Stochastic Processes I

MIT 18.642

Dr. Kempthorne

Fall 2024

Martingale Definition

- $\{X_n, 1 \le n < \infty\}$, a sequence of random variables
- $M_n = f_n(X_1, \ldots, X_n) : R^n \to R$

Martingale Definition

- $\{X_n, 1 \le n < \infty\}$, a sequence of random variables
- $M_n = f_n(X_1, \ldots, X_n) : \mathbb{R}^n \to \mathbb{R}$

 $\{M_n, n = 1, 2, \ldots\}$ is a Martingale if

- $E[M_n \mid X_1, X_2, \dots, X_{n-1}] = M_{n-1}$, for all $n \ge 1$
- $E[|M_n|] < \infty$ (M_0 a finite constant) , for all $n \geq 1$

Example 1

- X_n independent random variables
- $E(X_n) = 0$, for all $n \ge 1$
- $S_n = X_1 + X_2 + \cdots + X_n$

 $\{S_n, n=1,2,\ldots\}$ is a Martingale with respect to $\{X_n, n\geq 1\}$

Example 1

- X_n independent random variables
- $E(X_n) = 0$, for all $n \ge 1$
- $S_n = X_1 + X_2 + \cdots + X_n$

$$\{S_n, n=1,2,\ldots\}$$
 is a Martingale with respect to $\{X_n, n\geq 1\}$

$$X_1, X_2, \dots$$
 IID $X : P(X = +1) = 0.5 = P(X = -1)$

Example 1

- X_n independent random variables
- $E(X_n) = 0$, for all $n \ge 1$
- $S_n = X_1 + X_2 + \cdots + X_n$

$$\{S_n, n=1,2,\ldots\}$$
 is a Martingale with respect to $\{X_n, n\geq 1\}$

$$X_1, X_2, \dots$$
 IID $X : P(X = +1) = 0.5 = P(X = -1)$
 $E[X_i] = 0$

Example 1

- X_n independent random variables
- $E(X_n) = 0$, for all $n \ge 1$
- $S_n = X_1 + X_2 + \cdots + X_n$

$$\{S_n, n = 1, 2, \ldots\}$$
 is a Martingale with respect to $\{X_n, n \geq 1\}$

$$X_1, X_2, \dots$$
 IID $X : P(X = +1) = 0.5 = P(X = -1)$

$$E[X_i] = 0$$

$$Var[X_i] = 1$$

Example 1

- X_n independent random variables
- $E(X_n) = 0$, for all $n \ge 1$
- $S_n = X_1 + X_2 + \cdots + X_n$

$$\{S_n, n = 1, 2, \ldots\}$$
 is a Martingale with respect to $\{X_n, n \geq 1\}$

$$X_1, X_2, \dots$$
 IID $X : P(X = +1) = 0.5 = P(X = -1)$
 $E[X_i] = 0$
 $Var[X_i] = 1$
 $E[S_n] = 0$

Example 1

- X_n independent random variables
- $E(X_n) = 0$, for all $n \ge 1$
- $S_n = X_1 + X_2 + \cdots + X_n$

$$\{S_n, n = 1, 2, \ldots\}$$
 is a Martingale with respect to $\{X_n, n \geq 1\}$

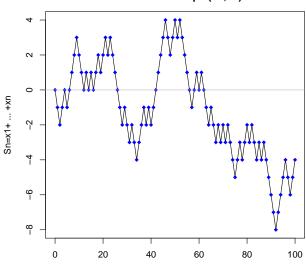
$$X_1, X_2, \dots$$
 IID $X : P(X = +1) = 0.5 = P(X = -1)$
 $E[X_i] = 0$
 $Var[X_i] = 1$
 $E[S_n] = 0$
 $Var[S_n] = n$

Example 1

- X_n independent random variables
- $E(X_n) = 0$, for all $n \ge 1$
- $S_n = X_1 + X_2 + \cdots + X_n$

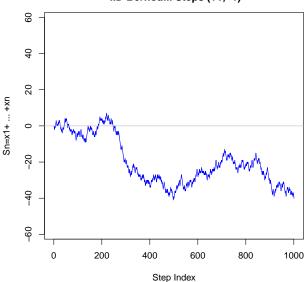
$$\{S_n, n = 1, 2, \ldots\}$$
 is a Martingale with respect to $\{X_n, n \geq 1\}$

$$X_1, X_2, \dots$$
 IID $X : P(X = +1) = 0.5 = P(X = -1)$
 $E[X_i] = 0$
 $Var[X_i] = 1$
 $E[S_n] = 0$
 $Var[S_n] = n$

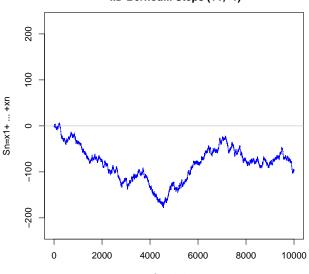


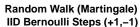
Step Index

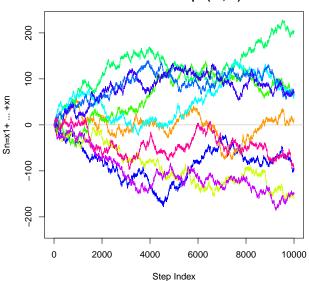
Random Walk (Martingale) IID Bernoulli Steps (+1,-1)



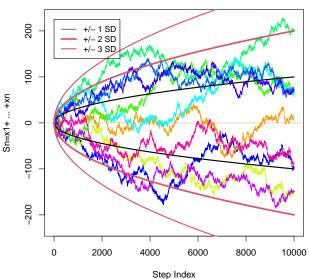
Random Walk (Martingale) IID Bernoulli Steps (+1,-1)







Random Walk (Martingale) IID Bernoulli Steps (+1,-1)



