Stochastic Calculus

MIT 18.642

Dr. Kempthorne

Fall 2024

Brownian Motion with Drift

Brownian Motion with Drift

- Let $\{B(t), t \ge 0; B(0) = 0\}$ be a Standard Brownian Motion
- Define $\{X(t); t \ge 0; X(0) = 0\}$ $X(t) = \mu t + \sigma B(t)$, for $t \ge 0$.

 $\mu = \text{drift parameter}$ $\sigma^2 = \text{variance parameter}$

Key Properties of Brownian Motion with Drift

- Independent Increments
- $Var[X(t)-X(s)] \propto |t-s|$ (Same as for Standard Brownian Motion $\mu=0,\,\sigma=1.$)

Brownian Motion with Drift

Infinitesimal, One-Step Analysis:

• Conditional Distribution of $X(t + \Delta t)$ given X(t) = x $X(t + \Delta t) = \mu(t + \Delta t) + \sigma B(t + \Delta t)$ $= [\mu t + \sigma B(t)] + \mu \Delta t + \sigma [B(t + \Delta t) - B(\Delta t)]$ $= X(t) + \mu \Delta t + \sigma \Delta B(t)$

• Increment of $X(\cdot)$ in terms of increments Δt and $\Delta B(t)$

$$\Delta X = X(t + \Delta t) - X(t) = \mu \Delta t + \sigma \Delta B(t)$$

Properties:

- $E[\Delta X] = \mu \Delta t$
- $Var[\Delta X] = \sigma^2 \Delta t$
- Exact distribution: $\Delta X \sim N(\mu \Delta t, \sigma^2 \Delta t)$.

• As
$$\Delta t \to 0$$

$$E[(\Delta X)^2 \mid X(t) = x] = \sigma^2 \Delta t + (\mu \Delta t)^2$$

$$= \sigma^2 \Delta t + o(\Delta t).$$

$$E[(\Delta X)^c \mid X(t) = x] = o(\Delta t) \text{ for } c > 2$$

Brownian Motion with Drift

Infinitesimal, One-Step Analysis:

• Conditional Distribution of $X(t + \Delta t)$ given X(t) = x

$$X(t + \Delta t) = \mu(t + \Delta t) + \sigma B(t + \Delta t)$$

$$= [\mu t + \sigma B(t)] + \mu \Delta t + \sigma [B(t + \Delta t) - B(\Delta t)]$$

$$= X(t) + \mu \Delta t + \sigma \Delta B(t)$$

• Increment of $X(\cdot)$ in terms of increments Δt and $\Delta B(t)$

$$\Delta X = X(t + \Delta t) - X(t) = \mu \Delta t + \sigma \Delta B(t)$$

Properties:

- $E[\Delta X] = \mu \Delta t$
- $Var[\Delta X] = \sigma^2 \Delta t$
- Exact distribution: $\Delta X \sim N(\mu \Delta t, \sigma^2 \Delta t)$.

• As
$$\Delta t \to 0$$

$$E[(\Delta X)^2 \mid X(t) = x] = \sigma^2 \Delta t + (\mu \Delta t)^2$$

$$= \sigma^2 \Delta t + o(\Delta t).$$

$$E[(\Delta X)^c \mid X(t) = x] = o(\Delta t) \text{ for } c > 2$$

Note: As $\Delta t \searrow 0$, ignore terms of $o(\Delta t)$.

Brownian Motion with Drift

$$dX(t) = \mu dt + \sigma dB(t)$$

Brownian Motion with Drift

$$dX(t) = \mu dt + \sigma dB(t)$$

Solution:

$$X_t = X_0 + \int_0^t \mu ds + \int_0^t \sigma dB(s)$$

Brownian Motion with Drift

$$dX(t) = \mu dt + \sigma dB(t)$$

Solution:

$$X_t = X_0 + \int_0^t \mu ds + \int_0^t \sigma dB(s)$$

= $X_0 + \mu t + \sigma[B(t) - B(0)]$

Brownian Motion with Drift

$$dX(t) = \mu dt + \sigma dB(t)$$

Solution:

$$X_{t} = X_{0} + \int_{0}^{t} \mu ds + \int_{0}^{t} \sigma dB(s)$$

= $X_{0} + \mu t + \sigma [B(t) - B(0)]$
= $X_{0} + \mu t + \sigma B(t)$

Brownian Motion with Drift

$$dX(t) = \mu dt + \sigma dB(t)$$

Solution:

$$X_{t} = X_{0} + \int_{0}^{t} \mu ds + \int_{0}^{t} \sigma dB(s)$$

= $X_{0} + \mu t + \sigma [B(t) - B(0)]$
= $X_{0} + \mu t + \sigma B(t)$

Ito Process

- Extend drift: $\mu = \mu(X_t, t)$
- Extend volatility: $\sigma = \sigma(X_t, t)$

$$dX_t = \mu(X_t, t)dt + \sigma(X_t, t)dB_t$$

Brownian Motion with Drift

$$dX(t) = \mu dt + \sigma dB(t)$$

Solution:

$$X_{t} = X_{0} + \int_{0}^{t} \mu ds + \int_{0}^{t} \sigma dB(s)$$

= $X_{0} + \mu t + \sigma [B(t) - B(0)]$
= $X_{0} + \mu t + \sigma B(t)$

Ito Process

- Extend drift: $\mu = \mu(X_t, t)$
- Extend volatility: $\sigma = \sigma(X_t, t)$

$$dX_t = \mu(X_t, t)dt + \sigma(X_t, t)dB_t$$

Solution:
$$X_t = X_0 + \int_0^t \mu(X_s, s) ds + \int_0^t \sigma(X_s, s) dB_s$$

Brownian Motion with Drift

$$dX(t) = \mu dt + \sigma dB(t)$$

Solution:

$$X_{t} = X_{0} + \int_{0}^{t} \mu ds + \int_{0}^{t} \sigma dB(s)$$

= $X_{0} + \mu t + \sigma [B(t) - B(0)]$
= $X_{0} + \mu t + \sigma B(t)$

Ito Process

- Extend drift: $\mu = \mu(X_t, t)$
- Extend volatility: $\sigma = \sigma(X_t, t)$

$$dX_t = \mu(X_t, t)dt + \sigma(X_t, t)dB_t$$

Solution:
$$X_t = X_0 + \int_0^t \mu(X_s, s) ds + \int_0^t \sigma(X_s, s) dB_s$$

(Requires definition of Ito Integrals)

Consider the Brownian motion process $\{B_t, t \geq 0\}$ with:

- Probability model $(\Omega, \{\mathcal{F}_t\}, P)$
- $\Omega = \{\omega\}$ set of all paths ω
- $\{\mathcal{F}_t, t \geq 0\}$: filtration of the process Events/sets in \mathcal{F}_t (subsets of Ω) that are measurable with respect to $\{B_s, s \leq t\}$ (information set up to time t)
- $P(\cdot)$: probability measure on Ω For all $A \in \mathcal{F}_t$, P(A) well defined.
- $B_t = B_t(\omega)$: a specific path

Consider the Brownian motion process $\{B_t, t \geq 0\}$ with:

- Probability model $(\Omega, \{\mathcal{F}_t\}, P)$
- $\Omega = \{\omega\}$ set of all paths ω
- $\{\mathcal{F}_t, t \geq 0\}$: filtration of the process Events/sets in \mathcal{F}_t (subsets of Ω) that are measurable with respect to $\{B_s, s \leq t\}$ (information set up to time t)
- $P(\cdot)$: probability measure on Ω For all $A \in \mathcal{F}_t$, P(A) well defined.
- $B_t = B_t(\omega)$: a specific path

Definition: Ito Integral

$$I(f) = \int_0^T f(B_s) dB_s$$
, or generally $I(f) = \int_0^T f(\omega, s) dB_s$

Consider the Brownian motion process $\{B_t, t \geq 0\}$ with:

- Probability model $(\Omega, \{\mathcal{F}_t\}, P)$
- $\Omega = \{\omega\}$ set of all paths ω
- $\{\mathcal{F}_t, t \geq 0\}$: filtration of the process Events/sets in \mathcal{F}_t (subsets of Ω) that are measurable with respect to $\{B_s, s \leq t\}$ (information set up to time t)
- $P(\cdot)$: probability measure on Ω For all $A \in \mathcal{F}_t$, P(A) well defined.
- $B_t = B_t(\omega)$: a specific path

Definition: Ito Integral

$$I(f) = \int_0^T f(B_s) dB_s$$
, or generally $I(f) = \int_0^T f(\omega, s) dB_s$

• Define for each path ω : $I(f)(\omega) = \int_0^T f(B_s(\omega)) dB_s(\omega)$.

