18.650. Statistics for Applications Fall 2016. Problem Set 9

Due Friday, Nov. 18 at 12 noon

Problem $1 \quad$ Nonparametric regression with fixed design (60 points)

Consider a fixed and regular design on the interval $[0,1]$:

$$
x_{i}=\frac{i}{n}, \quad i=0, \ldots, n .
$$

For each i, let $Y_{i}=f\left(x_{i}\right)+\varepsilon_{i}$, where

- f is an unknown function on $[0,1]$;
- $\varepsilon_{0}, \ldots, \varepsilon_{n} \stackrel{i . i . d .}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)$,
for some $\sigma^{2}>0$.
Assume that the unknown function f is differentiable, and

$$
\left|f^{\prime}(x)\right| \leq L, \quad \forall x \in[0,1],
$$

for some positive number L. The aim of this exercise is to estimate the regression function f.

Let $k \leq n$ be some positive integer. For $i=0, \ldots, n$, let $I_{i}=\{j=0, \ldots, n:|j-i| \leq$ $k\}$.

1. Compute the size $\left|I_{i}\right|$ of I_{i}, for each $i \in\{0, \ldots, n\}$ and show that

$$
k+1 \leq\left|I_{i}\right| \leq 2 k+1 .
$$

2. For $i=0, \ldots, n$ we estimate $f\left(x_{i}\right)$ by

$$
\hat{f}_{i}=\frac{1}{\left|I_{i}\right|} \sum_{j \in I_{i}} Y_{j} .
$$

a) Compute the variance of \hat{f}_{i} and show that

$$
\operatorname{Var}\left(\hat{f}_{i}\right) \leq \frac{\sigma^{2}}{k} .
$$

b) Compute $\mathbb{E}\left[\hat{f}_{i}\right]$ and prove that the bias b_{i} of \hat{f}_{i} satisfies

$$
\left|b_{i}\right| \leq \frac{1}{\left|I_{i}\right|} \underset{j \in I_{i}}{ }\left|f\left(x_{j}\right)-f\left(x_{i}\right)\right|
$$

c) Using the assumptions on f, conclude that

$$
b_{i}^{2} \leq \frac{L^{2} k^{2}}{n^{2}}
$$

d) Using the previous questions, prove that the quadratic risk of \hat{f}_{i} satisfies:

$$
\mathbb{E}\left[\left(\hat{f}_{i}-f\left(x_{i}\right)\right)^{2}\right] \leq \frac{L^{2} k^{2}}{n^{2}}+\frac{\sigma^{2}}{k}
$$

e) What is the optimal choice of k, i.e., the one that minimizes the previous upper bound on the quadratic risk ?
f) For this choice of k, what is the speed of convergence of the quadratic risk of \hat{f}_{i} to zero?
g) Prove that if L and σ^{2} are unknown, there still is a choice of k that does not depend on L and σ^{2} for which the quadratic risk of \hat{f}_{i} is still of order $n^{-2 / 3}$.
3. (Optional question) Define the estimator \hat{f} of f as the piecewise linear function \hat{f} on $[0,1]$ such that $\hat{f}\left(x_{i}\right)=\hat{f}_{i}, i=0, \ldots, n$ (where k is again any integer between 1 and n). We define the integrated quadratic risk of \hat{f} as:

$$
R(\hat{f}, f)=\mathbb{E}\left[\int_{0}^{1}(\hat{f}(x)-f(x))^{2} \mathrm{~d} x\right] .
$$

Prove that

$$
R(\hat{f}, f) \leq \frac{c_{1} k^{2}}{n^{2}}+\frac{c_{2}}{k}
$$

where c_{1} and c_{2} are positive constants that depend on L and σ^{2} only. Conclude that there is a choice of k that leads to convergence to zero at the speed $n^{-2 / 3}$.

Problem 2 Nonparametric estimation of a density (40 points)

Let X_{1}, \ldots, X_{n} be i.i.d. random variables in the interval $[0,1]$ with some unknown density f. Throughout this exercise, we will assume that f is differentiable and satisfies $|f(x)| \leq L,\left|f^{\prime}(x)\right| \leq L, \forall x \in[0,1]$, where L is a fixed positive number.

Let $h>0$. For $x \in[0,1]$, we define the estimator of $f(x)$ as

$$
\hat{f}(x)=\frac{1}{2 n h}{ }_{i=1}^{n} \mathbb{1}_{\left|X_{i}-x\right| \leq h}
$$

Let $x \in(h, 1-h)$.

1. What is the distribution of each random variable $\mathbb{1}_{\left|X_{i}-x\right| \leq h}, i=1, \ldots, n$?
2. Denote by $b(x)$ the bias of $\hat{f}(x)$ and by $\sigma^{2}(x)$ its variance. Recall the relationship between its quadratic risk, $b(x)$ and $\sigma^{2}(x)$.
3. Prove that

$$
b(x)=\frac{F(x+h)-F(x-h)-2 h f(x)}{2 h},
$$

where F is the cdf of X_{1}.
4. Using a Taylor formula, conclude that

$$
|b(x)| \leq \frac{L h}{2}
$$

5. Show that

$$
\sigma^{2}(x) \leq \frac{L}{2 n h} .
$$

6. Using the previous questions, give an upper bound for the quadratic risk of $\hat{f}(x)$.
7. Show that if L is unknown, the window size h can be taken such that the quadratic risk of $\hat{f}(x)$ is bounded from above by $C n^{-2 / 3}$, where C is a positive constant that depends on L.

MIT OpenCourseWare
https://ocw.mit.edu

18.650 / 18.6501 Statistics for Applications

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