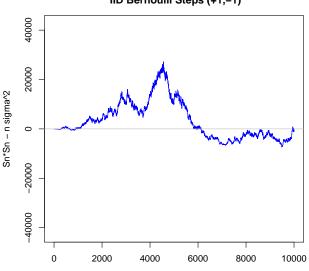
Example 2

- X_n independent random variables
- $E(X_n) = 0$, for all $n \ge 1$
- $Var(X_n) = \sigma^2$, for all $n \ge 1$
- $S_n = X_1 + X_2 + \cdots + X_n$
- $M_n = S_n^2 n\sigma^2$

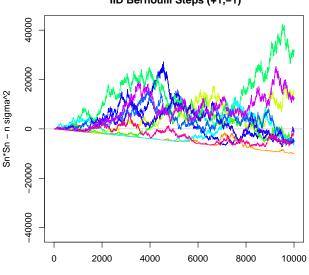
 $\{M_n, n = 1, 2, \ldots\}$ is a Martingale with respect to $\{X_n, n \geq 1\}$

Martingale: Example 2

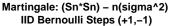
Martingale: (Sn*Sn) - n(sigma^2) IID Bernoulli Steps (+1,-1)

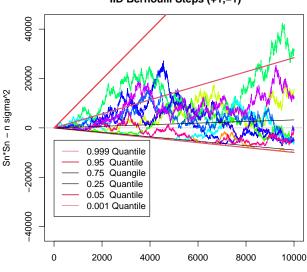


Martingale: Example 2



Martingale: Example 2





Example 3

- X_n independent random variables
- $X_n \geq 0$
- $E(X_n) = 1$, for all $n \ge 1$
- $M_n = X_1 \times X_2 \times \cdots \times X_n$
- $M_0 = 1$

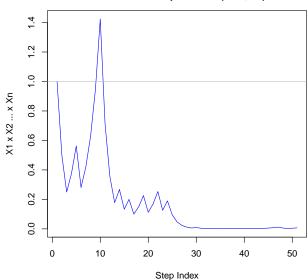
$$\{M_n, n=1,2,\ldots\}$$
 is a Martingale with respect to $\{X_n, n\geq 1\}$

Example: $X_i \sim Bernoulli(.5)$ on $\{.5, 1.5\}$

$$P(X_i = x) = 0.5$$
, for $x = +1.5$, $x = +0.5$.

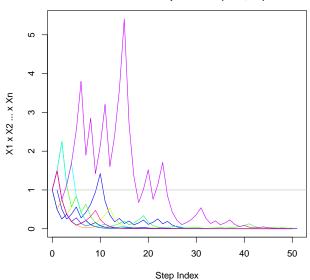
Martingales: Example 3 (1 Path)

Martingale: X1 x X2 x ... Xn IID Bernoulli Step Factors (+1.5,0.5)



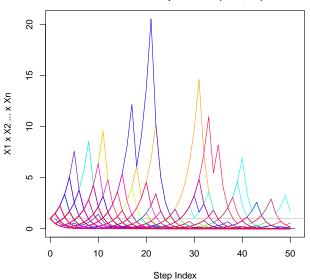
Martingales: Example 3 (10 Paths)

Martingale: X1 x X2 x ... Xn IID Bernoulli Step Factors (+1.5,0.5)



Martingales: Example 3 (100 Paths)

Martingale: X1 x X2 x ... Xn IID Bernoulli Step Factors (+1.5,0.5)



Example 4

- Y_n are i.i.d. random variables
- Moment generating function of Y_n is

$$\phi(\lambda) = E(e^{\lambda Y_n}) < \infty$$

- Define $X_n = e^{\lambda Y_n}/\phi(\lambda)$ Note: $E[X_n] = \phi(\lambda)/\phi(\lambda) = 1$
- $M_n = \exp(\lambda \sum_{i=1}^n Y_i)/[\phi(\lambda)]^n$

$$\{M_n, n=1,2,\ldots\}$$
 is a Martingale with respect to $\{X_n, n\geq 1\}$ for any fixed λ

Special Case

- There exists λ_0 : $\phi(\lambda_0) = 1$
- $M_n = \exp(\lambda_0 S_n)/[\phi(\lambda_0)]^n = \exp(\lambda_0 S_n)$, where $S_n = \sum_{1}^n Y_n$

Non-anticipating Random Variables

- \mathcal{F}_n : information set on (X_1, X_2, \dots, X_n)
- $E[Z \mid X_1, X_2, ... X_n] = E[Z \mid \mathcal{F}_n]$
- $\{\mathcal{F}_n, n=1,2,\ldots\}$ is a Filtration
- \mathcal{F}_n includes set of all paths up to time n.
- Martingale w.r.t. $\{X_n, n \ge 1\} \equiv \text{Martinagale w.r.t. } \{\mathcal{F}_n\}$
- $Y \in \mathcal{F}_n \Leftrightarrow \exists f : Y = f(X_1, X_2, \dots, X_n)$

Random variables $\{A_n, n \geq 1\}$ are "non-anticipating w.r.t. $\{\mathcal{F}_n\}$ "

if
$$\forall 1 \leq n < \infty, A_n \in \mathcal{F}_{n-1}$$

Martingale Transform Theorem

Definition $\{\tilde{M}_n, n \geq 0\}$ is the Martingale Transform of the martingale $\{M_n, n \geq 0\}$ by $\{A_n\}$, a non-anticipating sequence of random variables if

$$\tilde{M}_n = M_0 + A_1(M_1 - M_0) + A_2(M_2 - M_1) + \dots + A_n(M_n - M_{n-1}), \text{ for } n \ge 1$$

Martingale Transform Theorem

If $\{A_n, n \ge 1\}$:

- Bounded random variables
- Non-anticipating w.r.t. $\{\mathcal{F}_n\}$

Then $\{\tilde{M}_n, n \geq 1\}$ is a martingale w.r.t. $\{\mathcal{F}_n\}$

Stopping Times

Definition: Stopping Time Random Variable au

- Stochastic process: $\{X_n, n = 0, 1, ...\}$ with state space $S = \{0, 1, 2, ...\}$
- $\{\mathcal{F}_n\} = \{\mathcal{F}_n, n = 0, 1, \ldots\}$: $\mathcal{F}_n = \text{information set on } (X_0, X_1, \ldots, X_n).$
- τ is a random variable on $S = \{0, 1, 2, \ldots\} \cup \{\infty\}$
- ullet au is a stopping time random variable if

$$\{\tau \leq n\} \in \mathcal{F}_n, \, \forall \,\, 0 \leq n < \infty$$

Stopping Times

Definition: Stopping Time Random Variable τ

- Stochastic process: $\{X_n, n = 0, 1, ...\}$ with state space $S = \{0, 1, 2, ...\}$
- $\{\mathcal{F}_n\} = \{\mathcal{F}_n, n = 0, 1, \ldots\}$: $\mathcal{F}_n = \text{information set on } (X_0, X_1, \ldots, X_n).$
- τ is a random variable on $S = \{0, 1, 2, \ldots\} \cup \{\infty\}$
- τ is a stopping time random variable if $\{\tau < n\} \in \mathcal{F}_n, \ \forall \ 0 < n < \infty$

For a Stopping Time Random Variable au

- $\tau = \tau(\omega), \omega \in \Omega$ where $\Omega = \{ \text{all possible paths of}(X_1, X_2, \ldots) \}$
- For all times n, the event

$$E = \{\omega : \tau(\omega) \le n\}$$
 is known,
l.e. $1(\omega \in E)$ is 0 or 1.

(Either we know the specific time $\tau(\omega) \leq n$ or we know that $\tau(\omega) > n$.)

Stopped Processes

Definition: Stopped Process X_{τ}

- Stochastic process: $\{X_n, n = 0, 1, \ldots\}$
- τ : a stopping time random variable on $\{\mathcal{F}_n\}$.
- For $\{X_n\}$, the stopped process with respect to the stopping time τ is

$$X_{\tau} = \sum_{n=0}^{\infty} X_n \times \delta_{\tau,n}$$

where

$$\delta_{ au,n} = \left\{ egin{array}{ll} 1 & ext{if } au = n \ 0 & ext{otherwise} \end{array}
ight.$$

Truncated Stopping Times

Definition: Truncated Stopping Time Random Variable $n \wedge \tau$

- τ : a stopping time w.r.t. $\{\mathcal{F}_n\}$
- $n \wedge \tau = min(n, \tau)$

Truncated Stopping Times

Definition: Truncated Stopping Time Random Variable $n \wedge \tau$

- τ : a stopping time w.r.t. $\{\mathcal{F}_n\}$
- $n \wedge \tau = min(n, \tau)$

For a finite value $n < \infty$, the truncated stopping time $n \wedge \tau$ is measurable w.r.t \mathcal{F}_m , for $m \geq n$ not necessarily measurable for m < n.

Stopping Time Theorem

Theorem:

If
$$\{M_n, n \geq 1\}$$
 is a martingale w.r.t. $\{\mathcal{F}_n\}$
Then $\{M_{n \wedge \tau}, n \geq 1\}$ is also martingale w.r.t. $\{\mathcal{F}_n\}$

Proof:

- Assume $M_0 = 0$, else replace M_n by $M'_n = M_n M_{n-1}$
- Define $\{A_n, n \ge 1\}$ such that for fixed k

$$A_k = \mathbf{1}(\tau \ge k) = 1 - \mathbf{1}(\tau \le k - 1)$$
 $\{A_n, n \ge 1\}$ are non-anticipating w.r.t. $\{\mathcal{F}_n\}$

$$\sum_{1}^{n} A_{k}(M_{k} - M_{k-1}) = M_{\tau} \mathbf{1}(\tau \leq k - 1) + M_{n} \mathbf{1}(\tau \geq k)$$
$$= M_{n \wedge \tau}$$

• By the Martingale Transform Theorem $\{M_{n\wedge \tau}, n\geq 1\}$ is a martingale

•
$$X_n$$
 i.i.d. $P(X_n = +1) = P(X_n = -1) = \frac{1}{2}$

- $S_n = \sum_{i=1}^n X_i$, $S_0 = 0$
- Hit Levels: +A, and -B
- $\tau = min\{n : S_n = +A, \text{ or } S_n = -B\}$

Problem: Solve for $P(\tau = +A)$

•
$$X_n$$
 i.i.d. $P(X_n = +1) = P(X_n = -1) = \frac{1}{2}$

- $S_n = \sum_{i=1}^n X_i$, $S_0 = 0$
- Hit Levels: +A, and -B
- $\tau = min\{n : S_n = +A, \text{ or } S_n = -B\}$

Problem: Solve for $P(\tau = +A)$ "Gambler's Ruin Problem"

Players 1 and 2 with bank rolls \$A and \$B, continuously bet \$1 with even odds of winning until one loses entire bank roll.