Consider the Brownian motion process $\{B_t, t \geq 0\}$ with:

- Probability model $(\Omega, \{\mathcal{F}_t\}, P)$
- $\Omega = \{\omega\}$ set of all paths ω
- $\{\mathcal{F}_t, t \geq 0\}$: filtration of the process Events/sets in \mathcal{F}_t (subsets of Ω) that are measurable with respect to $\{B_s, s \leq t\}$ (information set up to time t)
- $P(\cdot)$: probability measure on Ω For all $A \in \mathcal{F}_t$, P(A) well defined.
- $B_t = B_t(\omega)$: a specific path

Definition: Ito Integral

$$I(f) = \int_0^T f(B_s) dB_s$$
, or generally $I(f) = \int_0^T f(\omega, s) dB_s$

- Define for each path ω : $I(f)(\omega) = \int_0^T f(B_s(\omega)) dB_s(\omega)$.
- $I(f)(\omega)$ a random variable with E[I(f)] and Var[I(f)]

Case 1:
$$f(x) \equiv 1$$

 $I(f)(\omega) = \int_0^T dB_s(\omega) = B_T(\omega) - B_0(\omega)$

Case 1:
$$f(x) \equiv 1$$

 $I(f)(\omega) = \int_0^T dB_s(\omega) = B_T(\omega) - B_0(\omega)$
 $E[I(f)(\omega)] = 0$ and $Var[I(f)(\omega)] = T$.

Case 1:
$$f(x) \equiv 1$$

 $I(f)(\omega) = \int_0^T dB_s(\omega) = B_T(\omega) - B_0(\omega)$
 $E[I(f)(\omega)] = 0 \text{ and } Var[I(f)(\omega)] = T.$
Case 1*: $f(B_s(\omega)) = f(\omega, s) = 1(a < s \le b) = \begin{cases} 1, & a < s \le b \\ 0, & otherwise \end{cases}$
 $I(f)(\omega) = \int_0^T f(\omega, s) dB_s(\omega) = B_b(\omega) - B_a(\omega)$

Case 1:
$$f(x) \equiv 1$$

 $I(f)(\omega) = \int_0^T dB_s(\omega) = B_T(\omega) - B_0(\omega)$
 $E[I(f)(\omega)] = 0$ and $Var[I(f)(\omega)] = T$.
Case 1*: $f(B_s(\omega)) = f(\omega, s) = 1(a < s \le b) = \begin{cases} 1, & a < s \le b \\ 0, & otherwise \end{cases}$
 $I(f)(\omega) = \int_0^T f(\omega, s) dB_s(\omega) = B_b(\omega) - B_a(\omega)$
 $E[I(f)(\omega)] = 0$ and $Var[I(f)(\omega)] = (b - a)$.

Case 1:
$$f(x) \equiv 1$$

 $I(f)(\omega) = \int_0^T dB_s(\omega) = B_T(\omega) - B_0(\omega)$

$$E[I(f)(\omega)] = 0$$
 and $Var[I(f)(\omega)] = T$.

Case 1*:
$$f(B_s(\omega)) = f(\omega, s) = 1(a < s \le b) = \begin{cases} 1, & a < s \le b \\ 0, & otherwise \end{cases}$$

$$I(f)(\omega) = \int_0^T f(\omega, s) dB_s(\omega) = B_b(\omega) - B_a(\omega)$$

$$E[I(f)(\omega)] = 0$$
 and $Var[I(f)(\omega)] = (b - a)$.

Case 2:
$$f(\omega, s) = f_n(\omega, s) = \sum_{i=0}^{n-1} a_i 1(t_i < s \le t_{i+1})$$

where $a_i \in R, i = 0, ..., n-1$ and $0 = t_0 < t_1 < \cdots < t_{n+1} = T$

Computing $I(f) = \int_0^T f(B_s) dB_s$ for Special Cases of f

Case 1:
$$f(x) \equiv 1$$

 $I(f)(\omega) = \int_0^T dB_s(\omega) = B_T(\omega) - B_0(\omega)$
 $E[I(f)(\omega)] = 0$ and $Var[I(f)(\omega)] = T$.
Case 1*: $f(B_s(\omega)) = f(\omega, s) = 1(a < s \le b) = \begin{cases} 1, & a < s \le b \\ 0, & otherwise \end{cases}$
 $I(f)(\omega) = \int_0^T f(\omega, s) dB_s(\omega) = B_b(\omega) - B_a(\omega)$
 $E[I(f)(\omega)] = 0$ and $Var[I(f)(\omega)] = (b - a)$.
Case 2: $f(\omega, s) = f_n(\omega, s) = \sum_{i=0}^{n-1} a_i 1(t_i < s \le t_{i+1})$
where $a_i \in R, i = 0, \dots, n-1$ and $0 = t_0 < t_1 < \dots < t_{n+1} = T$

 $I(f)(\omega) = \int_0^T f(\omega, s) dB_s(\omega) = \sum_{i=0}^{n-1} a_i [B_{t+1}(\omega) - B_{t}(\omega)]$

Case 1:
$$f(x) \equiv 1$$

 $I(f)(\omega) = \int_0^T dB_s(\omega) = B_T(\omega) - B_0(\omega)$

$$E[I(f)(\omega)] = 0$$
 and $Var[I(f)(\omega)] = T$.

Case 1*:
$$f(B_s(\omega)) = f(\omega, s) = 1(a < s \le b) = \begin{cases} 1, & a < s \le b \\ 0, & otherwise \end{cases}$$

 $I(f)(\omega) = \int_0^T f(\omega, s) dB_s(\omega) = B_b(\omega) - B_a(\omega)$

$$E[I(f)(\omega)] = 0$$
 and $Var[I(f)(\omega)] = (b-a)$.

Case 2:
$$f(\omega, s) = f_n(\omega, s) = \sum_{i=0}^{n-1} a_i 1(t_i < s \le t_{i+1})$$

where $a_i \in R, i = 0, ..., n-1$ and $0 = t_0 < t_1 < \cdots < t_{n+1} = T$
 $I(f)(\omega) = \int_0^T f(\omega, s)) dB_s(\omega) = \sum_{i=0}^{n-1} a_i [B_{t_{i+1}}(\omega) - B_{t_i}(\omega)]$

$$E[I(f)(\omega)] = 0 \text{ and } Var[I(f)(\omega)] = \sum_{i=0}^{n} a_i^2 [t_{i+1} - t_i].$$

Case 3:
$$f(\omega, s) = f_n(\omega, s) = \sum_{i=0}^{n-1} a_i(\omega) 1(t_i < s \le t_{i+1})$$
 where $a_i(\omega)$: random variable on (Ω, P) , $i = 0, \ldots, n-1$

• $a_i(\cdot)$ measurable on \mathcal{F}_{t_i} (depends only on $\{B_s, s \leq t_i\}$)

Case 3:
$$f(\omega, s) = f_n(\omega, s) = \sum_{i=0}^{n-1} a_i(\omega) 1(t_i < s \le t_{i+1})$$
 where $a_i(\omega)$: random variable on (Ω, P) , $i = 0, \ldots, n-1$

- $a_i(\cdot)$ measurable on \mathcal{F}_{t_i} (depends only on $\{B_s, s \leq t_i\}$)
- $E[a_i^2] < \infty$

Case 3:
$$f(\omega, s) = f_n(\omega, s) = \sum_{i=0}^{n-1} a_i(\omega) 1(t_i < s \le t_{i+1})$$
 where $a_i(\omega)$: random variable on (Ω, P) , $i = 0, \ldots, n-1$

- $a_i(\cdot)$ measurable on \mathcal{F}_{t_i} (depends only on $\{B_s, s \leq t_i\}$)
- $E[a_i^2] < \infty$

$$I(f)(\omega) = \int_0^T f(s, B_s(\omega)) dB_s(\omega) = \sum_{i=0}^{n-1} a_i(\omega) [B_{t_{i+1}}(\omega) - B_{t_i}(\omega)]$$

Case 3:
$$f(\omega, s) = f_n(\omega, s) = \sum_{i=0}^{n-1} a_i(\omega) 1(t_i < s \le t_{i+1})$$
 where $a_i(\omega)$: random variable on (Ω, P) , $i = 0, \ldots, n-1$

- $a_i(\cdot)$ measurable on \mathcal{F}_{t_i} (depends only on $\{B_s, s \leq t_i\}$)
- $E[a_i^2] < \infty$

$$I(f)(\omega) = \int_0^T f(s, B_s(\omega)) dB_s(\omega) = \sum_{i=0}^{n-1} a_i(\omega) [B_{t_{i+1}}(\omega) - B_{t_i}(\omega)]$$

$$E[I(f)(\omega)] = 0$$
 and $Var[I(f)(\omega)] = \sum_{i=0}^{n} E[a_i^2] \cdot [t_{i+1} - t_i]$.

Case 3:
$$f(\omega, s) = f_n(\omega, s) = \sum_{i=0}^{n-1} a_i(\omega) 1(t_i < s \le t_{i+1})$$
 where $a_i(\omega)$: random variable on (Ω, P) , $i = 0, \ldots, n-1$

- $a_i(\cdot)$ measurable on \mathcal{F}_{t_i} (depends only on $\{B_s, s \leq t_i\}$)
- $E[a_i^2] < \infty$

$$I(f)(\omega) = \int_0^T f(s, B_s(\omega)) dB_s(\omega) = \sum_{i=0}^{n-1} a_i(\omega) [B_{t_{i+1}}(\omega) - B_{t_i}(\omega)]$$

$$E[I(f)(\omega)] = 0$$
 and $Var[I(f)(\omega)] = \sum_{i=0}^{n} E[a_i^2] \cdot [t_{i+1} - t_i]$.

