Time Series Analysis

MIT 18.642

Dr. Kempthorne

Fall 2024

Time Series: A stochastic process of random variables $\{X_t, t \in \mathcal{T}(\text{times of observations})\}$

Time Series: A stochastic process of random variables $\{X_t, t \in \mathcal{T}(\text{times of observations})\}$

Discrete Time Series: $\mathcal{T} = \{1, 2, \ldots\}$

Time Series: A stochastic process of random variables $\{X_t, t \in \mathcal{T}(\text{times of observations})\}$

Discrete Time Series: $\mathcal{T} = \{1, 2, \ldots\}$

Continuous Time Series: $\mathcal{T} = \{t : 0 \le t < +\infty\}$

Time Series: A stochastic process of random variables $\{X_t, t \in \mathcal{T}(\text{times of observations})\}$

Discrete Time Series:
$$\mathcal{T} = \{1, 2, ...\}$$

Continuous Time Series: $\mathcal{T} = \{t : 0 \le t < +\infty\}$

The stochastic behavior of $\{X_t\}$ is determined by specifying the probability density/mass functions (pdf's)

$$p(x_{t_1}, x_{t_2}, \ldots, x_{t_m})$$

for all finite collections of time indexes

$$\{(t_1,t_2,\ldots,t_m), m<\infty\}$$

i.e., all finite-dimensional distributions of $\{X_t\}$.

Time Series: A stochastic process of random variables $\{X_t, t \in \mathcal{T}(\text{times of observations})\}$

Discrete Time Series: $\mathcal{T} = \{1, 2, ...\}$ **Continuous Time Series:** $\mathcal{T} = \{t : 0 \le t < +\infty\}$

The stochastic behavior of $\{X_t\}$ is determined by specifying the probability density/mass functions (pdf's)

$$p(x_{t_1}, x_{t_2}, \ldots, x_{t_m})$$

for all finite collections of time indexes

$$\{(t_1, t_2, \ldots, t_m), m < \infty\}$$

i.e., all finite-dimensional distributions of $\{X_t\}$.

Definition: A time series $\{X_t\}$ is **Strictly Stationary** if $p(t_1 + \tau, t_2 + \tau, \dots, t_m + \tau) = p(t_1, t_2, \dots, t_m), \forall \tau, \forall m, \forall (t_1, t_2, \dots, t_m).$

Time Series: A stochastic process of random variables $\{X_t, t \in \mathcal{T}(\text{times of observations})\}$

Discrete Time Series: $\mathcal{T} = \{1, 2, ...\}$ **Continuous Time Series:** $\mathcal{T} = \{t : 0 \le t < +\infty\}$

The stochastic behavior of $\{X_t\}$ is determined by specifying the probability density/mass functions (pdf's)

$$p(x_{t_1}, x_{t_2}, \ldots, x_{t_m})$$

for all finite collections of time indexes

$$\{(t_1, t_2, \ldots, t_m), m < \infty\}$$

i.e., all finite-dimensional distributions of $\{X_t\}$.

Definition: A time series $\{X_t\}$ is **Strictly Stationary** if $p(t_1 + \tau, t_2 + \tau, \dots, t_m + \tau) = p(t_1, t_2, \dots, t_m), \ \forall \tau, \ \forall m, \ \forall (t_1, t_2, \dots, t_m).$ (Invariance under time translation)

Covariance Stationarity

```
Definition: A time series \{X_t\} is Covariance Stationary if E(X_t) = \mu Var(X_t) = \sigma_X^2 Cov(X_t, X_{t+\tau}) = \gamma(\tau) (all constant over time t)
```

Covariance Stationarity

Definition: A time series $\{X_t\}$ is **Covariance Stationary** if

$$E(X_t) = \mu$$

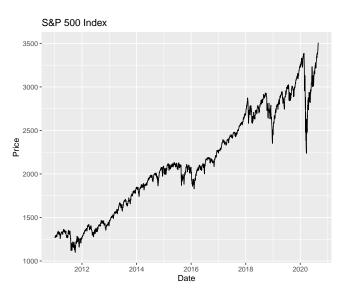
$$Var(X_t) = \sigma_X^2$$

$$Cov(X_t, X_{t+\tau}) = \gamma(\tau)$$
(all constant over time t)

Definition: The auto-correlation function of $\{X_t\}$ is

$$\rho(\tau) = \frac{Cov(X_t, X_{t+\tau})}{\sqrt{Var(X_t) \cdot Var(X_{t+\tau})}} \\
= \frac{\gamma(\tau)}{\gamma(0)}$$

Financial Time Series



Original Time Series: Y_t , t = 0, 1, 2, ...

Original Time Series: $Y_t, t = 0, 1, 2, ...$

Random Walk Model: $Y_t = Y_0 exp[X_1 + X_2 + \cdots + X_t]$

Original Time Series: $Y_t, t = 0, 1, 2, \dots$

Random Walk Model:
$$Y_t = Y_0 exp[X_1 + X_2 + \cdots + X_t]$$

$$\{X_t\}$$
 are Log Returns of Y_t :

$$X_t = \log(\frac{Y_t}{Y_{t-1}})$$

Original Time Series: $Y_t, t = 0, 1, 2, \dots$

Random Walk Model:
$$Y_t = Y_0 exp[X_1 + X_2 + \cdots + X_t]$$

$$\{X_t\}$$
 are Log Returns of Y_t :

$$X_t = \log(\frac{Y_t}{Y_{t-1}}) = \log[1 + \frac{Y_t - Y_{t-1}}{Y_{t-1}}] = \log[1 + R_t]$$

Original Time Series: $Y_t, t = 0, 1, 2, \dots$

Random Walk Model:
$$Y_t = Y_0 exp[X_1 + X_2 + \cdots + X_t]$$

 $\{X_t\}$ are Log Returns of Y_t :

$$X_t = \log(\frac{Y_t}{Y_{t-1}}) = \log[1 + \frac{Y_t - Y_{t-1}}{Y_{t-1}}] = \log[1 + R_t]$$

Modeling Assumption:

 $\{X_t\}$ is Covariance Stationary

Original Time Series: $Y_t, t = 0, 1, 2, \dots$

Random Walk Model:
$$Y_t = Y_0 exp[X_1 + X_2 + \cdots + X_t]$$

 $\{X_t\}$ are Log Returns of Y_t :

$$X_t = \log(\frac{Y_t}{Y_{t-1}}) = \log[1 + \frac{Y_t - Y_{t-1}}{Y_{t-1}}] = \log[1 + R_t]$$

Modeling Assumption:

 $\{X_t\}$ is Covariance Stationary

Exploratory Analysis of Financial Time Series

See: TimeSeries4plots.pdf

TimeSeries4acfplots.pdf

Representation Theorem

Wold Representation Theorem: Any zero-mean covariance stationary time series $\{X_t\}$ can be decomposed as $X_t = V_t + S_t$ where

- $\{V_t\}$ is a linearly deterministic process, i.e., a linear combination of past values of V_t with constant coefficients.
- $S_t = \sum_{i=0}^{\infty} \psi_i \eta_{t-i}$ is a moving average process of error terms, where

```
\begin{array}{l} \cdot \ \psi_0 = 1, \ \sum_{i=0}^{\infty} \psi_i^2 < \infty \\ \cdot \ \{\eta_t\} \ \ \text{is linearly unpredictable white noise, i.e.,} \\ E(\eta_t) = 0, \ E(\eta_t^2) = \sigma^2, \ E(\eta_t \eta_s) = 0 \ \forall t, \ \forall s \neq t, \\ \text{and} \ \{\eta_t\} \ \text{is uncorrelated with} \ \{\textcolor{red}{V_t}\}: \\ E(\eta_t \textcolor{red}{V_s}) = 0, \ \forall t, s \end{array}
```

Intuitive Application of the Wold Representation Theorem

Suppose we want to specify a covariance stationary time series $\{X_t\}$ to model actual data from a real time series $\{x_t, t=0,1,\ldots,T\}$

Consider the following strategy:

- Initialize a parameter p, the number of past observations in the linearly deterministic term of the Wold Decomposition of {X_t}
- Estimate the linear projection of X_t on $(X_{t-1}, X_{t-2}, \dots, X_{t-p})$
 - Consider an estimation sample of size n with endpoint $t_0 \leq T$.
 - Let $\{j=-(p-1),\ldots,0,1,2,\ldots n\}$ index the subseries of $\{t=0,1,\ldots,T\}$ corresponding to the estimation sample and define $\{y_j:y_j=x_{t_0-n+j}\}$, (with $t_0\geq n+p$)
 - Define the vector $\mathbf{Y}_{(n \times 1)}$ and matrix $\mathbf{Z}_{(n \times [p+1])}$ as:

• Estimate the linear projection of X_t on $(X_{t-1}, X_{t-2}, \dots, X_{t-p})$ (continued)

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \quad \mathbf{Z} = \begin{bmatrix} 1 & y_0 & y_{-1} & \cdots & y_{-(p-1)} \\ 1 & y_1 & y_0 & \cdots & y_{-(p-2)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & y_{n-1} & y_{n-2} & \cdots & y_{n-p} \end{bmatrix}$$

Apply OLS to specify the projection:

$$\hat{\mathbf{y}} = \mathbf{Z}(\mathbf{Z}^T\mathbf{Z})^{-1}\mathbf{Z}\hat{\mathbf{y}}
= \hat{P}(Y_t \mid Y_{t-1}, Y_{t-2}, \dots Y_{t-p})
= \hat{\mathbf{y}}^{(p)}$$

Compute the projection residual

$$\hat{\boldsymbol{\epsilon}}^{(p)} = \mathbf{y} - \hat{\mathbf{y}}^{(p)}$$

• Apply time series methods to the time series of residuals $\{\hat{\epsilon}_j^{(p)}\}$ to specify a moving average model:

$$\epsilon_t^{(p)} = \sum_{i=0}^\infty \psi_j \eta_{t-i}$$
 yielding $\{\hat{\psi}_j\}$ and $\{\hat{\eta}_t\}$, estimates of parameters and innovations.

- Conduct a case analysis diagnosing consistency with model assumptions
 - Evaluate orthogonality of $\hat{\epsilon}^{(p)}$ to $Y_{t-s}, s > p$. If evidence of correlation, increase p and start again.
 - Evaluate the consistency of $\{\hat{\eta}_t\}$ with the white noise assumptions of the theorem. If evidence otherwise, consider revisions to the overall model
 - Changing the specification of the moving average model.
 - Adding additional 'deterministic' variables to the projection model.

Note:

- Theoretically, $\lim_{p\to\infty}\hat{\mathbf{y}}^{(p)}=\hat{\mathbf{y}}=P(Y_t\mid Y_{t-1},Y_{t-2},\ldots)$ but if $p\to\infty$ is required, then $n\to\infty$ while $p/n\to0$.
- Useful models of covariance stationary time series have
 - Modest finite values of p and/or include
 - Moving average models depending on a parsimonious number of parameters.

Lag Operator L()

Definition The lag operator L() shifts a time series back by one time increment. For a time series $\{X_t\}$:

$$L(X_t) = X_{t-1}$$
.

Applying the operator recursively we define:

$$L^{0}(X_{t}) = X_{t}$$

$$L^{1}(X_{t}) = X_{t-1}$$

$$L^{2}(X_{t}) = L(L(X_{t})) = X_{t-2}$$

$$...$$

$$L^{n}(X_{t}) = L(L^{n-1}(X_{t})) = X_{t-n}$$

Inverses of these operators are well defined as:

$$L^{-n}(X_t) = X_{t+n}$$
, for $n = 1, 2, ...$

Wold Representation with Lag Operators

The Wold Representation for a covariance stationary time series $\{X_t\}$ can be expressed as

$$X_t = \sum_{i=0}^{\infty} \psi_i \eta_{t-i} + \frac{V_t}{V_t}$$
$$= \sum_{i=0}^{\infty} \psi_i L^i(\eta_t) + \frac{V_t}{V_t}$$
$$= \psi(L) \eta_t + \frac{V_t}{V_t}$$

where
$$\psi(L) = \sum_{i=0}^{\infty} \psi_i L^i$$
.