•
$$X_n$$
 i.i.d. $P(X_n = +1) = P(X_n = -1) = \frac{1}{2}$

•
$$S_n = \sum_{i=1}^n X_i$$
, $S_0 = 0$

• Hit Levels: +A, and -B

•
$$\tau = min\{n : S_n = +A, \text{ or } S_n = -B\}$$

Problem: Solve for $P(\tau = +A)$ "Gambler's Ruin Problem"

Players 1 and 2 with bank rolls \$A and \$B, continuously bet \$1 with even odds of winning until one loses entire bank roll.

$$P(\tau = +A) = P(Player \ 1 \ Loses)$$

•
$$X_n$$
 i.i.d. $P(X_n = +1) = P(X_n = -1) = \frac{1}{2}$

•
$$S_n = \sum_{i=1}^n X_i$$
, $S_0 = 0$

- Hit Levels: +A, and -B
- $\tau = min\{n : S_n = +A, \text{ or } S_n = -B\}$

Problem: Solve for $P(\tau = +A)$ "Gambler's Ruin Problem"

Players 1 and 2 with bank rolls \$A and \$B, continuously bet \$1 with even odds of winning until one loses entire bank roll.

$$P(\tau = +A) = P(Player \ 1 \ Loses)$$

• $\{S_n\}$ is a martingale

•
$$X_n$$
 i.i.d. $P(X_n = +1) = P(X_n = -1) = \frac{1}{2}$

•
$$S_n = \sum_{i=1}^n X_i$$
, $S_0 = 0$

• Hit Levels: +A, and -B

•
$$\tau = min\{n : S_n = +A, \text{ or } S_n = -B\}$$

Problem: Solve for $P(\tau = +A)$ "Gambler's Ruin Problem"

$$P(\tau = +A) = P(Player \ 1 \ Loses)$$

- $\{S_n\}$ is a martingale
- \bullet $\ensuremath{\tau}$ is a stopping time

•
$$X_n$$
 i.i.d. $P(X_n = +1) = P(X_n = -1) = \frac{1}{2}$

- $S_n = \sum_{i=1}^n X_i$, $S_0 = 0$
- Hit Levels: +A, and -B
- $\tau = min\{n : S_n = +A, \text{ or } S_n = -B\}$

Problem: Solve for $P(\tau = +A)$ "Gambler's Ruin Problem"

$$P(\tau = +A) = P(Player \ 1 \ Loses)$$

- $\{S_n\}$ is a martingale
- ullet au is a stopping time
- $\{S_{n\wedge au}\}$ is a martingale by the Stopping Time Theorem

•
$$X_n$$
 i.i.d. $P(X_n = +1) = P(X_n = -1) = \frac{1}{2}$

•
$$S_n = \sum_{i=1}^n X_i$$
, $S_0 = 0$

• Hit Levels: +A, and -B

•
$$\tau = min\{n : S_n = +A, \text{ or } S_n = -B\}$$

Problem: Solve for $P(\tau = +A)$ "Gambler's Ruin Problem"

$$P(\tau = +A) = P(Player \ 1 \ Loses)$$

- $\{S_n\}$ is a martingale
- \bullet $\ensuremath{\tau}$ is a stopping time
- $\{S_{n\wedge au}\}$ is a martingale by the Stopping Time Theorem
- $E(S_{n \wedge \tau}) = E(S_{0 \wedge \tau}) = 0$, for all n

•
$$X_n$$
 i.i.d. $P(X_n = +1) = P(X_n = -1) = \frac{1}{2}$

•
$$S_n = \sum_{i=1}^n X_i$$
, $S_0 = 0$

• Hit Levels: +A, and -B

•
$$\tau = min\{n : S_n = +A, \text{ or } S_n = -B\}$$

Problem: Solve for $P(\tau = +A)$ "Gambler's Ruin Problem"

$$P(\tau = +A) = P(Player \ 1 \ Loses)$$

- $\{S_n\}$ is a martingale
- \bullet $\ \tau$ is a stopping time
- $\{S_{n \wedge \tau}\}$ is a martingale by the Stopping Time Theorem
- $E(S_{n\wedge\tau})=E(S_{0\wedge\tau})=0$, for all n
- $\lim_{n\to\infty} E(S_{n\wedge \tau}) = S_{\tau}$ w.p. 1 given $P(\tau = \infty) = 0$
- $\bullet \implies 0 = E(S_{\tau})$

Solve for $P(\tau = +A)$

$$S_{\tau} = +A \cdot \mathbf{1}(S_{\tau} = +A) - B \cdot \mathbf{1}(S_{\tau} = -B)$$

Solve for $P(\tau = +A)$

$$S_{\tau} = +A \cdot \mathbf{1}(S_{\tau} = +A) - B \cdot \mathbf{1}(S_{\tau} = -B)$$

$$0 = E[S_{\tau}] = +A \cdot P(S_{\tau} = +A) - B \cdot P(S_{\tau} = -B)$$

Solve for $P(\tau = +A)$

$$S_{\tau} = +A \cdot \mathbf{1}(S_{\tau} = +A) - B \cdot \mathbf{1}(S_{\tau} = -B)$$

$$0 = E[S_{\tau}] = +A \cdot P(S_{\tau} = +A) - B \cdot P(S_{\tau} = -B)$$

$$P(S_{\tau}=-B)=1-P(S_{\tau}=+A)$$

$$\implies P(S_{\tau} = +A) = \left(\frac{B}{A+B}\right)$$

- $\{M_n\}$ where $M_n = S_n^2 n$ is a martingale (by Example 2)
- $M_{n \wedge \tau} \leq max(A^2, B^2) + \tau$, bounded r.v.
- $E[M_{n \wedge \tau}] = 0$ for all n

- $\{M_n\}$ where $M_n = S_n^2 n$ is a martingale (by Example 2)
- $M_{n \wedge \tau} \leq \max(A^2, B^2) + \tau$, bounded r.v.
- $E[M_{n \wedge \tau}] = 0$ for all n
- $\Longrightarrow \{M_{n\wedge \tau}\}$ is a martingale

- $\{M_n\}$ where $M_n = S_n^2 n$ is a martingale (by Example 2)
- $M_{n \wedge \tau} \leq max(A^2, B^2) + \tau$, bounded r.v.
- $E[M_{n \wedge \tau}] = 0$ for all n
- $\Longrightarrow \{M_{n\wedge \tau}\}$ is a martingale
 - $M_{n \wedge \tau} \longrightarrow M_{\tau}$ w.p. 1