Special Case:
$$a_i(\omega) = B_{t_i}(\omega)$$

$$I(f)(\omega) = \sum_{i=0}^{n-1} B_{t_i}(\omega) [B_{t_{i+1}}(\omega) - B_{t_i}(\omega)]$$

Case 3:
$$f(\omega, s) = f_n(\omega, s) = \sum_{i=0}^{n-1} a_i(\omega) 1(t_i < s \le t_{i+1})$$
 where $a_i(\omega)$: random variable on (Ω, P) , $i = 0, \ldots, n-1$

- $a_i(\cdot)$ measurable on \mathcal{F}_{t_i} (depends only on $\{B_s, s \leq t_i\}$)
- $E[a_i^2] < \infty$

$$I(f)(\omega) = \int_0^T f(s, B_s(\omega)) dB_s(\omega) = \sum_{i=0}^{n-1} a_i(\omega) [B_{t_{i+1}}(\omega) - B_{t_i}(\omega)]$$

$$E[I(f)(\omega)] = 0$$
 and $Var[I(f)(\omega)] = \sum_{i=0}^{n} E[a_i^2] \cdot [t_{i+1} - t_i]$.

Special Case:
$$a_i(\omega) = B_{t_i}(\omega)$$

$$I(f)(\omega) = \sum_{i=0}^{n-1} B_{t_i}(\omega) [B_{t_{i+1}}(\omega) - B_{t_i}(\omega)]$$

$$E[I(f)(\omega)] = 0 \text{ and}$$

$$Var[I(f)(\omega)] = \sum_{i=0}^{n-1} E[B_{t_i}^2] E([B_{t_{i+1}} - B_{t_i}]^2)$$

$$= \sum_{i=0}^{n-1} [t_i] [t_{i+1} - t_i] \approx \int_0^T s ds = \frac{1}{2} T^2$$

Case 4:
$$f(\omega, s) = \lim_{n \to \infty} f_n(\omega, s) = \lim_{n \to \infty} \sum_{i=0}^{n-1} a_i(\omega) 1(t_i < s \le t_{i+1})$$

where $t_i = iT/n$, and $a_i(\omega) = B_{t_i}(\omega)$

$$I(f)(\omega) = \int_0^T B_s(\omega) dB_s(\omega)$$

$$= \lim_{n \to \infty} \sum_{i=0}^{n-1} B_{t_i}(\omega) [B_{t_{i+1}}(\omega) - B_{t_i}(\omega)]$$

Claim: $I(f)(\omega) = \frac{1}{2}B_T^2(\omega) - \frac{1}{2}T$ (Note(!!) for all ω)

Case 4:
$$f(\omega, s) = \lim_{n \to \infty} f_n(\omega, s) = \lim_{n \to \infty} \sum_{i=0}^{n-1} a_i(\omega) 1(t_i < s \le t_{i+1})$$

where $t_i = iT/n$, and $a_i(\omega) = B_{t_i}(\omega)$

$$I(f)(\omega) = \int_0^T B_s(\omega) dB_s(\omega)$$

$$= \lim_{n \to \infty} \sum_{i=0}^{n-1} B_{t_i}(\omega) [B_{t_{i+1}}(\omega) - B_{t_i}(\omega)]$$
Claim: $I(f)(\omega) = \frac{1}{2}B_T^2(\omega) - \frac{1}{2}T$ (Note(!!) for all ω)
Proof:
 $B_{t_i}(\omega)[B_{t_{i+1}}(\omega) - B_{t_i}(\omega)] = \frac{1}{2}[B_{t_{i+1}}^2 - B_{t_i}^2] - \frac{1}{2}[B_{t_{i+1}} - B_{t_i}]^2$

Case 4:
$$f(\omega, s) = \lim_{n \to \infty} f_n(\omega, s) = \lim_{n \to \infty} \sum_{i=0}^{n-1} a_i(\omega) 1(t_i < s \le t_{i+1})$$

where $t_i = iT/n$, and $a_i(\omega) = B_{t_i}(\omega)$

$$I(f)(\omega) = \int_0^T B_s(\omega) dB_s(\omega)$$

$$= \lim_{n \to \infty} \sum_{i=0}^{n-1} B_{t_i}(\omega) [B_{t_{i+1}}(\omega) - B_{t_i}(\omega)]$$
Claim: $I(f)(\omega) = \frac{1}{2}B_T^2(\omega) - \frac{1}{2}T$ (Note(!!) for all ω)
Proof:

$$B_{t_i}(\omega)[B_{t_{i+1}}(\omega) - B_{t_i}(\omega)] = \frac{1}{2}[B_{t_{i+1}}^2 - B_{t_i}^2] - \frac{1}{2}[B_{t_{i+1}} - B_{t_i}]^2$$

$$\sum_{i=0}^{n-1} B_{t_i}(\omega)[B_{t_{i+1}}(\omega) - B_{t_i}(\omega)] = \sum_{i=0}^{n-1} \left(\frac{1}{2}[B_{t_{i+1}}^2 - B_{t_i}^2]\right)$$

Case 4:
$$f(\omega, s) = \lim_{n \to \infty} f_n(\omega, s) = \lim_{n \to \infty} \sum_{i=0}^{n-1} a_i(\omega) 1(t_i < s \le t_{i+1})$$

where $t_i = iT/n$, and $a_i(\omega) = B_{t_i}(\omega)$

$$I(f)(\omega) = \int_0^T B_s(\omega) dB_s(\omega)$$

$$= \lim_{n \to \infty} \sum_{i=0}^{n-1} B_{t_i}(\omega) [B_{t_{i+1}}(\omega) - B_{t_i}(\omega)]$$

Claim: $I(f)(\omega) = \frac{1}{2} B_T^2(\omega) - \frac{1}{2} T$ (Note(!!) for all ω)

Proof:
$$B_{t_i}(\omega) [B_{t_{i+1}}(\omega) - B_{t_i}(\omega)] = \frac{1}{2} [B_{t_{i+1}}^2 - B_{t_i}^2] - \frac{1}{2} [B_{t_{i+1}} - B_{t_i}]^2$$

$$\sum_{i=0}^{n-1} B_{t_i}(\omega) [B_{t_{i+1}}(\omega) - B_{t_i}(\omega)] = \sum_{i=0}^{n-1} \left(\frac{1}{2} [B_{t_{i+1}}^2 - B_{t_i}^2] \right) - \sum_{i=0}^{n-1} \left(\frac{1}{2} [B_{t_{i+1}} - B_{t_i}]^2 \right)$$

Case 4:
$$f(\omega, s) = \lim_{n \to \infty} f_n(\omega, s) = \lim_{n \to \infty} \sum_{i=0}^{n-1} a_i(\omega) 1(t_i < s \le t_{i+1})$$

where $t_i = iT/n$, and $a_i(\omega) = B_{t_i}(\omega)$

$$I(f)(\omega) = \int_0^T B_s(\omega) dB_s(\omega)$$

$$= \lim_{n \to \infty} \sum_{i=0}^{n-1} B_{t_i}(\omega) [B_{t_{i+1}}(\omega) - B_{t_i}(\omega)]$$
Claim: $I(f)(\omega) = \frac{1}{2}B_T^2(\omega) - \frac{1}{2}T$ (Note(!!) for all ω)
Proof:

$$B_{t_i}(\omega)[B_{t_{i+1}}(\omega) - B_{t_i}(\omega)] = \frac{1}{2}[B_{t_{i+1}}^2 - B_{t_i}^2] - \frac{1}{2}[B_{t_{i+1}} - B_{t_i}]^2$$

$$\sum_{i=0}^{n-1} B_{t_i}(\omega)[B_{t_{i+1}}(\omega) - B_{t_i}(\omega)] = \sum_{i=0}^{n-1} \left(\frac{1}{2}[B_{t_{i+1}}^2 - B_{t_i}^2]\right) - \sum_{i=0}^{n-1} \left(\frac{1}{2}[B_{t_{i+1}} - B_{t_i}]^2\right)$$

$$= \frac{1}{2}B_{t_n}^2 - \frac{1}{2}\sum_{i=0}^{n-1} \left([B_{t_{i+1}} - B_{t_i}]^2\right)$$

Case 4:
$$f(\omega, s) = \lim_{n \to \infty} f_n(\omega, s) = \lim_{n \to \infty} \sum_{i=0}^{n-1} a_i(\omega) 1(t_i < s \le t_{i+1})$$

where $t_i = iT/n$, and $a_i(\omega) = B_{t_i}(\omega)$

$$I(f)(\omega) = \int_0^T B_s(\omega) dB_s(\omega)$$

$$= \lim_{n \to \infty} \sum_{i=0}^{n-1} B_{t_i}(\omega) [B_{t_{i+1}}(\omega) - B_{t_i}(\omega)]$$

Claim: $I(f)(\omega) = \frac{1}{2}B_T^2(\omega) - \frac{1}{2}T$ (Note(!!) for all ω)

