18.650. Statistics for Applications Fall 2016. Problem Set 8

Due Friday, Nov. 4 at 12 noon

Problem 1 Heteroscedastic regression

Let the characteristics $\left(\mathbf{X}_{i}, y_{i}\right)$ of n individuals $(i=1, \ldots, n)$ be observed, where $y_{i} \in \mathbb{R}$ is the dependent variable and $X_{i} \in \mathbb{R}^{p}$ is the vector of deterministic explanatory variables. Our goal is to estimate the coefficients of $\boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{p}\right)^{\prime}$ in the linear regression:

$$
y_{i}=X_{i}^{\prime} \boldsymbol{\beta}+\varepsilon_{i}, \quad i=1, \ldots, n .
$$

We assume that the model is heteroscedastic, i.e., the error terms ε_{i} are not i.i.d.. In this exercise, we are interested in the case where the vector $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)^{\prime}$ is Gaussian, centered, with known covariance matrix Σ and we assume that Σ is invertible. We denote by \mathbb{X} the matrix in $\mathbb{R}^{n \times p}$ whose rows are $X_{1}^{\prime}, \ldots, X_{n}^{\prime}$ and by \mathbb{Y} the vector with coordinates y_{1}, \ldots, y_{n}.

Consider the estimator $\hat{\beta}$ that minimises

$$
(\mathbb{Y}-\mathbb{X} \boldsymbol{\beta})^{\prime} \Sigma^{-1}(\mathbb{Y}-\mathbb{X} \boldsymbol{\beta})
$$

over $\boldsymbol{\beta} \in \mathbb{R}^{p}$.

1. Show that in the homoscedastic case, i.e., when $\Sigma=\sigma^{2} I_{n}$ for some $\sigma^{2}>0, \hat{\boldsymbol{\beta}}$ reduces the least square error estimator.
2. Prove that $\hat{\boldsymbol{\beta}}$ is equal to the maximum likelihood estimator.
3. Propose a sufficient condition on the matrix \mathbb{X} for $\hat{\boldsymbol{\beta}}$ to be uniquely defined.
4. From now on, we assume that the previous condition is satisfied. Compute $\hat{\boldsymbol{\beta}}$. What is the distribution of $\hat{\boldsymbol{\beta}}$?
5. Compute the bias and the quadratic risk of $\hat{\boldsymbol{\beta}}$.

Problem 2 Linear regression with random design

Consider n i.i.d. pairs of random variables $\left(\mathbb{X}_{i}, Y_{i}\right), i=1, \ldots, n$, where $\mathbb{X}_{i} \in \mathbb{R}^{p}(p \geq 1)$ and $Y_{i} \in \mathbb{R}$. For each i, write

$$
Y_{i}=\mathbb{X}_{i}^{\prime} \boldsymbol{\beta}+\varepsilon_{i},
$$

where $\mathbb{E}\left[\varepsilon_{i}\right]=0, \operatorname{cov}\left(\mathbb{X}_{i}, \varepsilon_{i}\right)=0$ and $\boldsymbol{\beta} \in \mathbb{R}^{p}$ is an unknown vector, that we want to estimate. In Questions 1,2 and 3, we assume that for all $x \in \mathbb{R}^{p}, \varepsilon_{1}$ has a conditional density given $X_{1}=x$, denoted by f_{x} and that \mathbb{X}_{1} has a density, which we denote by g.

1. Write the likelihood in terms of the unknown parameter $\boldsymbol{\beta}, f_{x}$ and g.
2. Show that the maximum likelihood estimator of $\boldsymbol{\beta}$ does not depend on g, which may be unknown.
3. Assume that ε_{1} is independent of \mathbb{X}_{1} and that $\varepsilon_{1} \sim \mathcal{N}\left(0, \sigma^{2}\right)$.
a) Compute f_{x}, for $x \in \mathbb{R}^{p}$.
b) Since the \mathbb{X}_{i} 's are independent continuous random vectors of size p, it is possible to prove that the rank of the family $\left\{\mathbb{X}_{1}, \ldots, \mathbb{X}_{n}\right\}$ is equal to p almost surely. Here, we use this result without proving it.
Show that the maximum likelihood estimator of $\boldsymbol{\beta}$ is equal to the least square error estimator and compute it.
c) Conditionally on the \mathbb{X}_{i} 's, what is the distribution of the MLE ?
d) Is the MLE biased ?

Hint: First compute its expectation conditionally on the \mathbb{X}_{i} 's.
e) What is the maximum likelihood estimator of σ^{2} ?
f) Propose an unbiased estimator $\hat{\sigma}^{2}$ of σ^{2}. What is the conditional distribution of $\frac{(n-p) \hat{\sigma}^{2}}{\sigma^{2}}$ given the X_{i} 's ?
4. Assume that $p=2$ and $\mathbb{X}_{i}=\left(1, X_{i}\right), i=1, \ldots, n$, where X_{i} is a random variable with finite, non zero variance. Of course, we no longer assume that \mathbb{X}_{1} has a density. Denote $\boldsymbol{\beta}=(a, b)$, so:

$$
Y_{i}=a+b X_{i}+\varepsilon_{i}, \quad i=1, \ldots, n
$$

a) Recall the least square estimator (\hat{a}, \hat{b}) of (a, b).
b) Prove that it is consistent.
c) Assume that X_{1} and ε are independent, and denote by σ^{2} the variance of ε_{1}. Show that (\hat{a}, \hat{b}) is asymptotically normal, and compute its asymptotic covariance matrix in terms of σ^{2} and the moments of X_{1}.
d) Propose a test with asymptotic level at most $\alpha \in(0,1)$ for the null hypothesis $H_{0}: " b>0 "$ (the moments of X_{1} and σ^{2} are not known).

Problem 3 Logistic regression

Consider independent random pairs $\left(\mathbb{X}_{1}, Y_{1}\right), \ldots,\left(\mathbb{X}_{n}, Y_{n}\right)$, such that:

- $Y_{i} \in\{0,1\}$ is a binary variable,
- $\mathbb{X}_{i} \in \mathbb{R}^{p}$,
- $\ln \left(\frac{\mathbb{P}\left[Y_{i}=1 \mid \mathbb{X}_{i}\right]}{\mathbb{P}\left[Y_{i}=0 \mid \mathbb{X}_{i}\right]}\right)=\mathbb{X}_{i}^{\prime} \boldsymbol{\beta}$, for some $\boldsymbol{\beta} \in \mathbb{R}^{p}$.

For the sake of simplicity, we assume that \mathbb{X}_{1} has a density, that is unknown. We denote it by f.

1. Compute $\mathbb{P}\left[Y_{i}=1 \mid \mathbb{X}_{i}\right]($ for $i=1, \ldots, n)$.
2. Write the likelihood of the model in terms of $\boldsymbol{\beta}$ and f.
3. Show that the maximum likelihood estimator of $\boldsymbol{\beta}$ does not depend on the unknown density f.
Remark: In practice, there is no closed form for the maximum likelihood estimator, but there are some algorithms that allow to approach it.

MIT OpenCourseWare
https://ocw.mit.edu

18.650 / 18.6501 Statistics for Applications

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