- $\{M_n\}$ where $M_n = S_n^2 n$ is a martingale (by Example 2)
- $M_{n \wedge \tau} \leq max(A^2, B^2) + \tau$, bounded r.v.
- $E[M_{n \wedge \tau}] = 0$ for all n
- $\Longrightarrow \{M_{n\wedge \tau}\}$ is a martingale
 - $M_{n \wedge \tau} \longrightarrow M_{\tau}$ w.p. 1
- $\Longrightarrow E(M_{\tau}) = \lim_{n \to \infty} E[M_{n \wedge \tau}] = 0$

- $\{M_n\}$ where $M_n = S_n^2 n$ is a martingale (by Example 2)
- $M_{n \wedge \tau} \leq max(A^2, B^2) + \tau$, bounded r.v.
- $E[M_{n \wedge \tau}] = 0$ for all n
- $\Longrightarrow \{M_{n\wedge \tau}\}$ is a martingale
 - $M_{n\wedge \tau} \longrightarrow M_{\tau}$ w.p. 1
- $\implies E(M_{\tau}) = \lim_{n \to \infty} E[M_{n \wedge \tau}] = 0$
 - $E(M_{\tau}) = 0 = E(S_{\tau}^2 \tau) = E(S_{\tau}^2) E(\tau)$

- $\{M_n\}$ where $M_n = S_n^2 n$ is a martingale (by Example 2)
- $M_{n \wedge \tau} \leq max(A^2, B^2) + \tau$, bounded r.v.
- $E[M_{n \wedge \tau}] = 0$ for all n
- $\Longrightarrow \{M_{n\wedge \tau}\}$ is a martingale
 - $M_{n \wedge \tau} \longrightarrow M_{\tau}$ w.p. 1
- $\Longrightarrow E(M_{\tau}) = \lim_{n \to \infty} E[M_{n \wedge \tau}] = 0$
 - $E(M_{\tau}) = 0 = E(S_{\tau}^2 \tau) = E(S_{\tau}^2) E(\tau)$

 \Longrightarrow

$$E(\tau) = E(S_{\tau}^{2}) = P(S_{\tau} = +A) \cdot A^{2} + P(S_{\tau} = -B) \cdot B^{2}$$
$$= \left(\frac{B}{A+B}\right) \cdot A^{2} + \left(\frac{A}{A+B}\right) \cdot B^{2} = AB$$

• *X_n* i.i.d.

$$P(X_n = +1) = p$$

 $P(X_n = -1) = q = 1 - p (0$

- $S_n = \sum_{i=1}^n X_i$, $S_0 = 0$
- Hit Levels: +A, and -B
- $\tau = min\{n : S_n = +A, or S_n = -B\}$

X_n i.i.d.

$$P(X_n = +1) = p$$

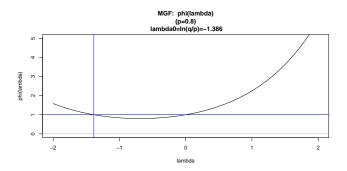
 $P(X_n = -1) = q = 1 - p (0$

- $S_n = \sum_{i=1}^n X_i$, $S_0 = 0$
- Hit Levels: +A, and -B
- $\tau = min\{n : S_n = +A, or S_n = -B\}$

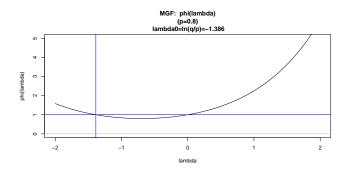
Moment Generating Function of X_n :

$$\phi(\lambda) = E(e^{\lambda X_n}) = pe^{\lambda} + qe^{-\lambda}$$

- $Y_n = \frac{e^{\lambda X_n}}{\phi(\lambda)}$ are independent r.v's with $E(Y_n) \equiv 1$.
- $M_n = \prod_{i=1}^n Y_i = e^{\lambda S_n}/[\phi(\lambda)]^n$ is a martingale by Example 4
- Solving $\phi(\lambda) = 1$ for λ :



Note:
$$e^{\lambda} = q/p$$
 solves $\phi(\lambda) = 1$



Note:
$$e^{\lambda} = q/p$$
 solves $\phi(\lambda) = 1$

So:
$$M_n = e^{\lambda S_n} = (q/p)^{S_n}$$
 is a martingale

- $M_n = (q/p)^{S_n}$ is a martingale
- $M_{n\wedge\tau}$ is a martingale by the Stopping Time Theorem
- $E(M_{n\wedge \tau})=1$, for all n
- $E(M_{\tau}) = \lim_{n \to \infty} E(M_{n \wedge \tau}) = 1$

- $M_n = (q/p)^{S_n}$ is a martingale
- $M_{n \wedge \tau}$ is a martingale by the Stopping Time Theorem
- $E(M_{n \wedge \tau}) = 1$, for all n
- $E(M_{\tau}) = \lim_{n \to \infty} E(M_{n \wedge \tau}) = 1$

$$1 = E(M_{\tau}) = (q/p)^{A} \cdot [P(S_{\tau} = +A)) + (q/p)^{-B} \cdot [P(S_{\tau} = -B)]$$

- $M_n = (q/p)^{S_n}$ is a martingale
- $M_{n \wedge \tau}$ is a martingale by the Stopping Time Theorem
- $E(M_{n \wedge \tau}) = 1$, for all n
- $E(M_{\tau}) = \lim_{n \to \infty} E(M_{n \wedge \tau}) = 1$

$$1 = E(M_{\tau}) = (q/p)^{A} \cdot [P(S_{\tau} = +A)) + (q/p)^{-B} \cdot [P(S_{\tau} = -B)]$$
$$= (q/p)^{A} \cdot [P(S_{\tau} = +A)] + (q/p)^{-B} \cdot [1 - P(S_{\tau} = +A)]$$

$$= (q/p)^A \cdot [P(S_{\tau} = +A)] + (q/p)^{-B} \cdot [1 - P(S_{\tau} = +A)]$$

- $M_n = (q/p)^{S_n}$ is a martingale
- $M_{n\wedge\tau}$ is a martingale by the Stopping Time Theorem
- $E(M_{n \wedge \tau}) = 1$, for all n
- $E(M_{\tau}) = \lim_{n \to \infty} E(M_{n \wedge \tau}) = 1$