Wold Representation with Lag Operators

The Wold Representation for a covariance stationary time series $\{X_t\}$ can be expressed as

$$\begin{array}{rcl} X_t & = & \sum_{i=0}^{\infty} \psi_i \eta_{t-i} + V_t \\ & = & \sum_{i=0}^{\infty} \psi_i L^i(\eta_t) + V_t \\ & = & \psi(L) \eta_t + V_t \end{array}$$

where
$$\psi(L) = \sum_{i=0}^{\infty} \psi_i L^i$$
.

Definition The **Impulse Response Function** of the covariance stationary process $\{X_t\}$ is

$$IR(j) = \frac{\partial X_t}{\partial \eta_{t-j}} = \psi_j.$$

Wold Representation with Lag Operators

The Wold Representation for a covariance stationary time series $\{X_t\}$ can be expressed as

$$\begin{array}{rcl} X_t & = & \sum_{i=0}^{\infty} \psi_i \eta_{t-i} + \frac{V_t}{V_t} \\ & = & \sum_{i=0}^{\infty} \psi_i L^i(\eta_t) + \frac{V_t}{V_t} \\ & = & \psi(L) \eta_t + \frac{V_t}{V_t} \end{array}$$

where
$$\psi(L) = \sum_{i=0}^{\infty} \psi_i L^i$$
.

Definition The **Impulse Response Function** of the covariance stationary process $\{X_t\}$ is

$$IR(j) = \frac{\partial X_t}{\partial \eta_{t-j}} = \psi_j.$$

The **long-run cumulative response** of $\{X_t\}$ is

$$\sum_{i=0}^{\infty} IR(j) = \sum_{i=0}^{\infty} \psi_i = \psi(L) \text{ with } L = 1.$$

Equivalent Auto-regressive Representation

Suppose that the operator $\psi(L)$ is invertible, i.e.,

$$\psi^{-1}(L) = \sum_{i=0}^{\infty} \psi_i^* L^i \text{ such that }$$

$$\psi^{-1}(L)\psi(L) = I = L^0.$$

Then, assuming $V_t = 0$ (i.e., X_t has been adjusted to $X_t^* = X_t - V_t$), we have the following equivalent expressions of the time series model for $\{X_t\}$

$$X_t = \psi(L)\eta_t$$

$$\psi^{-1}(L)X_t = \eta_t$$

Equivalent Auto-regressive Representation

Suppose that the operator $\psi(L)$ is invertible, i.e.,

$$\psi^{-1}(L) = \sum_{i=0}^{\infty} \psi_i^* L^i \text{ such that } \psi^{-1}(L)\psi(L) = I = L^0.$$

Then, assuming $V_t = 0$ (i.e., X_t has been adjusted to $X_t^* = X_t - V_t$), we have the following equivalent expressions of the time series model for $\{X_t\}$

$$X_t = \psi(L)\eta_t$$

$$\psi^{-1}(L)X_t = \eta_t$$

Definition When $\psi^{-1}(L)$ exists, the time series $\{X_t\}$ is **Invertible** and has an auto-regressive representation:

$$X_t = \left(\sum_{i=0}^{\infty} \psi_i^* X_{t-i}\right) + \eta_t$$

ARMA(p,q) Models

Definition: The times series $\{X_t\}$ follows the ARMA(p,q) **Model** with auto-regressive order p and moving-average order q if $X_t = \mu + \phi_1(X_{t-1} - \mu) + \phi_2(X_{t-1} - \mu) + \cdots + \phi_p(X_{t-p} - \mu) + \eta_t + \theta_1\eta_{t-1} + \theta_2\eta_{t-2} + \cdots + \theta_q\eta_{t-q}$ where $\{\eta_t\}$ is $WN(0, \sigma^2)$, "**White Noise**" with $E(\eta_t) = 0, \qquad \forall t$ $E(\eta_t^2) = \sigma^2 < \infty, \quad \forall t \text{ , and } E(\eta_t\eta_s) = 0, \quad \forall t \neq s$

ARMA(p,q) Models

Definition: The times series $\{X_t\}$ follows the ARMA(p,q) **Model** with auto-regressive order p and moving-average order q if

$$X_{t} = \mu + \phi_{1}(X_{t-1} - \mu) + \phi_{2}(X_{t-1} - \mu) + \cdots + \phi_{p}(X_{t-p} - \mu) + \eta_{t} + \theta_{1}\eta_{t-1} + \theta_{2}\eta_{t-2} + \cdots + \theta_{q}\eta_{t-q}$$

where $\{\eta_t\}$ is $WN(0, \sigma^2)$, "White Noise" with

$$E(\eta_t) = 0, \qquad \forall t$$

$$E(\eta_t^2) = \sigma^2 < \infty, \quad \forall t , \text{ and } E(\eta_t \eta_s) = 0, \quad \forall t \neq s$$

With lag operators

$$\phi(L) = (1 - \phi_1 L - \phi_2 L^2 - \cdots \phi_p L^P)$$
 and $\theta(L) = (1 + \theta_1 L + \theta_2 L^2 + \cdots + \theta_q L^q)$

we can write

$$\phi(L)\cdot(X_t-\mu)=\theta(L)\eta_t$$

and the Wold decomposition is

$$X_t = \mu + \psi(L)\eta_t$$
, where $\psi(L) = [\phi(L)]^{-1}\theta(L)$

AR(p) Models

Order-p Auto-Regression Model: AR(p)

$$\phi(L) \cdot (X_t - \mu) = \eta_t$$
 where $\{\eta_t\}$ is $WN(0, \sigma^2)$ and $\phi(L) = 1 - \phi_1 L - \phi_2 L^2 - \dots + \phi_p L^p$

Properties:

- Linear combination of $\{X_t, X_{t-1}, \dots X_{t-p}\}$ is $WN(0, \sigma^2)$.
- X_t follows a linear regression model on explanatory variables $(X_{t-1}, X_{t-2}, \dots, X_{t-p})$, i.e

$$X_t = c + \sum_{j=1}^p \phi_j X_{t-j} + \eta_t$$

where $c = \mu \cdot \phi(1)$, (replacing L by 1 in $\phi(L)$).