Proof:
$$B_{t_i}(\omega)[B_{t_{i+1}}(\omega) - B_{t_i}(\omega)] = \frac{1}{2}[B_{t_{i+1}}^2 - B_{t_i}^2] - \frac{1}{2}[B_{t_{i+1}} - B_{t_i}]^2$$

$$\sum_{i=0}^{n-1} B_{t_i}(\omega)[B_{t_{i+1}}(\omega) - B_{t_i}(\omega)] = \sum_{i=0}^{n-1} \left(\frac{1}{2}[B_{t_{i+1}}^2 - B_{t_i}^2]\right) - \sum_{i=0}^{n-1} \left(\frac{1}{2}[B_{t_{i+1}} - B_{t_i}]^2\right)$$

$$= \frac{1}{2}B_{t_n}^2 - \frac{1}{2}\sum_{i=0}^{n-1} \left([B_{t_{i+1}} - B_{t_i}]^2\right)$$

$$= \frac{1}{2}B_T^2 - \frac{1}{2}\sum_{i=0}^{n-1} \left([B_{t_{i+1}} - B_{t_i}]^2\right)$$

Case 4:
$$f(\omega, s) = \lim_{n \to \infty} f_n(\omega, s) = \lim_{n \to \infty} \sum_{i=0}^{n-1} a_i(\omega) 1(t_i < s \le t_{i+1})$$

where $t_i = iT/n$, and $a_i(\omega) = B_{t_i}(\omega)$

$$I(f)(\omega) = \int_0^T B_s(\omega) dB_s(\omega)$$

$$= \lim_{n \to \infty} \sum_{i=0}^{n-1} B_{t_i}(\omega) [B_{t_{i+1}}(\omega) - B_{t_i}(\omega)]$$

Claim: $I(f)(\omega) = \frac{1}{2}B_T^2(\omega) - \frac{1}{2}T$ (Note(!!) for all ω)

Proof:
$$B_{t_i}(\omega)[B_{t_{i+1}}(\omega) - B_{t_i}(\omega)] = \frac{1}{2}[B_{t_{i+1}}^2 - B_{t_i}^2] - \frac{1}{2}[B_{t_{i+1}} - B_{t_i}]^2$$

$$\sum_{i=0}^{n-1} B_{t_i}(\omega)[B_{t_{i+1}}(\omega) - B_{t_i}(\omega)] = \sum_{i=0}^{n-1} \left(\frac{1}{2}[B_{t_{i+1}}^2 - B_{t_i}^2]\right) - \sum_{i=0}^{n-1} \left(\frac{1}{2}[B_{t_{i+1}} - B_{t_i}]^2\right)$$

$$= \frac{1}{2}B_{t_n}^2 - \frac{1}{2}\sum_{i=0}^{n-1} \left([B_{t_{i+1}} - B_{t_i}]^2\right)$$

$$= \frac{1}{2}B_T^2 - \frac{1}{2}\lim_{n \to \infty} \sum_{i=0}^{n-1} (B_{t_{i+1}} - B_{t_i})^2$$

$$= \frac{1}{3}B_T^2 - \frac{1}{3}T$$

8 / 26

Ito Process from Ito Integrals

Ito Integral: General Case

$$X_t(\omega) = \int_0^t f(\omega, s) dB_s(\omega), \ 0 \le t \le T$$

Ito Integral: General Case

$$X_t(\omega) = \int_0^t f(\omega, s) dB_s(\omega), \ 0 \le t \le T$$

 $f(\omega, s)$: function of ω and time s

Ito Integral: General Case

$$X_t(\omega) = \int_0^t f(\omega, s) dB_s(\omega), \ 0 \le t \le T$$

 $f(\omega, s)$: function of ω and time s

Ito Process: $\{X_t(\omega), 0 \le t \le T\}$

Ito Integral: General Case

$$X_t(\omega) = \int_0^t f(\omega, s) dB_s(\omega), \ 0 \le t \le T$$

 $f(\omega, s)$: function of ω and time s

Ito Process: $\{X_t(\omega), 0 \le t \le T\}$

Detailed(!!) arguments are required – see Steele (2000), chapter 6.

• $f(\omega, s)$: \mathcal{F}_s -measurable for every $0 \le s \le T$.

Ito Integral: General Case

$$X_t(\omega) = \int_0^t f(\omega, s) dB_s(\omega), \ 0 \le t \le T$$

 $f(\omega, s)$: function of ω and time s

Ito Process: $\{X_t(\omega), 0 \le t \le T\}$

Detailed(!!) arguments are required – see Steele (2000), chapter 6.

- $f(\omega, s)$: \mathcal{F}_s -measurable for every $0 \le s \le T$.
- $E[\int_0^T f^2(\omega, s)ds] = \int_{\Omega} \left(\left[\int_0^T f^2(\omega, s)ds \right] \right) dP(\omega) < \infty$

Ito Integral: General Case

$$X_t(\omega) = \int_0^t f(\omega, s) dB_s(\omega), \ 0 \le t \le T$$

 $f(\omega, s)$: function of ω and time s

Ito Process:
$$\{X_t(\omega), 0 \le t \le T\}$$

Detailed(!!) arguments are required - see Steele (2000), chapter 6.

- $f(\omega, s)$: \mathcal{F}_s -measurable for every $0 \le s \le T$.
- $E[\int_0^T f^2(\omega, s)ds] = \int_{\Omega} \left(\left[\int_0^T f^2(\omega, s)ds \right] \right) dP(\omega) < \infty$
- $X_t(\omega)$ is the extension of $I(f)(\omega) = \int_0^T f(\omega, s) dB_s(\omega)$ replacing $f(\omega, s)$ with $f_t(\omega, s) = f(\omega, s) \times 1(0 \le s \le t)$

Ito Integral: General Case

$$X_t(\omega) = \int_0^t f(\omega, s) dB_s(\omega), \ 0 \le t \le T$$

 $f(\omega, s)$: function of ω and time s

Ito Process:
$$\{X_t(\omega), 0 \le t \le T\}$$

Detailed(!!) arguments are required – see Steele (2000), chapter 6.

- $f(\omega, s)$: \mathcal{F}_s -measurable for every $0 \le s \le T$.
- $E[\int_0^T f^2(\omega, s)ds] = \int_{\Omega} \left(\left[\int_0^T f^2(\omega, s)ds \right] \right) dP(\omega) < \infty$
- $X_t(\omega)$ is the extension of $I(f)(\omega) = \int_0^T f(\omega, s) dB_s(\omega)$ replacing $f(\omega, s)$ with $f_t(\omega, s) = f(\omega, s) \times 1(0 \le s \le t)$

Note(!):
$$\{X_t\}$$
 is a Martingale on $(\Omega, \{\mathcal{F}_t\}, P)$.

Ito Integral: General Case

$$X_t(\omega) = \int_0^t f(\omega, s) dB_s(\omega), \ 0 \le t \le T$$

 $f(\omega, s)$: function of ω and time s

Ito Process:
$$\{X_t(\omega), 0 \le t \le T\}$$

Detailed(!!) arguments are required - see Steele (2000), chapter 6.

- $f(\omega, s)$: \mathcal{F}_s -measurable for every $0 \le s \le T$.
- $E[\int_0^T f^2(\omega, s)ds] = \int_{\Omega} \left(\left[\int_0^T f^2(\omega, s)ds \right] \right) dP(\omega) < \infty$
- $X_t(\omega)$ is the extension of $I(f)(\omega) = \int_0^T f(\omega, s) dB_s(\omega)$ replacing $f(\omega, s)$ with $f_t(\omega, s) = f(\omega, s) \times 1(0 \le s \le t)$

Note(!): $\{X_t\}$ is a Martingale on $(\Omega, \{\mathcal{F}_t\}, P)$.

•
$$E[X_{t+k} \mid X_t] = X_t + E[\int_t^{t+k} f(s, \omega) dB_s(\omega)] = X_t + 0$$

Ito Integral: General Case

$$X_t(\omega) = \int_0^t f(\omega, s) dB_s(\omega), \ 0 \le t \le T$$

 $f(\omega, s)$: function of ω and time s

Ito Process:
$$\{X_t(\omega), 0 \le t \le T\}$$

Detailed(!!) arguments are required - see Steele (2000), chapter 6.

- $f(\omega, s)$: \mathcal{F}_s -measurable for every $0 \le s \le T$.
- $E[\int_0^T f^2(\omega, s)ds] = \int_{\Omega} \left(\left[\int_0^T f^2(\omega, s)ds \right] \right) dP(\omega) < \infty$
- $X_t(\omega)$ is the extension of $I(f)(\omega) = \int_0^T f(\omega, s) dB_s(\omega)$ replacing $f(\omega, s)$ with $f_t(\omega, s) = f(\omega, s) \times 1(0 \le s \le t)$

Note(!): $\{X_t\}$ is a Martingale on $(\Omega, \{\mathcal{F}_t\}, P)$.

- $E[X_{t+k} \mid X_t] = X_t + E[\int_t^{t+k} f(s,\omega)dB_s(\omega)] = X_t + 0$
- $Var[X_{t+k} \mid X_t] = E[\int_t^{t+k} f^2(\omega, s) ds]$

Ito Integral: General Case

$$X_t(\omega) = \int_0^t f(\omega, s) dB_s(\omega), \ 0 \le t \le T$$

 $f(\omega, s)$: function of ω and time s

Ito Process: $\{X_t(\omega), 0 \le t \le T\}$

Detailed(!!) arguments are required - see Steele (2000), chapter 6.