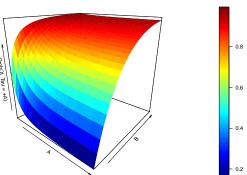
$$1 = E(M_{\tau}) = (q/p)^{A} \cdot [P(S_{\tau} = +A)) + (q/p)^{-B} \cdot [P(S_{\tau} = -B)]$$

$$= (q/p)^{A} \cdot [P(S_{\tau} = +A)] + (q/p)^{-B} \cdot [1 - P(S_{\tau} = +A)]$$

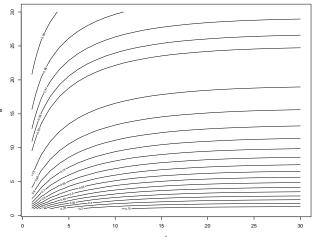
$$\Longrightarrow P(S_{\tau}=+A)=\frac{(q/p)^B-1}{(q/p)^{A+B}-1}.$$

```
> fcn.probA=function(A,B){p=0.53; q=1-p;
+ probA=((q/p)^B -1 )/((q/p)^(A+B) -1);return(probA)}
> Agrid=seq(1,30); Bgrid=seq(1,30)
> vfcn.probA<-Vectorize(fcn.probA)
> zz=outer(Agrid, Bgrid,vfcn.probA)
> persp3D(Agrid,Bgrid,zz,xlab="A",ylab="B",zlab="Prob(X_Tau = +A)",
+ theta=40, phi=20, axes=TRUE,scale=2,box=TRUE,
```


nticks=5,main="Prob(X_tau=A) ")



```
> contour(Agrid,Bgrid,zz,xlab="A",ylab="B",zlab="Prob(X_tau=+A)",
+ levels=c(seq(0.05,.95,.05),.96,.97,.98,.99))
> title(main="P(Hit A Before -B) (p=0.53)")
```

Markov Processes

- $\{X_t\}$, a stochastic process $t \in \{0,1,2,...\} \text{ for discrete-time process}$ $t \in \{t:t\geq 0\} \text{ for continuous-time process}$
- $\{X_t\}$ is a Markov Process if
 - For any times of the process, u < s < t
 - Given the value $X_s = x_s$, the process value

 X_t is independent of X_u , for all u < s.

Markov Processes

- $\{X_t\}$, a stochastic process $t \in \{0,1,2,...\}$ for discrete-time process $t \in \{t: t \geq 0\}$ for continuous-time process
- $\{X_t\}$ is a Markov Process if
 - For any times of the process, u < s < t
 - Given the value $X_s = x_s$, the process value

 X_t is independent of X_u , for all u < s.

$$[X_t \mid X_0 = x_0, X_1 = x_1, \dots, X_s = x_s] \equiv^* [X_t \mid X_s = x_s]$$
(\equiv^* means identical probability distributions)

Discrete-time Markov Chain

- State space: $S = \{i : i = 0, 1, 2, ...\}$ (finite or countable)
- Time index set: $T = \{n : n = 0, 1, 2, ...\}$
- Markov Property:

$$Pr\{X_{n+1} = j \mid X_0 = i_0, \dots, X_{n-1} = i_{n-1}, X_n = i\}$$

= $Pr\{X_{n+1} = j \mid X_n = i\}$

for all states $i_0, \ldots, i_{n-1}, i, j$ and all times n

One-Step Transition Probability

$$P_{i,j}^{n,n+1} = Pr(X_{n+1} = j \mid X_n = i), i,j, \in S, n \in T$$

Together with $p_i = Pr(x_0 = i), i \in S$ completely specifies stochastic process distribution.

Stationary Markov Process

Stationary Transition Probabilities

$$P_{i,j}^{n,n+1} = P_{i,j}$$
 (no dependence on n)

Stationary Markov Process

Stationary Transition Probabilities

$$P_{i,j}^{n,n+1} = P_{i,j}$$
 (no dependence on n)

Stationary Transition Probability Matrix

$$P = ||P_{i,j}||$$

Properties:

- $P_{i,j} \ge 0$ for all i,j
- $\sum_{j} P_{i,j} = 1$ for every i

The complete probability distribution of $\{X_n, n = 0, 1, ...\}$ is specified by:

Stationary transition probability matrix

$$P = ||P_{i,i}||$$

• Initial probabilities:

$$p_i = Pr\{X_0 = i\}, i = 0, 1, \dots$$

The complete probability distribution of $\{X_n, n = 0, 1, ...\}$ is specified by:

Stationary transition probability matrix

$$P = ||P_{i,i}||$$

• Initial probabilities:

$$p_i = Pr\{X_0 = i\}, i = 0, 1, \dots$$

To compute any probabilities of the process. It is sufficient to compute

$$P(X_0 = i_0, X_1 = i_1, \dots, X_n = i_n)$$
 for all times n and all states i_0, i_1, \dots, i_n .