AR(p) Models

Stationarity Conditions

Consider $\phi(z)$ replacing L with a complex variable z.

$$\phi(z) = 1 - \phi_1 z - \phi_2 z^2 - \cdots \phi_p z^p.$$

Let $\lambda_1, \lambda_2, \dots \lambda_p$ be the *p* roots of $\phi(z) = 0$.

$$\phi(L) = (1 - \frac{1}{\lambda_1}L) \cdot (1 - \frac{1}{\lambda_2}L) \cdot (1 - \frac{1}{\lambda_p}L)$$

Claim: $\{X_t\}$ is covariance stationary if and only if all the roots of $\phi(z) = 0$ (the **characteristic equation**") lie outside the unit circle $\{z : |z| \le 1\}$, i.e., $|\lambda_j| > 1$, $j = 1, 2, \ldots, p$

• For complex number λ : $|\lambda| > 1$,

$$(1 - \frac{1}{\lambda}L)^{-1} = 1 + (\frac{1}{\lambda})L + (\frac{1}{\lambda})^{2}L^{2} + (\frac{1}{\lambda})^{3}L^{3} + \cdots$$
$$= \sum_{i=0}^{\infty} (\frac{1}{\lambda})^{i}L^{i}$$

•
$$\phi^{-1}(L) = \prod_{j=1}^{p} \left[\left(1 - \frac{1}{\lambda_j} L \right)^{-1} \right]$$

Suppose $\{X_t\}$ follows the AR(1) process, i.e., $X_t - \mu = \phi(X_{t-1} - \mu) + \eta_t, \ t = 1, 2, \dots$ where $\eta_t \sim WN(0, \sigma^2)$.

- The characteristic equation for the AR(1) model is $(1-\phi z)=0$ with root $\lambda=\frac{1}{\phi}.$
- The AR(1) model is covariance stationary if (and only if)

```
Suppose \{X_t\} follows the AR(1) process, i.e., X_t - \mu = \phi(X_{t-1} - \mu) + \eta_t, \ t = 1, 2, \dots where \eta_t \sim WN(0, \sigma^2).
```

- The characteristic equation for the AR(1) model is $(1-\phi z)=0$ with root $\lambda=\frac{1}{\phi}.$
- The AR(1) model is covariance stationary if (and only if) $|\phi| < 1$ (equivalently $|\lambda| > 1$)

Suppose
$$\{X_t\}$$
 follows the $AR(1)$ process, i.e., $X_t - \mu = \phi(X_{t-1} - \mu) + \eta_t, \ t = 1, 2, \dots$ where $\eta_t \sim WN(0, \sigma^2)$.

- The characteristic equation for the AR(1) model is $(1-\phi z)=0$ with root $\lambda=\frac{1}{\phi}.$
- ullet The AR(1) model is covariance stationary if (and only if) $|\phi| < 1 \quad ext{(equivalently } |\lambda| > 1)$
- The first and second moments of $\{X_t\}$ are $E(X_t) = \mu$

Suppose
$$\{X_t\}$$
 follows the $AR(1)$ process, i.e., $X_t - \mu = \phi(X_{t-1} - \mu) + \eta_t, \ t = 1, 2, \dots$ where $\eta_t \sim WN(0, \sigma^2)$.

- The characteristic equation for the AR(1) model is $(1-\phi z)=0$ with root $\lambda=\frac{1}{\phi}.$
- ullet The AR(1) model is covariance stationary if (and only if) $|\phi| < 1 \quad ext{(equivalently } |\lambda| > 1)$
- The first and second moments of $\{X_t\}$ are

$$E(X_t) = \mu Var(X_t) = \sigma_X^2 =$$

Suppose
$$\{X_t\}$$
 follows the $AR(1)$ process, i.e., $X_t - \mu = \phi(X_{t-1} - \mu) + \eta_t, \ t = 1, 2, \dots$ where $\eta_t \sim WN(0, \sigma^2)$.

- The characteristic equation for the AR(1) model is $(1-\phi z)=0$ with root $\lambda=\frac{1}{\phi}.$
- The AR(1) model is covariance stationary if (and only if) $|\phi| < 1$ (equivalently $|\lambda| > 1$)
- The first and second moments of $\{X_t\}$ are

$$E(X_t) = \mu$$

$$Var(X_t) = \sigma_X^2 = \sigma^2/(1-\phi) \quad (=\gamma(0))$$

Suppose
$$\{X_t\}$$
 follows the $AR(1)$ process, i.e., $X_t - \mu = \phi(X_{t-1} - \mu) + \eta_t, \ t = 1, 2, \dots$ where $\eta_t \sim WN(0, \sigma^2)$.

- The characteristic equation for the AR(1) model is $(1-\phi z)=0$ with root $\lambda=\frac{1}{\phi}.$
- The first and second moments of $\{X_t\}$ are

$$E(X_t)$$
 = μ
 $Var(X_t)$ = $\sigma_X^2 = \sigma^2/(1-\phi)$ (= $\gamma(0)$)
 $Cov(X_t, X_{t-1})$ =

Suppose
$$\{X_t\}$$
 follows the $AR(1)$ process, i.e., $X_t - \mu = \phi(X_{t-1} - \mu) + \eta_t, \ t = 1, 2, \dots$ where $\eta_t \sim WN(0, \sigma^2)$.

- The characteristic equation for the AR(1) model is $(1-\phi z)=0$ with root $\lambda=\frac{1}{\phi}.$
- ullet The AR(1) model is covariance stationary if (and only if) $|\phi| < 1 \quad ext{(equivalently } |\lambda| > 1)$
- The first and second moments of $\{X_t\}$ are

$$E(X_t) = \mu$$

$$Var(X_t) = \sigma_X^2 = \sigma^2/(1-\phi) \quad (=\gamma(0))$$

$$Cov(X_t, X_{t-1}) = \phi \cdot \sigma_X^2$$

Suppose
$$\{X_t\}$$
 follows the $AR(1)$ process, i.e., $X_t - \mu = \phi(X_{t-1} - \mu) + \eta_t, \ t = 1, 2, \dots$ where $\eta_t \sim WN(0, \sigma^2)$.