- $f(\omega, s)$: \mathcal{F}_s -measurable for every $0 \le s \le T$.
- $E[\int_0^T f^2(\omega, s)ds] = \int_{\Omega} \left(\left[\int_0^T f^2(\omega, s)ds \right] \right) dP(\omega) < \infty$
- $X_t(\omega)$ is the extension of $I(f)(\omega) = \int_0^T f(\omega, s) dB_s(\omega)$ replacing $f(\omega, s)$ with $f_t(\omega, s) = f(\omega, s) \times 1(0 \le s \le t)$

Note(!): $\{X_t\}$ is a Martingale on $(\Omega, \{\mathcal{F}_t\}, P)$.

- $E[X_{t+k} \mid X_t] = X_t + E[\int_t^{t+k} f(s,\omega)dB_s(\omega)] = X_t + 0$
- $Var[X_{t+k} \mid X_t] = E[\int_t^{t+k} f^2(\omega, s) ds]$ Squared-norm of $f(\omega, s)$ on $\Omega \times [t, t+k]$

Ito Integral of
$$f(\omega, s)$$
 w.r.t. $\{B_s, 0 \le s < T\}$

$$I(f)(\omega) = \int_0^T f(\omega, s) dB_s(\omega)$$

Ito Integral of
$$f(\omega, s)$$
 w.r.t. $\{B_s, 0 \le s < T\}$

$$I(f)(\omega) = \int_0^T f(\omega, s) dB_s(\omega)$$

Ito Isometry:
$$||I(f)||_{L^2(dP)} = ||f||_{L^2(dP \times dt)}$$
.

Ito Integral of
$$f(\omega, s)$$
 w.r.t. $\{B_s, 0 \le s < T\}$

$$I(f)(\omega) = \int_0^T f(\omega, s) dB_s(\omega)$$

Ito Isometry:
$$||I(f)||_{L^2(dP)} = ||f||_{L^2(dP \times dt)}.$$
• $||I(f)||_{L^2(dP)} = \int_{\Omega} |I(f)(\omega)|^2 dP(\omega)$

$$= \int_{\Omega} [\int_0^T f(\omega, s) dB_s(\omega)]^2 dP(\omega)$$

Ito Integral of
$$f(\omega, s)$$
 w.r.t. $\{B_s, 0 \le s < T\}$

$$I(f)(\omega) = \int_0^T f(\omega, s) dB_s(\omega)$$

Ito Isometry:
$$||I(f)||_{L^2(dP)} = ||f||_{L^2(dP \times dt)}$$
.

•
$$||\mathbf{I}(f)||_{L^{2}(dP)} = \int_{\Omega} |\mathbf{I}(f)(\omega)|^{2} dP(\omega)$$

= $\int_{\Omega} [\int_{0}^{T} f(\omega, s) dB_{s}(\omega)]^{2} dP(\omega)$

•
$$||f||_{L^2(dP\times dt)} = \int_{\Omega} |[\int_0^T |f(\omega,s)|^2 ds] dP(\omega)$$

Ito Integral of
$$f(\omega, s)$$
 w.r.t. $\{B_s, 0 \le s < T\}$

$$I(f)(\omega) = \int_0^T f(\omega, s) dB_s(\omega)$$

Ito Isometry:
$$||I(f)||_{L^2(dP)} = ||f||_{L^2(dP \times dt)}$$
.

•
$$||\mathbf{I}(f)||_{L^{2}(dP)} = \int_{\Omega} |\mathbf{I}(f)(\omega)|^{2} dP(\omega)$$

= $\int_{\Omega} [\int_{0}^{T} f(\omega, s) dB_{s}(\omega)]^{2} dP(\omega)$

•
$$||f||_{L^2(dP\times dt)} = \int_{\Omega} |[\int_0^T |f(\omega,s)|^2 ds] dP(\omega)$$

•
$$Var[I(f)] = ||I(f)||_{L^2(dP)} = ||f||_{L^2(dP \times dt)}$$
.

Ito Integral of
$$f(\omega, s)$$
 w.r.t. $\{B_s, 0 \le s < T\}$

$$I(f)(\omega) = \int_0^T f(\omega, s) dB_s(\omega)$$

Ito Isometry:
$$||I(f)||_{L^2(dP)} = ||f||_{L^2(dP \times dt)}$$
.

- $||\mathbf{I}(f)||_{L^{2}(dP)} = \int_{\Omega} |\mathbf{I}(f)(\omega)|^{2} dP(\omega)$ = $\int_{\Omega} [\int_{0}^{T} f(\omega, s) dB_{s}(\omega)]^{2} dP(\omega)$
- $||f||_{L^2(dP\times dt)} = \int_{\Omega} |[\int_0^T |f(\omega,s)|^2 ds] dP(\omega)$

- $Var[I(f)] = ||I(f)||_{L^2(dP)} = ||f||_{L^2(dP \times dt)}$.
- $||I(f)||_{L^2(dP)}$ is (squared) norm on space of Ito integrals

Ito Integral of
$$f(\omega, s)$$
 w.r.t. $\{B_s, 0 \le s < T\}$

$$I(f)(\omega) = \int_0^T f(\omega, s) dB_s(\omega)$$

Ito Isometry:
$$||I(f)||_{L^2(dP)} = ||f||_{L^2(dP \times dt)}$$
.

•
$$||\mathbf{I}(f)||_{L^2(dP)} = \int_{\Omega} |\mathbf{I}(f)(\omega)|^2 dP(\omega)$$

= $\int_{\Omega} [\int_0^T f(\omega, s) dB_s(\omega)]^2 dP(\omega)$

• $||f||_{L^2(dP\times dt)} = \int_{\Omega} |[\int_0^T |f(\omega,s)|^2 ds] dP(\omega)$

- $Var[I(f)] = ||I(f)||_{L^2(dP)} = ||f||_{L^2(dP \times dt)}$.
- $||I(f)||_{L^2(dP)}$ is (squared) norm on space of Ito integrals
- $||f||_{f^2(dP\times dt)}$ is (squared) norm on space of Ito-Process Integrands

Ito Integral of
$$f(\omega, s)$$
 w.r.t. $\{B_s, 0 \le s < T\}$

$$I(f)(\omega) = \int_0^T f(\omega, s) dB_s(\omega)$$

Ito Isometry:
$$||I(f)||_{L^2(dP)} = ||f||_{L^2(dP \times dt)}$$
.

- $||\mathbf{I}(f)||_{L^{2}(dP)} = \int_{\Omega} |\mathbf{I}(f)(\omega)|^{2} dP(\omega)$ = $\int_{\Omega} [\int_{0}^{T} f(\omega, s) dB_{s}(\omega)]^{2} dP(\omega)$
- $||f||_{L^2(dP\times dt)} = \int_{\Omega} |[\int_0^T |f(\omega,s)|^2 ds] dP(\omega)$

- $Var[I(f)] = ||I(f)||_{L^2(dP)} = ||f||_{L^2(dP \times dt)}$.
- $||I(f)||_{L^2(dP)}$ is (squared) norm on space of Ito integrals
- $||f||_{f^2(dP \times dt)}$ is (squared) norm on space of Ito-Process Integrands
 - Formalizes limit/convergence of sequences of Ito integrals

Ito Integral of
$$f(\omega, s)$$
 w.r.t. $\{B_s, 0 \le s < T\}$

$$I(f)(\omega) = \int_0^T f(\omega, s) dB_s(\omega)$$

Ito Isometry:
$$||I(f)||_{L^2(dP)} = ||f||_{L^2(dP \times dt)}$$
.

•
$$||\mathbf{I}(f)||_{L^{2}(dP)} = \int_{\Omega} |\mathbf{I}(f)(\omega)|^{2} dP(\omega)$$

= $\int_{\Omega} [\int_{0}^{T} f(\omega, s) dB_{s}(\omega)]^{2} dP(\omega)$

• $||f||_{L^2(dP\times dt)} = \int_{\Omega} |[\int_0^T |f(\omega,s)|^2 ds] dP(\omega)$

- $Var[I(f)] = ||I(f)||_{L^2(dP)} = ||f||_{L^2(dP \times dt)}$.
- $||I(f)||_{L^2(dP)}$ is (squared) norm on space of Ito integrals
- $||f||_{f^2(dP \times dt)}$ is (squared) norm on space of Ito-Process Integrands
 - Formalizes limit/convergence of sequences of Ito integrals
 - Enables focus on closed linear subspaces of $L^2(dP \times dt)$ for $\{f(\omega, s)\}$.