$$P(X_0 = i_0, X_1 = i_1, \dots, X_n = i_n)$$

$$= P(X_0 = i_0, X_1 = i_1, \dots, X_{n-1} = i_{n-1}) \times P(X_n = i_n \mid X_0 = i_0, X_1 = i_1, \dots, X_{n-1} = i_{n-1})$$

$$P(X_0 = i_0, X_1 = i_1, \dots, X_n = i_n)$$

$$= P(X_0 = i_0, X_1 = i_1, \dots, X_{n-1} = i_{n-1}) \times$$

$$P(X_n = i_n \mid X_0 = i_0, X_1 = i_1, \dots, X_{n-1} = i_{n-1})$$

$$= P(X_0 = i_0, X_1 = i_1, \dots, X_{n-1} = i_{n-1}) \times$$

$$P(X_n = i_n \mid X_{n-1} = i_{n-1})$$

$$P(X_{0} = i_{0}, X_{1} = i_{1}, ..., X_{n} = i_{n})$$

$$= P(X_{0} = i_{0}, X_{1} = i_{1}, ..., X_{n-1} = i_{n-1}) \times P(X_{n} = i_{n} \mid X_{0} = i_{0}, X_{1} = i_{1}, ..., X_{n-1} = i_{n-1}) \times P(X_{0} = i_{0}, X_{1} = i_{1}, ..., X_{n-1} = i_{n-1}) \times P(X_{n} = i_{n} \mid X_{n-1} = i_{n-1}) \times P(X_{n} = i_{0}, X_{1} = i_{1}, ..., X_{n-1} = i_{n-1}) \times P(X_{n} = i_{0}, X_{1} = i_{1}, ..., X_{n-1} = i_{n-1}) \times P(X_{n} = i_{n}, X_{n} = i_{n}, X_{n}$$

$$P(X_{0} = i_{0}, X_{1} = i_{1}, ..., X_{n} = i_{n})$$

$$= P(X_{0} = i_{0}, X_{1} = i_{1}, ..., X_{n-1} = i_{n-1}) \times P(X_{n} = i_{n} \mid X_{0} = i_{0}, X_{1} = i_{1}, ..., X_{n-1} = i_{n-1})$$

$$= P(X_{0} = i_{0}, X_{1} = i_{1}, ..., X_{n-1} = i_{n-1}) \times P(X_{n} = i_{n} \mid X_{n-1} = i_{n-1})$$

$$= P(X_{0} = i_{0}, X_{1} = i_{1}, ..., X_{n-1} = i_{n-1}) \times P_{i_{n-1}, i_{n}}$$

Induction on *n* gives:

$$P(X_0 = i_0, X_1 = i_1, \dots, X_n = i_n)$$

= $p_{i_0} P_{i_0, i_1} \cdot P_{i_1, i_2} \cdot \dots \times P_{i_{n-2}, i_{n-1}} P_{i_{n-1}, i_n}$

$$P(X_{0} = i_{0}, X_{1} = i_{1}, ..., X_{n} = i_{n})$$

$$= P(X_{0} = i_{0}, X_{1} = i_{1}, ..., X_{n-1} = i_{n-1}) \times P(X_{n} = i_{n} \mid X_{0} = i_{0}, X_{1} = i_{1}, ..., X_{n-1} = i_{n-1})$$

$$= P(X_{0} = i_{0}, X_{1} = i_{1}, ..., X_{n-1} = i_{n-1}) \times P(X_{n} = i_{n} \mid X_{n-1} = i_{n-1})$$

$$= P(X_{0} = i_{0}, X_{1} = i_{1}, ..., X_{n-1} = i_{n-1}) \times P_{i_{n-1}, i_{n}}$$

Induction on *n* gives:

$$P(X_0 = i_0, X_1 = i_1, \dots, X_n = i_n)$$

= $p_{i_0} P_{i_0, i_1} \cdot P_{i_1, i_2} \cdot \dots \times P_{i_{n-2}, i_{n-1}} P_{i_{n-1}, i_n}$

Note use of

- Joint prob = (marginal prob) × (conditional prob)
- Markov property
- Definition of $P_{i,j}$

Multi-Step Transition Probabilities

Matrix of n—step transition probabilities

$$P^{(n)} = ||P_{i,j}^{(n)}||$$

Where:

- $P_{i,j}^{(n)} = Pr\{X_{m+n} = j \mid X_m = i\}$ for all states $i, j \in S$ for all increments n (= 1, 2, ...) after a fixed time $m \in T$
- Stationary case assumed: No Dependence on time m

Theorem: n—step transition probabilities of a Markov chain satisfy:

- $P_{i,j}^{(n)} = \sum_{k=0}^{\infty} P_{i,k} P_{k,j}^{(n-1)}$ with $P_{i,j}^{(0)} = \delta_{i,j}$ (= 1 if i = j, and = 0 if $i \neq j$)
- $P^{(n)} = P \times P \times \cdots P = P^n$

Proof:

- Apply First-Step Analysis analysis
- Apply Markov property
- Apply Stationarity
- Induce result.

$$P_{i,j}^{(n)} = Pr\{X_n = j \mid X_0 = i\} = \sum_{k=0}^{\infty} Pr\{X_n = j, \frac{X_1}{k} = k \mid X_0 = i\}$$

$$P_{i,j}^{(n)} = Pr\{X_n = j \mid X_0 = i\} = \sum_{k=0}^{\infty} Pr\{X_n = j, X_1 = k \mid X_0 = i\}$$
$$= \sum_{k=0}^{\infty} Pr\{X_1 = k \mid X_0 = i\} \times Pr\{X_n = j \mid X_1 = k, X_0 = i\}$$

$$P_{i,j}^{(n)} = Pr\{X_n = j \mid X_0 = i\} = \sum_{k=0}^{\infty} Pr\{X_n = j, X_1 = k \mid X_0 = i\}$$

$$= \sum_{k=0}^{\infty} Pr\{X_1 = k \mid X_0 = i\} \times Pr\{X_n = j \mid X_1 = k, X_0 = i\}$$

$$= \sum_{k=0}^{\infty} Pr\{X_1 = k \mid X_0 = i\} \times Pr\{X_n = j \mid X_1 = k\}$$