- The characteristic equation for the AR(1) model is $(1-\phi z)=0$ with root $\lambda=\frac{1}{\phi}.$
- ullet The AR(1) model is covariance stationary if (and only if) $|\phi| < 1 \quad ext{(equivalently } |\lambda| > 1)$
- The first and second moments of $\{X_t\}$ are

$$E(X_t) = \mu$$

$$Var(X_t) = \sigma_X^2 = \sigma^2/(1-\phi) \quad (=\gamma(0))$$

$$Cov(X_t, X_{t-1}) = \phi \cdot \sigma_X^2$$

$$Cov(X_t, X_{t-j}) = \phi^j \cdot \sigma_X^2 \quad (=\gamma(j))$$

Suppose
$$\{X_t\}$$
 follows the $AR(1)$ process, i.e., $X_t - \mu = \phi(X_{t-1} - \mu) + \eta_t, \ t = 1, 2, \dots$ where $\eta_t \sim WN(0, \sigma^2)$.

- The characteristic equation for the AR(1) model is $(1-\phi z)=0$ with root $\lambda=\frac{1}{\phi}.$
- ullet The AR(1) model is covariance stationary if (and only if) $|\phi| < 1 \quad ext{(equivalently } |\lambda| > 1)$
- The first and second moments of $\{X_t\}$ are

$$E(X_t) = \mu$$

$$Var(X_t) = \sigma_X^2 = \sigma^2/(1-\phi) \quad (=\gamma(0))$$

$$Cov(X_t, X_{t-1}) = \phi \cdot \sigma_X^2$$

$$Cov(X_t, X_{t-j}) = \phi^j \cdot \sigma_X^2 \quad (=\gamma(j))$$

$$Corr(X_t, X_{t-j}) = \phi^j = \rho(j) \quad (=\gamma(j)/\gamma(0))$$

- For $\phi: |\phi| < 1$, the Wold decomposition of the AR(1) model is: $X_t = \mu + \sum_{j=0}^{\infty} \phi^j \eta_{t-j}$
 - For $\phi: 0 < \phi < 1$, the AR(1) process exhibits exponential mean-reversion to μ

- For $\phi: |\phi| < 1$, the Wold decomposition of the AR(1) model is: $X_t = \mu + \sum_{j=0}^{\infty} \phi^j \eta_{t-j}$
 - For $\phi: 0 < \phi < 1$, the AR(1) process exhibits exponential mean-reversion to μ
 - For $\phi: 0 > \phi > -1$, the AR(1) process exhibits oscillating exponential mean-reversion to μ

- For $\phi: |\phi| < 1$, the Wold decomposition of the AR(1) model is: $X_t = \mu + \sum_{j=0}^{\infty} \phi^j \eta_{t-j}$
 - For ϕ : $0 < \phi < 1$, the AR(1) process exhibits exponential mean-reversion to μ
 - For $\phi: 0 > \phi > -1$, the AR(1) process exhibits oscillating exponential mean-reversion to μ
- For $\phi = 1$, the Wold decomposition does not exist and the process is the simple random walk (non-stationary!).

- For $\phi: |\phi| < 1$, the Wold decomposition of the AR(1) model is: $X_t = \mu + \sum_{j=0}^{\infty} \phi^j \eta_{t-j}$
 - For ϕ : $0 < \phi < 1$, the AR(1) process exhibits exponential mean-reversion to μ
 - For $\phi: 0 > \phi > -1$, the AR(1) process exhibits oscillating exponential mean-reversion to μ
- For $\phi = 1$, the Wold decomposition does not exist and the process is the simple random walk (non-stationary!).
- For $\phi > 1$, the AR(1) process is explosive.

- For $\phi: |\phi| < 1$, the Wold decomposition of the AR(1) model is: $X_t = \mu + \sum_{j=0}^{\infty} \phi^j \eta_{t-j}$
 - For $\phi: 0 < \phi < 1$, the AR(1) process exhibits exponential mean-reversion to μ
 - For $\phi: 0 > \phi > -1$, the AR(1) process exhibits oscillating exponential mean-reversion to μ
- For $\phi = 1$, the Wold decomposition does not exist and the process is the simple random walk (non-stationary!).
- For $\phi > 1$, the AR(1) process is explosive.

Examples of AR(1) **Models** (mean reverting with $0 < \phi < 1$)

- Interest rates (Ornstein Uhlenbeck Process; Vasicek Model)
- Interest rate spreads
- Real exchange rates
- Valuation ratios (dividend-to-price, earnings-to-price)

Yule Walker Equations for AR(p) Processes

Second Order Moments of AR(p) **Processes**

From the specification of the AR(p) model:

$$(X_t - \mu) = \phi_1(X_{t-1} - \mu) + \phi_2(X_{t-1} - \mu) + \cdots + \phi_p(X_{t-p} - \mu) + \eta_t$$

we can write the **Yule-Walker Equations** (j = 0, 1, ...)

$$E[(X_{t} - \mu)(X_{t-j} - \mu)] = \phi_{1}E[(X_{t-1} - \mu)(X_{t-j} - \mu)] + \phi_{2}E[(X_{t-1} - \mu)(X_{t-j} - \mu)] + \cdots + \phi_{p}E[(X_{t-p} - \mu)(X_{t-j} - \mu)] + E[\eta_{t}(X_{t-j} - \mu)] + E[\eta_{t}(X_{t-j} - \mu)]$$

$$\gamma(j) = \phi_{1}\gamma(j-1) + \phi_{2}\gamma(j-2) + \cdots + \phi_{p}\gamma(j-p) + \delta_{0,j}\sigma^{2}$$

Equations j = 1, 2, ... p yield a system of p linear equations in ϕ_j :

$$\begin{pmatrix} \gamma(1) \\ \gamma(2) \\ \vdots \\ \gamma(p) \end{pmatrix} = \begin{bmatrix} \gamma(0) & \gamma(-1) & \gamma(-2) & \cdots & \gamma(-(p-1)) \\ \gamma(1) & \gamma(0) & \gamma(-1) & \cdots & \gamma(-(p-2)) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \gamma(p-1) & \gamma(p-2) & \gamma(p-3) & \cdots & \gamma(0) \end{pmatrix} \begin{bmatrix} \phi_1 \\ \phi_2 \\ \vdots \\ \phi_p \end{bmatrix}$$

$$\begin{pmatrix} \gamma(1) \\ \gamma(2) \\ \vdots \\ \gamma(p) \end{pmatrix} = \begin{bmatrix} \gamma(0) & \gamma(-1) & \gamma(-2) & \cdots & \gamma(-(p-1)) \\ \gamma(1) & \gamma(0) & \gamma(-1) & \cdots & \gamma(-(p-2)) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \gamma(p-1) & \gamma(p-2) & \gamma(p-3) & \cdots & \gamma(0) \end{pmatrix} \begin{bmatrix} \phi_1 \\ \phi_2 \\ \vdots \\ \phi_p \end{bmatrix}$$