Ito Integral As Limiting Riemann Sum

Theorem (Riemann Representation). For any continuous $f: R \to R$, if we take the partition of [0, T] given by $t_i = iT/n$ for $0 \le i \le n$, then we have $\lim_{n \to \infty} \sum_{i=1}^n f(B_{t_{i-1}})(B_{t_i} - B_{t_{i-1}}) = \int_0^T f(B_s) dB_s$

Note: Convergence is in Probability

Gaussian Integrals

Proposition (Gaussian Integrals). If $f \in C[0, T]$, (a continuous function of time for $t \in [0, T]$) then the Ito Process defined by $X_t = \int_0^t f(s) dB_s$, for $s \in [0, T]$

has the following properties:

- Mean-zero Gaussian process
- Independent increments
- Covariance function

$$Cov(X_s, X_t) = \int_0^{s \wedge t} f^2(u) du.$$

Gaussian Integrals

Proposition (Gaussian Integrals). If $f \in C[0, T]$, (a continuous function of time for $t \in [0, T]$) then the Ito Process defined by $X_t = \int_0^t f(s) dB_s$, for $s \in [0, T]$

has the following properties:

- Mean-zero Gaussian process
- Independent increments
- Covariance function

$$Cov(X_s, X_t) = \int_0^{s \wedge t} f^2(u) du.$$

Proof:

- Take the partition of [0, T] given by $t_i = iT/n$ for $0 \le i \le n$
- Choose $t_i^*: t_{i-1} \le t_i^* \le t_i$ for all i. Then

$$\lim_{n \to \infty} \sum_{i=1}^{n} f(t_{i}^{*})(B_{t_{i}} - B_{t_{i-1}}) = \int_{0}^{T} f(s)dB_{s}$$

See Section 7.2 of Steele(1980) for details.

Ito's Formula (One Variable)

Theorem (Ito's Formula - Case 1). If $f: R \to R$ has a continuous second derivative, then

$$f(B_t) = f(0) + \int_0^t f'(B_s) dB_s + \frac{1}{2} \int_0^t f''(B_s) ds.$$

- $\int_0^t f'(B_s)dB_s$: zero-mean adaptive Gaussian Process
- $\frac{1}{2} \int_0^t f''(B_s) ds$: adaptive drift term

Ito's Formula (One Variable)

Theorem (Ito's Formula - Case 1). If $f : R \to R$ has a continuous second derivative, then

$$f(B_t) = f(0) + \int_0^t f'(B_s) dB_s + \frac{1}{2} \int_0^t f''(B_s) ds.$$

- $\int_0^t f'(B_s)dB_s$: zero-mean adaptive Gaussian Process
- $\frac{1}{2} \int_0^t f''(B_s) ds$: adaptive drift term

'Proof': Apply Taylor Series of
$$f(\cdot)$$

$$f(x + \Delta x) = f(x) + f'(x)\Delta x + \frac{1}{2}f''(x)(\Delta x)^{2} + r$$

$$\begin{array}{lcl} f(B_t) - f(B_0) & = & \lim_{n \to \infty} \sum_{i=1}^n [f(B_{t_i}) - f(B_{t_{i-1}})] \\ & = & \lim_{n \to \infty} \sum_{i=1}^n [f'(B_{t_{i-1}})(B_{t_i} - B_{t_{i-1}}) \\ & & + \frac{1}{2} f''(B_{t_{i-1}})(B_{t_i} - B_{t_{i-1}})^2 + r_i] \\ & = & \int_0^t f'(B_s) dB_s + \frac{1}{2} \int_0^t f''(B_s) ds + 0 \end{array}$$

Ito's Formula (One Variable)

Theorem (Ito's Formula - Case 1). If $f: R \to R$ has a continuous second derivative, then

$$f(B_t) = f(0) + \int_0^t f'(B_s) dB_s + \frac{1}{2} \int_0^t f''(B_s) ds.$$

- $\int_0^t f'(B_s)dB_s$: zero-mean adaptive Gaussian Process
- $\frac{1}{2} \int_0^t f''(B_s) ds$: adaptive drift term

'Proof': Apply Taylor Series of $f(\cdot)$

$$f(x + \Delta x) = f(x) + f'(x)\Delta x + \frac{1}{2}f''(x)(\Delta x)^{2} + r$$

$$\begin{array}{lcl} f(B_t) - f(B_0) & = & \lim_{n \to \infty} \sum_{i=1}^n [f(B_{t_i}) - f(B_{t_{i-1}})] \\ & = & \lim_{n \to \infty} \sum_{i=1}^n [f'(B_{t_{i-1}})(B_{t_i} - B_{t_{i-1}}) \\ & & + \frac{1}{2} f''(B_{t_{i-1}})(B_{t_i} - B_{t_{i-1}})^2 + r_i] \\ & = & \int_0^t f'(B_s) dB_s + \frac{1}{2} \int_0^t f''(B_s) ds + 0 \end{array}$$

Ito's Formula - Shorthand:

$$df(B_s) = f'(B_s)dB_s + \frac{1}{2}f''(B_s)ds$$

=
$$\frac{df}{dx}(B_t)dB_s + \frac{1}{2}\frac{d^2f}{dx^2}(B_s)ds$$

Application:

Solving for $\int_0^t f(B_s)dB_s$

• Find the anti-derivative of $f(\cdot)$

$$F(\cdot) \in C^2(R) : F'(\cdot) = f(\cdot)$$

- Use the specific anti-derivative with F(0) = 0
- Use Taylor Series for F(B_t):

$$F(B_t) - F(B_0) = \int_0^t f(B_s) dB_s + \frac{1}{2} \int_0^t f'(B_s) ds$$

$$\implies \int_0^t f(B_s)dB_s = F(B_t) - \frac{1}{2} \int_0^t f'(B_s)ds$$

Application:

Solving for $\int_0^t f(B_s)dB_s$

• Find the anti-derivative of $f(\cdot)$

$$F(\cdot) \in C^2(R) : F'(\cdot) = f(\cdot)$$

- Use the specific anti-derivative with F(0) = 0
- Use Taylor Series for F(B_t):

$$F(B_t) - F(B_0) = \int_0^t f(B_s) dB_s + \frac{1}{2} \int_0^t f'(B_s) ds$$

$$\implies \int_0^t f(B_s)dB_s = F(B_t) - \frac{1}{2} \int_0^t f'(B_s)ds$$

Example 1.
$$F(x) = x$$
, $f = F' = 1$ and $f' = F'' = 0$ $\int_0^t dB_s = B_t$

Application:

Solving for $\int_0^t f(B_s) dB_s$

• Find the anti-derivative of $f(\cdot)$

$$F(\cdot) \in C^2(R) : F'(\cdot) = f(\cdot)$$

- Use the specific anti-derivative with F(0) = 0
- Use Taylor Series for $F(B_t)$:

$$F(B_t) - F(B_0) = \int_0^t f(B_s) dB_s + \frac{1}{2} \int_0^t f'(B_s) ds$$

$$\implies \int_0^t f(B_s)dB_s = F(B_t) - \frac{1}{2} \int_0^t f'(B_s)ds$$

Example 1.
$$F(x) = x$$
, $f = F' = 1$ and $f' = F'' = 0$ $\int_0^t dB_s = B_t$

Example 2.
$$F(x) = \frac{1}{2}x^2$$
, $f = F' = x$ and $f' = F'' = 1$
 $\int_0^t B_s dB_s = F(B_t) - \frac{1}{2} \int_0^t ds = \frac{1}{2}B_t^2 - \frac{1}{2}t$

Ito's Formula: Two Variables

Consider functions $f \in C^{1,2}(R^+ \times R)$

• Functions of time and space variables:

$$(s,x), s \in R^+, \text{ and } x \in R.$$

• Taylor Series:

$$f(t + \Delta t, x + \Delta x) = f(t, x) + \Delta t \frac{\partial f}{\partial t}(t, x) + \Delta x \frac{\partial f}{\partial x}(t, x) + \frac{1}{2}(\Delta x)^{2} \frac{\partial^{2} f}{\partial x^{2}}(t, x) + r$$

Note:
$$r = o(\Delta t) = r((\Delta t)^2, (\Delta t \Delta x), (\Delta t)^a (\Delta x)^b, a \ge 2, b \ge 3)$$

Theorem (Ito's Formula with Space and Time Variables)

For any function $f \in C^{1,2}(R^{\times}R)$,

$$f(t, B_t) = f(0,0) + \int_0^t \frac{\partial f}{\partial t}(s, B_s) ds + \int_0^t \frac{\partial f}{\partial x}(s, B_s) dB_s + \frac{1}{2} \int_0^t \frac{\partial^2 f}{\partial x^2}(s, B_s) ds.$$

Theorem (Ito's Formula with Space and Time Variables)

For any function $f \in C^{1,2}(R^{\times}R)$,

$$f(t, B_t) - f(0, 0) = \int_0^t \left(\frac{\partial f}{\partial t}(s, B_s) + \frac{1}{2} \frac{\partial^2 f}{\partial x^2}(s, B_s) \right) ds + \int_0^t \frac{\partial f}{\partial x}(s, B_s) dB_s$$

NOTE(!!): $\{f(t, B_t)\}$ may be a **Martingale** if

$$0 = \left(\frac{\partial f}{\partial t}(s, B_s) + \frac{1}{2}\frac{\partial^2 f}{\partial x^2}(s, B_s)\right)$$

$$\iff \frac{\partial f}{\partial t} = -\frac{1}{2} \frac{\partial^2 f}{\partial x^2}$$
 (PDE Condition for f)

Additional Condition:

$$E[|f(T,B_T)-f(0,0)|^2]=E[\int_0^T \left(\frac{\partial f(t,B_t)}{\partial x}\right)^2 dt]<\infty.$$

Example 4.
$$f(t,x) = e^{\sigma x - \sigma^2 t/2}$$

$$\frac{\partial f}{\partial t} = -\frac{1}{2}\sigma^2 f, \quad \frac{\partial f}{\partial x} = \sigma f, \quad \text{and } \frac{\partial^2 f}{\partial x^2} = \sigma^2 f$$

Applying Ito's Formula

$$f(t, B_t) = f(0,0) + \int_0^t \left(\frac{\partial f}{\partial t}(s, B_s) + \frac{1}{2} \frac{\partial^2 f}{\partial x^2}(s, B_s) \right) ds$$
$$+ \int_0^t \frac{\partial f}{\partial x}(s, B_s) dB_s$$
$$= f(0,0) + \int_0^t 0 ds + \int_0^t \sigma e^{\sigma B_s - \sigma^2 s/2} dB_s$$
$$= f(0,0) + \int_0^t \sigma e^{\sigma B_s - \sigma^2 s/2} dB_s$$

$f(t, B_t)$ is a Martingale:

•
$$E[f(t, B_t) \mid f(0, 0)] = f(0, 0) = 1$$
 (for all $t > 0$)

Note:
$$f(t, B_t) = e^{\sigma B_t - \sigma^2 t/2}$$
 is a scaled log-normal r.v. $E[e^{(\sigma B_t)}] = e^{+\frac{1}{2}\sigma^2 t}$, so $E[f(t, B_t)] = 1$ for all t .