$$P_{i,j}^{(n)} = Pr\{X_n = j \mid X_0 = i\} = \sum_{k=0}^{\infty} Pr\{X_n = j, X_1 = k \mid X_0 = i\}$$

$$= \sum_{k=0}^{\infty} Pr\{X_1 = k \mid X_0 = i\} \times Pr\{X_n = j \mid X_1 = k, X_0 = i\}$$

$$= \sum_{k=0}^{\infty} Pr\{X_1 = k \mid X_0 = i\} \times Pr\{X_n = j \mid X_1 = k\}$$

$$= \sum_{k=0}^{\infty} P_{i,k} \times Pr\{X_{n-1} = j \mid X_0 = k\}$$

$$P_{i,j}^{(n)} = Pr\{X_n = j \mid X_0 = i\} = \sum_{k=0}^{\infty} Pr\{X_n = j, X_1 = k \mid X_0 = i\}$$

$$= \sum_{k=0}^{\infty} Pr\{X_1 = k \mid X_0 = i\} \times Pr\{X_n = j \mid X_1 = k, X_0 = i\}$$

$$= \sum_{k=0}^{\infty} Pr\{X_1 = k \mid X_0 = i\} \times Pr\{X_n = j \mid X_1 = k\}$$

$$= \sum_{k=0}^{\infty} P_{i,k} \times Pr\{X_{n-1} = j \mid X_0 = k\}$$

$$= \sum_{k=0}^{\infty} P_{i,k} \times P_{k,j}^{(n-1)}$$

$$P_{i,j}^{(n)} = Pr\{X_n = j \mid X_0 = i\} = \sum_{k=0}^{\infty} Pr\{X_n = j, X_1 = k \mid X_0 = i\}$$

$$= \sum_{k=0}^{\infty} Pr\{X_1 = k \mid X_0 = i\} \times Pr\{X_n = j \mid X_1 = k, X_0 = i\}$$

$$= \sum_{k=0}^{\infty} Pr\{X_1 = k \mid X_0 = i\} \times Pr\{X_n = j \mid X_1 = k\}$$

$$= \sum_{k=0}^{\infty} P_{i,k} \times Pr\{X_{n-1} = j \mid X_0 = k\}$$

$$= \sum_{k=0}^{\infty} P_{i,k} \times P_{k,j}^{(n-1)}$$

Matrix Equation:

$$P^{(n)} = P \times P^{(n-1)}$$

The marginal distribution of X_n for a fixed time n is computed using:

The marginal distribution of X_n for a fixed time n is computed using:

• Initial probabilities:

$$p_j = Pr\{X_0 = j\} \ j = 0, 1, \dots$$

The marginal distribution of X_n for a fixed time n is computed using:

• Initial probabilities:

$$p_j = Pr\{X_0 = j\} \ j = 0, 1, \dots$$

• n-step probabilities given by transition matrix $P^{(n)}$

The marginal distribution of X_n for a fixed time n is computed using:

• Initial probabilities:

$$p_i = Pr\{X_0 = j\} \ j = 0, 1, \dots$$

• n-step probabilities given by transition matrix $P^{(n)}$

For every outcome state k of X_n :

$$p_k^{(n)} = Pr\{X_n = k\} = \sum_{j=0}^{\infty} p_j P_{j,k}^{(n)}$$

Markov Chain Examples

Credit Ratings

Standard and Poors Ratings							
Investment Grade	AAA	Highest Grade					
	AA	High Grade					
	Α	Upper Medium Grade					
	BBB	Medium Grade					
Speculative Grade	BB	Lower Medium Grade					
	В	Speculative					
	CCC	Poor Standing					
	CC	Highly Speculative					
	C	Lowest Quality, No Interest					
	D	Default					

Rating agencies (e.g. Standard and Poors) continuously update credit ratings on:

- Corporate bonds
- Sovereign Foreign Currencies

Migration of Credit Ratings

Corporate Credit Ratings Migration:

Initial Rating	Rating at year end (%)									
	AAA	AA	A	BBB	BB	В	CCC	Default		
AAA	43.78	53.42	1.65	0.71	0.29	0.11	0.02	0.01		
AA	0.60	90.60	6.20	1.45	0.93	0.16	0.04	0.01		
A	0.22	2.84	92.97	3.12	0.56	0.14	0.07	0.07		
BBB	2.67	3.29	12.77	75.30	5.07	0.60	0.14	0.17		
BB	0.19	3.58	8.28	9.97	55.20	17.17	4.53	1.08		
В	0.12	0.50	20.69	1.05	0.25	55.40	17.05	4.95		
CCC	0.04	0.11	6.28	0.30	0.12	41.53	32.46	19.15		

(See Table 6. CreditMetrics Technical Document, 2007 RiskMetrics Group, p.88)

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

S&P Global Market Intelligence, 2019 Annual Sovereign Default Study and Ratings Transitions

https://www.spglobal.com/ratings/en/research/articles/

200429-default-transition-and-recovery-2019-annual-global-corporate-default-and-rating-transition-study

Markov Chain Examples

Stock Price Dynamics of AAPL

- Daily Stock Prices: P_t , t = 1, 2, ...
- Up days: $P_t > P_{t-1}$
- Down Days: $P_t < P_{t-1}$
- Define state2DAY on day t: States state2Day UU Up day t-1 Up day t
 UD Up day t-1 Down day t
 DU Down day t-1 Up day t
 DD Down day t-1 Down day t
- Markov Chain model for state2DAY

R Package for Markov Chains

Spedicato (2017) Discrete Time Markov Chains with R
 https://journal.r-project.org/archive/2017/RJ-2017-036/index.html

R Script/pdf: MC_Example1.r

MIT OpenCourseWare https://ocw.mit.edu

18.642 Topics in Mathematics with Applications in Finance Fall 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.