• Given estimates $\hat{\gamma}(j), j=0,\ldots,p$ (and $\hat{\mu}$) the solution of these equations are the Yule-Walker estimates of the ϕ_i ; using the property $\gamma(-j)=\gamma(+j), \forall j$

$$\begin{pmatrix} \gamma(1) \\ \gamma(2) \\ \vdots \\ \gamma(p) \end{pmatrix} = \begin{bmatrix} \gamma(0) & \gamma(-1) & \gamma(-2) & \cdots & \gamma(-(p-1)) \\ \gamma(1) & \gamma(0) & \gamma(-1) & \cdots & \gamma(-(p-2)) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \gamma(p-1) & \gamma(p-2) & \gamma(p-3) & \cdots & \gamma(0) \end{pmatrix} \begin{bmatrix} \phi_1 \\ \phi_2 \\ \vdots \\ \phi_p \end{bmatrix}$$

- Given estimates $\hat{\gamma}(j), j = 0, \dots, p$ (and $\hat{\mu}$) the solution of these equations are the Yule-Walker estimates of the ϕ_i ; using the property $\gamma(-j) = \gamma(+j), \forall j$
- Using these in equation 0 $\gamma(0) = \phi_1 \gamma(-1) + \phi_2 \gamma(-2) + \dots + \phi_\rho \gamma(-\rho) + \delta_{0,0} \sigma^2$ provides an estimate of σ^2 $\hat{\sigma}^2 = \hat{\gamma}(0) \sum_{i=1}^{\rho} \hat{\phi}_i \hat{\gamma}(j)$

$$\begin{pmatrix} \gamma(1) \\ \gamma(2) \\ \vdots \\ \gamma(p) \end{pmatrix} = \begin{bmatrix} \gamma(0) & \gamma(-1) & \gamma(-2) & \cdots & \gamma(-(p-1)) \\ \gamma(1) & \gamma(0) & \gamma(-1) & \cdots & \gamma(-(p-2)) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \gamma(p-1) & \gamma(p-2) & \gamma(p-3) & \cdots & \gamma(0) \end{pmatrix} \begin{bmatrix} \phi_1 \\ \phi_2 \\ \vdots \\ \phi_p \end{pmatrix}$$

- Given estimates $\hat{\gamma}(j), j = 0, \dots, p$ (and $\hat{\mu}$) the solution of these equations are the Yule-Walker estimates of the ϕ_i ; using the property $\gamma(-j) = \gamma(+j), \forall j$
- Using these in equation 0 $\gamma(0) = \phi_1 \gamma(-1) + \phi_2 \gamma(-2) + \dots + \phi_p \gamma(-p) + \delta_{0,0} \sigma^2$ provides an estimate of σ^2 $\hat{\sigma}^2 = \hat{\gamma}(0) \sum_{i=1}^p \hat{\phi}_i \hat{\gamma}(j)$
- When all the estimates $\hat{\gamma}(j)$ and $\hat{\mu}$ are unbiased, then the Yule-Walker estimates apply the **Method of Moments** Principle of Estimation.

Order-q Moving-Average Model: MA(q)

$$(X_t - \mu) = \theta(L)\eta_t$$
, where $\{\eta_t\}$ is $WN(0, \sigma^2)$ and $\theta(L) = 1 + \theta_1 L + \theta_2 L^2 + \dots + \theta_q L^q$

Properties:

• The process $\{X_t\}$ is invertible if all the roots of $\theta(z) = 0$ are outside the complex unit circle.

Order-q Moving-Average Model: MA(q)

$$(X_t - \mu) = \theta(L)\eta_t$$
, where $\{\eta_t\}$ is $WN(0, \sigma^2)$ and $\theta(L) = 1 + \theta_1 L + \theta_2 L^2 + \dots + \theta_q L^q$

- The process $\{X_t\}$ is invertible if all the roots of $\theta(z) = 0$ are outside the complex unit circle.
- The moments of X_t are:

Order-q Moving-Average Model: MA(q)

$$(X_t - \mu) = \theta(L)\eta_t$$
, where $\{\eta_t\}$ is $WN(0, \sigma^2)$ and $\theta(L) = 1 + \theta_1 L + \theta_2 L^2 + \dots + \theta_q L^q$

- The process $\{X_t\}$ is invertible if all the roots of $\theta(z) = 0$ are outside the complex unit circle.
- The moments of X_t are:

$$E(X_t) = \mu$$

Order-q Moving-Average Model: MA(q)

$$(X_t - \mu) = \theta(L)\eta_t$$
, where $\{\eta_t\}$ is $WN(0, \sigma^2)$ and $\theta(L) = 1 + \theta_1 L + \theta_2 L^2 + \dots + \theta_q L^q$

- The process $\{X_t\}$ is invertible if all the roots of $\theta(z) = 0$ are outside the complex unit circle.
- The moments of X_t are:

$$E(X_t) = \mu$$

$$Var(X_t) = \gamma(0) = \sigma^2 \cdot (1 + \theta_1^2 + \theta_2^2 + \dots + \theta_q^2)$$

Order-q Moving-Average Model: MA(q)

$$(X_t - \mu) = \theta(L)\eta_t$$
, where $\{\eta_t\}$ is $WN(0, \sigma^2)$ and $\theta(L) = 1 + \theta_1 L + \theta_2 L^2 + \dots + \theta_q L^q$