Example 5. Brownian Motion with Drift: The Ruin Problem

- $\{B_t, t \ge 0\}$ standard Brownian motion.
- $X_t = \mu t + \sigma B_t$: Brownian motion with drift μ and instantaneous variance σ^2
- Ito's Formula Short-hand:

$$dX_t = \mu dt + \sigma dB_t$$

- Ruin Problem for X_t : calculate $P(X_\tau = A \mid X_0 = 0)$ with $\tau = \inf\{t : X_t = A, \text{ or } X_t = -B\} \ (A > 0, B > 0)$
- Martingale Solution Approach: find function $h(\cdot)$:
 - $M_t = h(X_t)$ is a martingale; then M_τ is a martingale too.
 - Conditions on h: h(A) = 1 and h(-B) = 0.
 - $\Longrightarrow E[M_{\tau}] = E[h(X_{\tau})] = P(X_{\tau} = A)$
 - By Martingale property: $P(X_{\tau} = A) = E[M_{\tau}] = M_0 = h(0)$.
- Apply the PDE Condition: $\frac{\partial h}{\partial t} = -\frac{1}{2} \frac{\partial^2 h}{\partial x^2}$

Example 5 (continued)

- $h(X_t) = h(\mu t + \sigma B_t)$
- So, work with $f(t,x) = h(\mu t + \sigma x)$
- $\frac{\partial f}{\partial t} = \mu h'(\mu t + \sigma x)$
- $\frac{\partial^2 f}{\partial x^2} = \sigma^2 h''(\mu t + \sigma x)$
- PDE Condition: $\frac{\partial f}{\partial t} = -\frac{1}{2} \frac{\partial^2 f}{\partial x^2}$ $\mu h'(\mu t + \sigma x) = -\frac{1}{2} \sigma^2 h''(\mu t + \sigma x)$

or

$$h''(y) = -(2\mu/\sigma^2)h'(y),$$

with $h(A) = 1$ and $h(-B) = 0.$

• Solution: $h(y) = \frac{\exp(-2\mu y/\sigma^2) - \exp(2\mu B/\sigma^2)}{\exp(-2\mu A/\sigma^2) - \exp(2\mu B/\sigma^2)}$

$$\implies P(X_{\tau} = A) = h(0).$$

Ito's Formula: General Case

Definition: A process $\{X_t, 0 \le t \le T\}$ is **standard** if $\{X_t\}$ has the integral representation

$$X_t = x_0 + \int_0^t a(\omega, s) ds + \int_0^T b(\omega, s) dB_s$$
 for $0 \le t \le T$

- $a(\cdot,\cdot)$ and $b(\cdot,\cdot)$ are adapted, measurable with respect to $\{\mathcal{F}_t\}$
- $P(\int_0^t |a(\omega,s)| ds < \infty) = 1$
- $P(\int_0^t |b(\omega,s)|^2 ds < \infty) = 1$

Theorem (Ito's Formula for Standard Processes) If $f \in C^{1,2}(R^+ \times R)$ and $\{X_t, 0 \le t \le T\}$ is a standard process Then

$$f(t,X_t) = f(0,0) + \int_0^t \frac{\partial f}{\partial t}(s,X_s)ds + \int_0^t \frac{\partial f}{\partial x}(s,X_s)dX_s + \frac{1}{2} \int_0^t \frac{\partial^2 f}{\partial x^2}(s,X_s)b^2(\omega,s)ds$$

Shorthand for
$$Y_t = f(t, X_t)$$

$$dY_t = f_t(t, X_t)dt + f_x(t, X_t)dX_t + \frac{1}{2}f_{xx}(t, X_t)dX_t \cdot dX_t$$

Ito's Formula: Markov Case

Consider a generalized Wiener process $\{X_t, 0 \le t \le T\}$ with the integral representation

$$X_t=x_0+\int_0^t\mu(X_s,s)ds+\int_0^T\sigma(X_s,s)dB_s$$
 for $0\leq t\leq T$ or equivalently

$$dX_t = \mu(X_t, t)dt + \sigma(X_t, t)dB_t$$
 for $0 \le t \le T$
 $\mu(\cdot, \cdot)$ and $\sigma(\cdot, \cdot)$ are adapted, measurable wrt $\{\mathcal{F}_t\}$

Ito's Lemma: Given a generalized Wiener process

$$\{X_t, 0 \leq t \leq T\}$$
, consider the process $Y_t = G(X_t, t)$

where G is a smooth, differentiable function of X_t and t. Then

$$dG = \left[\frac{\partial G}{\partial x}\mu(X_t,t) + \frac{\partial G}{\partial t} + \frac{1}{2}\frac{\partial^2 G}{\partial x^2}\sigma^2(X_t,t)\right]dt + \frac{\partial G}{\partial x}\sigma(X_t,t)dB_t$$

Ito's Formula: Markov Case

Consider a generalized Wiener process $\{X_t, 0 \le t \le T\}$ with the integral representation

$$X_t=x_0+\int_0^t \mu(X_s,s)ds+\int_0^T \sigma(X_s,s)dB_s$$
 for $0\leq t\leq T$ or equivalently

$$dX_t = \mu(X_t, t)dt + \sigma(X_t, t)dB_t$$
 for $0 \le t \le T$
 $\mu(\cdot, \cdot)$ and $\sigma(\cdot, \cdot)$ are adapted, measurable wrt $\{\mathcal{F}_t\}$

Ito's Lemma: Given a generalized Wiener process

$$\{X_t, 0 \leq t \leq T\}$$
, consider the process $Y_t = G(X_t, t)$

where G is a smooth, differentiable function of X_t and t. Then

$$dG = \left[\frac{\partial G}{\partial x}\mu(X_t,t) + \frac{\partial G}{\partial t} + \frac{1}{2}\frac{\partial^2 G}{\partial x^2}\sigma^2(X_t,t)\right]dt + \frac{\partial G}{\partial x}\sigma(X_t,t)dB_t$$

Example 2 (again)
$$\mu(X_t, t) = 0$$
, $\sigma(X_t, t) = 1$, $G(x, t) = x^2$.

$$\frac{\partial G}{\partial x} = 2x$$
, $\frac{\partial G}{\partial t} = 0$, $\frac{\partial^2 G}{\partial x^2} = 2$.

$$\implies d[X_t^2] = (2X_t \times 0 + 0 + \frac{1}{2} \times 2 \times 1)dt + 2X_t dX_t = dt + 2X_t dX_t.$$

Ito's Formula: Markov Case

Consider a generalized Wiener process $\{X_t, 0 \le t \le T\}$ with the integral representation

$$X_t=x_0+\int_0^t\mu(X_s,s)ds+\int_0^T\sigma(X_s,s)dB_s$$
 for $0\leq t\leq T$ or equivalently

$$dX_t = \mu(X_t, t)dt + \sigma(X_t, t)dB_t \text{ for } 0 \le t \le T$$
$$\mu(\cdot, \cdot) \text{ and } \sigma(\cdot, \cdot) \text{ are adapted, measurable wrt } \{\mathcal{F}_t\}$$

Ito's Lemma: Given a generalized Wiener process

$$\{X_t, 0 \leq t \leq T\}$$
, consider the process $Y_t = G(X_t, t)$

where G is a smooth, differentiable function of X_t and t. Then

$$dG = \left[\frac{\partial G}{\partial x}\mu(X_t,t) + \frac{\partial G}{\partial t} + \frac{1}{2}\frac{\partial^2 G}{\partial x^2}\sigma^2(X_t,t)\right]dt + \frac{\partial G}{\partial x}\sigma(X_t,t)dB_t$$

Example 2 (again)
$$\mu(X_t, t) = 0$$
, $\sigma(X_t, t) = 1$, $G(x, t) = x^2$.

$$\frac{\partial G}{\partial x} = 2x$$
, $\frac{\partial G}{\partial t} = 0$, $\frac{\partial^2 G}{\partial x^2} = 2$.

$$\implies d[X_t^2] = (2X_t \times 0 + 0 + \frac{1}{2} \times 2 \times 1)dt + 2X_t dX_t = dt + 2X_t dX_t.$$

