18.650. Statistics for Applications Fall 2016. Problem Set 9

Due Friday, Nov. 18 at 12 noon

Problem 1 Nonparametric regression with fixed design (60 points)

Consider a fixed and regular design on the interval [0, 1]:

$$x_i = \frac{i}{n}, \quad i = 0, \dots, n$$

For each i, let $Y_i = f(x_i) + \varepsilon_i$, where

- f is an unknown function on [0, 1];
- $\varepsilon_0, \ldots, \varepsilon_n \overset{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2),$

for some $\sigma^2 > 0$.

Assume that the unknown function f is differentiable, and

$$|f'(x)| \le L, \quad \forall x \in [0,1],$$

for some positive number L. The aim of this exercise is to estimate the regression function f.

Let $k \leq n$ be some positive integer. For i = 0, ..., n, let $I_i = \{j = 0, ..., n : |j - i| \leq k\}$.

1. Compute the size $|I_i|$ of I_i , for each $i \in \{0, \ldots, n\}$ and show that

$$k+1 \le |I_i| \le 2k+1.$$

2. For $i = 0, \ldots, n$ we estimate $f(x_i)$ by

$$\hat{f}_i = \frac{1}{|I_i|} \sum_{j \in I_i} Y_j.$$

a) Compute the variance of \hat{f}_i and show that

$$Var(\hat{f}_i) \le \frac{\sigma^2}{k}.$$

b) Compute $\mathbb{E}[\hat{f}_i]$ and prove that the bias b_i of \hat{f}_i satisfies

$$|b_i| \le \frac{1}{|I_i|} |_{j \in I_i} |f(x_j) - f(x_i)|.$$

c) Using the assumptions on f, conclude that

$$b_i^2 \le \frac{L^2 k^2}{n^2}$$

d) Using the previous questions, prove that the quadratic risk of \hat{f}_i satisfies:

$$\mathbb{E}\left[(\hat{f}_i - f(x_i))^2\right] \le \frac{L^2 k^2}{n^2} + \frac{\sigma^2}{k}.$$

- e) What is the optimal choice of k, i.e., the one that minimizes the previous upper bound on the quadratic risk ?
- f) For this choice of k, what is the speed of convergence of the quadratic risk of \hat{f}_i to zero ?
- g) Prove that if L and σ^2 are unknown, there still is a choice of k that does not depend on L and σ^2 for which the quadratic risk of \hat{f}_i is still of order $n^{-2/3}$.
- 3. (Optional question) Define the estimator \hat{f} of f as the piecewise linear function \hat{f} on [0, 1] such that $\hat{f}(x_i) = \hat{f}_i, i = 0, ..., n$ (where k is again any integer between 1 and n). We define the integrated quadratic risk of \hat{f} as:

$$R(\hat{f}, f) = \mathbb{E}\left[\int_0^1 \left(\hat{f}(x) - f(x)\right)^2 \mathrm{d}x\right].$$

Prove that

$$R(\hat{f}, f) \le \frac{c_1 k^2}{n^2} + \frac{c_2}{k},$$

where c_1 and c_2 are positive constants that depend on L and σ^2 only. Conclude that there is a choice of k that leads to convergence to zero at the speed $n^{-2/3}$.

Problem 2 Nonparametric estimation of a density (40 points)

Let X_1, \ldots, X_n be i.i.d. random variables in the interval [0, 1] with some unknown density f. Throughout this exercise, we will assume that f is differentiable and satisfies $|f(x)| \leq L, |f'(x)| \leq L, \forall x \in [0, 1]$, where L is a fixed positive number.

Let h > 0. For $x \in [0, 1]$, we define the estimator of f(x) as

$$\hat{f}(x) = \frac{1}{2nh} \prod_{i=1}^{n} \mathbb{1}_{|X_i - x| \le h}.$$

Let $x \in (h, 1 - h)$.

- 1. What is the distribution of each random variable $\mathbb{1}_{|X_i-x| \leq h}$, $i = 1, \ldots, n$?
- 2. Denote by b(x) the bias of $\hat{f}(x)$ and by $\sigma^2(x)$ its variance. Recall the relationship between its quadratic risk, b(x) and $\sigma^2(x)$.
- 3. Prove that

$$b(x) = \frac{F(x+h) - F(x-h) - 2hf(x)}{2h},$$

where F is the cdf of X_1 .

4. Using a Taylor formula, conclude that

$$|b(x)| \le \frac{Lh}{2}.$$

5. Show that

$$\sigma^2(x) \le \frac{L}{2nh}.$$

- 6. Using the previous questions, give an upper bound for the quadratic risk of $\hat{f}(x)$.
- 7. Show that if L is unknown, the window size h can be taken such that the quadratic risk of $\hat{f}(x)$ is bounded from above by $Cn^{-2/3}$, where C is a positive constant that depends on L.

18.650 / 18.6501 Statistics for Applications Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.