- The process $\{X_t\}$ is invertible if all the roots of $\theta(z) = 0$ are outside the complex unit circle.
- The moments of X_t are:

$$E(X_t) = \mu$$

$$Var(X_t) = \gamma(0) = \sigma^2 \cdot (1 + \theta_1^2 + \theta_2^2 + \dots + \theta_q^2)$$

$$\mathit{Cov}(X_t, X_{t+j}) = \left\{ \begin{array}{ll} 0, & j > q \\ \sigma^2 \cdot (\theta_j + \theta_{j+1}\theta_1 + \theta_{j+2}\theta_2 + \cdots \theta_q \theta_{q-j}), & 1 < j \leq q \end{array} \right.$$

Many economic time series exhibit non-stationary behavior consistent with random walks. Box and Jenkins advocate removal of non-stationary trending behavior using

Differencing Operators:

$$\begin{array}{rcl} \Delta & = & 1 - L \\ \Delta^2 & = & (1 - L)^2 = 1 - 2L + L^2 \\ \Delta^k & = & (1 - L)^k = \sum_{j=0}^k \binom{k}{j} (-L)^j, \text{ (integral } k > 0) \end{array}$$

Many economic time series exhibit non-stationary behavior consistent with random walks. Box and Jenkins advocate removal of non-stationary trending behavior using

Differencing Operators:

$$\begin{array}{lll} \Delta & = & 1 - L \\ \Delta^2 & = & (1 - L)^2 = 1 - 2L + L^2 \\ \Delta^k & = & (1 - L)^k = \sum_{j=0}^k \binom{k}{j} (-L)^j, \text{ (integral } k > 0) \end{array}$$

• If the process $\{X_t\}$ has a linear trend in time, then the process $\{\Delta X_t\}$ has no trend.

Many economic time series exhibit non-stationary behavior consistent with random walks. Box and Jenkins advocate removal of non-stationary trending behavior using

Differencing Operators:

$$\begin{array}{lll} \Delta & = & 1 - L \\ \Delta^2 & = & (1 - L)^2 = 1 - 2L + L^2 \\ \Delta^k & = & (1 - L)^k = \sum_{j=0}^k \binom{k}{j} (-L)^j, \text{ (integral } k > 0) \end{array}$$

- If the process $\{X_t\}$ has a linear trend in time, then the process $\{\Delta X_t\}$ has no trend.
- If the process $\{X_t\}$ has a quadratic trend in time, then the second-differenced process $\{\Delta^2 X_t\}$ has no trend.

Many economic time series exhibit non-stationary behavior consistent with random walks. Box and Jenkins advocate removal of non-stationary trending behavior using

Differencing Operators:

$$\begin{array}{lll} \Delta & = & 1 - L \\ \Delta^2 & = & (1 - L)^2 = 1 - 2L + L^2 \\ \Delta^k & = & (1 - L)^k = \sum_{j=0}^k \binom{k}{j} (-L)^j, \text{ (integral } k > 0) \end{array}$$

- If the process $\{X_t\}$ has a linear trend in time, then the process $\{\Delta X_t\}$ has no trend.
- If the process $\{X_t\}$ has a quadratic trend in time, then the second-differenced process $\{\Delta^2 X_t\}$ has no trend.

Linear Trend Reversion Model: Suppose the model for the time series $\{X_t\}$ is:

$$X_t = TD_t + \eta_t$$
, where

- $TD_t = a + bt$, a deterministic (linear) trend
- $\eta_t \sim AR(1)$, i.e., $\eta_t = \phi \eta_{t-1} + \xi_t \text{, where } |\phi| < 1 \text{ and } \{\xi_t\} \text{ is } WN(0,\sigma^2).$

Linear Trend Reversion Model: Suppose the model for the time series $\{X_t\}$ is:

$$X_t = TD_t + \eta_t$$
, where

- $TD_t = a + bt$, a deterministic (linear) trend
- $\eta_t \sim AR(1)$, i.e., $\eta_t = \phi \eta_{t-1} + \xi_t, \text{ where } |\phi| < 1 \text{ and } \{\xi_t\} \text{ is } WN(0,\sigma^2).$

The moments of $\{X_t\}$ are:

$$E(X_t) = E(TD_t) + E(\eta_t) = a + bt$$

Linear Trend Reversion Model: Suppose the model for the time series $\{X_t\}$ is:

$$X_t = TD_t + \eta_t$$
, where

- $TD_t = a + bt$, a deterministic (linear) trend
- $\eta_t \sim AR(1)$, i.e., $\eta_t = \phi \eta_{t-1} + \xi_t, \text{ where } |\phi| < 1 \text{ and } \{\xi_t\} \text{ is } WN(0,\sigma^2).$

The moments of $\{X_t\}$ are:

$$E(X_t) = E(TD_t) + E(\eta_t) = a + bt$$

$$Var(X_t) = Var(\eta_t) = \sigma^2/(1 - \phi).$$

Linear Trend Reversion Model: Suppose the model for the time series $\{X_t\}$ is:

$$X_t = TD_t + \eta_t$$
, where

- $TD_t = a + bt$, a deterministic (linear) trend
- $\eta_t \sim AR(1)$, i.e., $\eta_t = \phi \eta_{t-1} + \xi_t, \text{ where } |\phi| < 1 \text{ and } \{\xi_t\} \text{ is } WN(0,\sigma^2).$

The moments of $\{X_t\}$ are:

$$E(X_t) = E(TD_t) + E(\eta_t) = a + bt$$

 $Var(X_t) = Var(\eta_t) = \sigma^2/(1 - \phi).$

The differenced process $\{\Delta X_t\}$ can be expressed as

$$\Delta X_t = b + \Delta \eta_t
= b + (\eta_t - \eta_{t-1})
= b + (1 - L)\eta_t
= b + (1 - L)(1 - \phi L)^{-1} \xi_t$$

Non-Stationary Trend Processes

Pure Integrated Process I(1) for $\{X_t\}$:

$$X_t = X_{t-1} + \eta_t$$
, where η_t is $WN(0, \sigma^2)$.

Equivalently:

$$\Delta X_t = (1 - L)X_t = \eta_t$$
, where $\{\eta_t\}$ is $WN(0, \sigma^2)$.

Non-Stationary Trend Processes

Pure Integrated Process I(1) for $\{X_t\}$:

$$X_t = X_{t-1} + \eta_t$$
, where η_t is $WN(0, \sigma^2)$.

