3: Plot payoffs as points for data.portfolios.2
> g1<-ggplot(data=data.portfolios.2,aes(x=Payoff_T_d,y=Payoff_T_u))
> g2<-g1+ geom_point(aes(col=Value_0),size=1) + xlim(c(-140,250)) +ylim(c(-140,250))
> # Note, the xlim and ylim values are set manually
> g2 + ggtitle("Figure 3. Payoff Vectors at t=T (as points)",
+ subtitle="Portfolios (0 <=Pi_B, Pi_S <=1)")</pre>
```

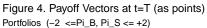
Figure 3. Payoff Vectors at t=T (as points)



3.3 Portfolios Allowing Shorting

Now, we consider portfolios that allow shorting of either the Bond B or the stock S.

```
+ }
+ }
> df.pivecs.3<-df.pivecs
  head(df.pivecs.3)
 pi_B pi_S
   -2 -2.0
1
  -2 -1.9
   -2 -1.8
  -2 -1.7
5
  -2 -1.6
  -2 -1.5
  tail(df.pivecs.3)
    pi_B pi_S
1676
       2 1.5
       2 1.6
1677
1678
       2 1.7
1679
       2 1.8
1680
       2 1.9
       2 2.0
1681
> data.portfolios.3<-fcn.data.portfolios(df.pivecs.3)</pre>
> # Figure 4: Plot payoffs as points for data.portfolios.3
> g1<-ggplot(data=data.portfolios.3,aes(x=Payoff_T_d,y=Payoff_T_u))
> g2 < -g1 + geom_point(aes(col=Value_0), size=1) + xlim(c(-500,500)) + ylim(c(-500,500))
> # Note, the xlim and ylim values are set manually
> g2 + ggtitle("Figure 4. Payoff Vectors at t=T (as points)",
               subtitle = "Portfolios (-2 <= Pi_B, Pi_S <= +2)")
```



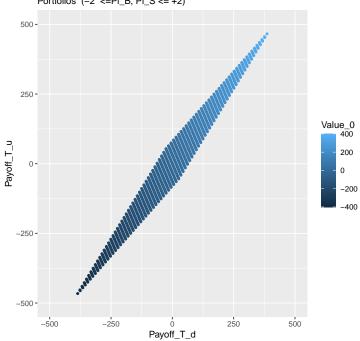


Figure 5. Payoff Vectors at t=T (as points) Portfolios $(-2 \le Pi_B, Pi_S \le +2)$ 500 -250 -Value_0 Payoff_T_u 200 0 -0 -200 -400 -250 **-**-500 b Payoff_T_d -250 250 500 -500

This graph displays the time t = T payoffs of all portfolios $\vec{\pi} = (\pi_B, \pi_S) \in \mathcal{S} = \{portfolios \ \vec{\pi} \ satisfying \ constraints\}$ as points in the space

$$(x,y) = Payoff_T(\omega_T = u \mid \vec{\pi}) \text{ vs } Payoff_T(\omega_T = d \mid \vec{\pi})$$

The color changes when $Value_0$ (cost at t=0) varies from negative (shades of red) to positive (shades of blue) costs. Note that the zero-cost portfolios (in white) do not admit positive payoffs in both states (u and d); i.e., there is no arbitrage.

4 References

• Advanced Derivatives Pricing and Risk Management, Claudio Albanese and Giuseppe Campolieti, Elsevier Academic Press, 2006.

18.642 Topics in Mathematics with Applications in Finance Fall 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.