So
$$X_t^2 = \int_0^t ds + 2 \int_0^t X_s dX_s \iff \int_0^t X_s dX_s = \frac{1}{2} [X_t^2 - t]$$

Example 6. Geometric Brownian Motion: $\{P_t, 0 \le t < \infty\}$ stochastic process of an asset price which is an Ito Process $dP_t = \mu P_t dt + \sigma P_t dB_t$ where μ and $\sigma > 0$ are constant. P_t is generalized Wiener process, $X_t = P_t$ with parameters: $\mu(x_t, t) = \mu x_t$, $\sigma(x_t, t) = \sigma x_t$

Example 6. Geometric Brownian Motion: $\{P_t, 0 \le t < \infty\}$ stochastic process of an asset price which is an Ito Process

$$dP_t = \mu P_t dt + \sigma P_t dB_t$$

where μ and $\sigma > 0$ are constant. P_t is generalized Wiener process, $X_t = P_t$ with parameters: $\mu(x_t, t) = \mu x_t$, $\sigma(x_t, t) = \sigma x_t$

Apply Ito's Lemma to obtain model for $G(P_t, t) = ln(P_t)$

•
$$\frac{\partial G}{\partial P_t} = \frac{1}{P_t}$$
, $\frac{\partial G}{\partial t} = 0$, $\frac{1}{2} \frac{\partial^2 G}{\partial P_t^2} = \frac{1}{2} \frac{(-1)}{P_t^2}$.

Example 6. Geometric Brownian Motion: $\{P_t, 0 \le t < \infty\}$ stochastic process of an asset price which is an Ito Process

$$dP_t = \mu P_t dt + \sigma P_t dB_t$$

where μ and $\sigma > 0$ are constant. P_t is generalized Wiener process, $X_t = P_t$ with parameters: $\mu(x_t, t) = \mu x_t$, $\sigma(x_t, t) = \sigma x_t$

Apply Ito's Lemma to obtain model for $G(P_t, t) = ln(P_t)$

- $\frac{\partial G}{\partial P_t} = \frac{1}{P_t}$, $\frac{\partial G}{\partial t} = 0$, $\frac{1}{2} \frac{\partial^2 G}{\partial P_t^2} = \frac{1}{2} \frac{(-1)}{P_t^2}$.
- Ito's Lemma gives

$$d \ln(P_t) = \left(\frac{1}{P_t} \mu P_t + \frac{1}{2} \frac{(-1)}{P_t^2} \sigma^2 P_t^2\right) dt + \frac{1}{P_t} \sigma P_t dB_t$$
$$= \left(\mu - \frac{\sigma^2}{2}\right) dt + \sigma dB_t$$

Log price follows generalized Wiener process: $drift rate = (\mu - \sigma^2/2) \text{ and variance rate} = \sigma^2$

Example 6. Geometric Brownian Motion: $\{P_t, 0 \le t < \infty\}$ stochastic process of an asset price which is an Ito Process

$$dP_t = \mu P_t dt + \sigma P_t dB_t$$

where μ and $\sigma > 0$ are constant. P_t is generalized Wiener process, $X_t = P_t$ with parameters: $\mu(x_t, t) = \mu x_t$, $\sigma(x_t, t) = \sigma x_t$

Apply Ito's Lemma to obtain model for $G(P_t, t) = \ln(P_t)$

- $\frac{\partial G}{\partial P_t} = \frac{1}{P_t}$, $\frac{\partial G}{\partial t} = 0$, $\frac{1}{2} \frac{\partial^2 G}{\partial P_t^2} = \frac{1}{2} \frac{(-1)}{P_t^2}$.
- Ito's Lemma gives

$$d \ln(P_t) = \left(\frac{1}{P_t} \mu P_t + \frac{1}{2} \frac{(-1)}{P_t^2} \sigma^2 P_t^2\right) dt + \frac{1}{P_t} \sigma P_t dB_t$$
$$= \left(\mu - \frac{\sigma^2}{2}\right) dt + \sigma dB_t$$

Log price follows generalized Wiener process:

drift rate =
$$(\mu - \sigma^2/2)$$
 and variance rate = σ^2

Log return on $(t, t + \Delta t]$: $\ln(\frac{P_{t+\Delta t}}{P_t}) \sim N([\mu - \frac{\sigma^2}{2}](\Delta t), \sigma^2 \Delta t)$).

Log return on $(t, t + \Delta t]$: $\ln(\frac{P_{t+\Delta t}}{P_t}) \sim \mathcal{N}([\mu - \frac{\sigma^2}{2}](\Delta t), \sigma^2 \Delta t)$).

Log return on
$$(t, t + \Delta t]$$
: $\ln(\frac{P_{t+\Delta t}}{P_t}) \sim N([\mu - \frac{\sigma^2}{2}](\Delta t), \sigma^2 \Delta t))$.

Change in log price on the increment (t, T]

$$ln(P_T) - ln(P_t) \sim N([(\mu - \frac{\sigma^2}{2})(T - t), \sigma^2(T - t))$$

(sum of independent Normal increments)

Log return on
$$(t, t + \Delta t]$$
: $\ln(\frac{P_{t+\Delta t}}{P_t}) \sim N([\mu - \frac{\sigma^2}{2}](\Delta t), \sigma^2 \Delta t)$.

Change in log price on the increment (t, T]

$$ln(P_T) - ln(P_t) \sim N([(\mu - \frac{\sigma^2}{2})(T - t), \sigma^2(T - t))$$

(sum of independent Normal increments)

Conditional distribution of
$$ln(P_T)$$
 given P_t

$$ln(P_T) \sim N(ln(P_t) + (\mu - \frac{\sigma^2}{2})(T - t), \ \sigma^2(T - t))$$

$$\Longrightarrow P_T$$
 is $LogNormal(\mu_*, \sigma_*^2)$ where

$$\mu_* = \ln(P_t) + (\mu - \frac{\sigma^2}{2})(T - t)$$

$$\sigma_*^2 = \sigma^2(T - t)$$

$$E[P_T \mid P_t] = P_t e^{\mu_* + \frac{1}{2}\sigma_*^2} = P_t e^{(\mu - \frac{\sigma^2}{2})(T - t) + \frac{1}{2}\sigma^2(T - t)} = P_t^{\mu(T - t)}$$

$$Var[P_t \mid P_t] = P_t^2 e^{2\mu(T-t)} \times [e^{\sigma^2(T-t)} - 1]$$

$$E[P_T | P_t] = P_t e^{\mu(T-t)}$$

 $Var[P_t | P_t] = P_t^2 e^{2\mu(T-t)} \times [e^{\sigma^2(T-t)} - 1]$

- \bullet μ is the expected rate of return on the asset.
- Consider annual time scale (T=1 year) with $\mu=0.3$ and $\sigma=0.4$ and T-t=0.5 (one-half year).

$$E[P_T \mid P_t] = P_t e^{0.30 \times 0.5} = P_t \times (1.161834)$$

$$Var[P_T \mid P_t] = P_t^2 [exp[2 \times .30 \times .5] [exp(.40^2(.5)) - 1.]$$

$$= (P_t \times 0.3353)^2$$

$$E[P_T | P_t] = P_t e^{\mu(T-t)}$$

 $Var[P_t | P_t] = P_t^2 e^{2\mu(T-t)} \times [e^{\sigma^2(T-t)} - 1]$

- ullet μ is the expected rate of return on the asset.
- Consider annual time scale (T=1 year) with $\mu=0.3$ and $\sigma=0.4$ and T-t=0.5 (one-half year).

$$E[P_T \mid P_t] = P_t e^{0.30 \times 0.5} = P_t \times (1.161834)$$

$$Var[P_T \mid P_t] = P_t^2 [exp[2 \times .30 \times .5][exp(.40^2(.5)) - 1.]$$

$$= (P_t \times 0.3353)^2$$

Continuously Compounded Rate of Return: *r*

$$P_T = P_t \exp[r(T-t)] \Longrightarrow r = \frac{1}{T-t} \ln(\frac{P_T}{P_t})$$

Distribution for *r*:

$$r \sim N(\mu - \frac{1}{2}\sigma^2, \frac{\sigma^2}{T-t})$$

Simulating Brownian Motion (pdf)

- $\{W(t)\}$: Brownian motion model with drift $\mu \in R$ and volatility $\sigma > 0$.
 - *T* = 4(years)
 - $\mu = 0.30, \, \sigma = 0.40$
 - m = increments on time interval (0, T]. Endpoints at $t_i = i \times (T/m), i = 1, 2, ..., m$
- Geometric Brownian Motion (GBM): $X(t) = e^{W(t)}$
- Log Returns of GBM: R(t) = log[X(t)/X(0)]/t

Follow-Up Topics

Stochastic Differential Equations

- Derivatives Pricing Models
 Martingales and Arbitrage Pricing
- Population Growth Models
- Existence and Uniqueness Theorems

Filtering Problems

- Innovation Processes
- Kalman-Bucy Filter

Optimal Stopping Problems

Maximizing Expected Utility/Reward

Stochastic Control

MIT OpenCourseWare https://ocw.mit.edu

18.642 Topics in Mathematics with Applications in Finance Fall 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.