Equivalently:

$$\Delta X_t = (1 - L)X_t = \eta_t$$
, where $\{\eta_t\}$ is $WN(0, \sigma^2)$.

Given X_0 , we can write $X_t = X_0 + TS_t$ where

$$TS_t = \sum_{j=0}^t \eta_j$$

The process $\{TS_t\}$ is a **Stochastic Trend** process with $TS_t = TS_{t-1} + \eta_t$, where $\{\eta_t\}$ is $WN(0, \sigma^2)$.

Note:

- The Stochastic Trend process is not perfectly predictable.
- The process {X_t} is a Simple Random Walk with white-noise steps. It is non-stationary because given X₀:
 - $Var(X_t) = t\sigma^2$
 - $Cov(X_t, X_{t-j}) = (t-j)\sigma^2 \text{ for } 0 < j < t.$
 - $Corr = (X_t, X_{t-j}) = \sqrt{t-j}/\sqrt{t} = \sqrt{1-j/t}$

ARIMA(p,d,q) Models

Definition: The time series $\{X_t\}$ follows an ARIMA(p,d,q) model ("Integrated ARMA") if $\{\Delta^d X_t\}$ is stationary (and non-stationary for lower-order differencing) and follows an ARMA(p,q) model.

ARIMA(p,d,q) Models

Definition: The time series $\{X_t\}$ follows an ARIMA(p,d,q) model ("Integrated ARMA") if $\{\Delta^d X_t\}$ is stationary (and non-stationary for lower-order differencing) and follows an ARMA(p,q) model.

Issues:

- Determining the order of differencing required to remove time trends (deterministic or stochastic).
- Estimating the unknown parameters of an ARIMA(p, d, q) model.
- Model Selection: choosing among alternative models with different (p, d, q) specifications.

Estimation of ARMA Models

Maximum-Likelihood Estimation

- Assume that $\{\eta_t\}$ are i.i.d. $N(0, \sigma^2)$ r.v.'s.
- Express the ARMA(p, q) model in state-space form.
- Apply the prediction-error decomposition of the log-likelihood function.

Limited Information Maximum-Likelihood (LIML) Method

- Condition on the first p values of $\{X_t\}$
- Assume that the first q values of $\{\eta_t\}$ are zero.

Full Information Maximum-Likelihood (FIML) Method

• Use the stationary distribution of the first *p* values to specify the exact likelihood.

Model Selection

Statistical model selection critera are used to select the orders (p,q) of an ARMA process:

- Fit all ARMA(p, q) models with $0 \le p \le p_{max}$ and $0 \le q \le q_{max}$, for chosen values of maximal orders.
- Let $\tilde{\sigma}^2(p,q)$ be the MLE of $\sigma^2 = Var(\eta_t)$, the variance of ARMA innovations under Gaussian/Normal assumption.
- Choose (p, q) to minimize one of:

$$AIC(p,q) = log(\tilde{\sigma}^2(p,q)) + 2\frac{p+q}{p}$$

Bayes Information Criterion

$$BIC(p,q) = log(\tilde{\sigma}^2(p,q)) + log(n)\frac{p+q}{n}$$

Hannan-Quinn Criterion

$$HQ(p,q) = log(\tilde{\sigma}^2(p,q)) + 2log(log(n))\frac{p+q}{n}$$

Testing for Stationarity/Non-Stationarity

Dickey-Fuller (DF) Test : Suppose $\{X_t\}$ follows the AR(1) model

$$X_t = \phi X_{t-1} + \eta_t$$
, with $\{\eta_t\}$ a $WN(0, \sigma^2)$.

Consider testing the following hypotheses:

$$H_0$$
: $\phi = 1$ (unit root, non-stationarity)

$$H_1$$
: $|\phi| < 1$ (stationarity)

("Autoregressive Unit Root Test")

• Fit the AR(1) model by least squares and define the test statistic: $t_{\phi=1} = \frac{\hat{\phi}-1}{\text{se}(\hat{\phi})}$

where $\hat{\phi}$ is the least-squares estimate of ϕ and $se(\hat{\phi})$ is the least-squares estimate of the standard error of $\hat{\phi}$.

• Under H_1 : if $|\phi| < 1$, then $\sqrt{T}(\hat{\phi} - \phi) \stackrel{d}{\longrightarrow} N(0, (1 - \phi^2))$.

Testing for Stationarity/Non-Stationarity

Dickey-Fuller (DF) Test : Suppose $\{X_t\}$ follows the AR(1) model

$$X_t = \phi X_{t-1} + \eta_t$$
, with $\{\eta_t\}$ a $WN(0, \sigma^2)$.

Consider testing the following hypotheses:

$$\mathit{H}_0$$
: $\phi = 1$ (unit root, non-stationarity)

$$H_1$$
: $|\phi| < 1$ (stationarity)

("Autoregressive Unit Root Test")

• Fit the AR(1) model by least squares and define the test statistic: $t_{\phi=1}=\frac{\hat{\phi}-1}{se(\hat{\phi})}$

where $\hat{\phi}$ is the least-squares estimate of ϕ and $se(\hat{\phi})$ is the least-squares estimate of the standard error of $\hat{\phi}$.

- Under H_1 : if $|\phi| < 1$, then $\sqrt{T}(\hat{\phi} \phi) \stackrel{d}{\longrightarrow} N(0, (1 \phi^2))$.
- Under H_0 : if $\phi = 1$, then $\hat{\phi}$ is super-consistent with rate (1/T),

$$T \cdot t_{\phi=1}$$
 has *DF* distribution.

References on Tests for Stationarity/Non-Stationarity*

Unit Root Tests (H_0 : Nonstationarity)

- Dickey and Fuller (1979): Dickey-Fuller (DF) Test
- Said and Dickey (1984): Augmented Dickey-Fuller (ADF) Test
- Phillips and Perron (1988) Unit root (PP) tests
- Elliot, Rothenberg, and Stock (2001) Efficient unit root (ERS) test statistics.

Stationarity Tests (H_0 : stationarity)

- Kwiatkowski, Phillips, Schmidt, and Shin (1922): KPSS test.
- * Optional reading

MIT OpenCourseWare https://ocw.mit.edu

18.642 Topics in Mathematics with Applications in Finance Fall 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.