18.650. Statistics for Applications Fall 2016. Problem Set 8

Due Friday, Nov. 4 at 12 noon

Problem 1 Heteroscedastic regression

Let the characteristics (\mathbf{X}_i, y_i) of n individuals (i = 1, ..., n) be observed, where $y_i \in \mathbb{R}$ is the dependent variable and $X_i \in \mathbb{R}^p$ is the vector of deterministic explanatory variables. Our goal is to estimate the coefficients of $\boldsymbol{\beta} = (\beta_1, ..., \beta_p)'$ in the linear regression:

$$y_i = X'_i \boldsymbol{\beta} + \varepsilon_i, \quad i = 1, \dots, n.$$

We assume that the model is heteroscedastic, i.e., the error terms ε_i are not i.i.d.. In this exercise, we are interested in the case where the vector $\boldsymbol{\varepsilon} = (\varepsilon_1, \ldots, \varepsilon_n)'$ is Gaussian, centered, with known covariance matrix Σ and we assume that Σ is invertible. We denote by \mathbb{X} the matrix in $\mathbb{R}^{n \times p}$ whose rows are X'_1, \ldots, X'_n and by \mathbb{Y} the vector with coordinates y_1, \ldots, y_n .

Consider the estimator $\hat{\beta}$ that minimises

$$(\mathbb{Y} - \mathbb{X}\boldsymbol{\beta})'\Sigma^{-1}(\mathbb{Y} - \mathbb{X}\boldsymbol{\beta}),$$

over $\boldsymbol{\beta} \in \mathbb{R}^p$.

- 1. Show that in the homoscedastic case, i.e., when $\Sigma = \sigma^2 I_n$ for some $\sigma^2 > 0$, $\hat{\beta}$ reduces the least square error estimator.
- 2. Prove that $\hat{\boldsymbol{\beta}}$ is equal to the maximum likelihood estimator.
- 3. Propose a sufficient condition on the matrix X for $\hat{\boldsymbol{\beta}}$ to be uniquely defined.
- 4. From now on, we assume that the previous condition is satisfied. Compute $\hat{\boldsymbol{\beta}}$. What is the distribution of $\hat{\boldsymbol{\beta}}$?
- 5. Compute the bias and the quadratic risk of β .

Problem 2 Linear regression with random design

Consider *n* i.i.d. pairs of random variables $(X_i, Y_i), i = 1, ..., n$, where $X_i \in \mathbb{R}^p$ $(p \ge 1)$ and $Y_i \in \mathbb{R}$. For each *i*, write

$$Y_i = \mathbb{X}'_i \boldsymbol{\beta} + \varepsilon_i,$$

where $\mathbb{E}[\varepsilon_i] = 0$, $cov(\mathbb{X}_i, \varepsilon_i) = 0$ and $\boldsymbol{\beta} \in \mathbb{R}^p$ is an unknown vector, that we want to estimate. In Questions 1,2 and 3, we assume that for all $x \in \mathbb{R}^p$, ε_1 has a conditional density given $X_1 = x$, denoted by f_x and that \mathbb{X}_1 has a density, which we denote by g.

- 1. Write the likelihood in terms of the unknown parameter β , f_x and g.
- 2. Show that the maximum likelihood estimator of β does not depend on g, which may be unknown.
- 3. Assume that ε_1 is independent of \mathbb{X}_1 and that $\varepsilon_1 \sim \mathcal{N}(0, \sigma^2)$.
 - a) Compute f_x , for $x \in \mathbb{R}^p$.

error estimator and compute it.

- b) Since the X_i 's are independent continuous random vectors of size p, it is possible to prove that the rank of the family $\{X_1, \ldots, X_n\}$ is equal to p almost surely. Here, we use this result without proving it. Show that the maximum likelihood estimator of β is equal to the least square
- c) Conditionally on the X_i 's, what is the distribution of the MLE ?
- d) Is the MLE biased ? Hint: First compute its expectation conditionally on the X_i 's.
- e) What is the maximum likelihood estimator of σ^2 ?
- f) Propose an unbiased estimator $\hat{\sigma}^2$ of σ^2 . What is the conditional distribution of $\frac{(n-p)\hat{\sigma}^2}{\sigma^2}$ given the X_i 's ?
- 4. Assume that p = 2 and $\mathbb{X}_i = (1, X_i), i = 1, \dots, n$, where X_i is a random variable with finite, non zero variance. Of course, we no longer assume that \mathbb{X}_1 has a density. Denote $\boldsymbol{\beta} = (a, b)$, so:

$$Y_i = a + bX_i + \varepsilon_i, \ i = 1, \dots, n.$$

- a) Recall the least square estimator (\hat{a}, \hat{b}) of (a, b).
- b) Prove that it is consistent.
- c) Assume that X_1 and ε are independent, and denote by σ^2 the variance of ε_1 . Show that (\hat{a}, \hat{b}) is asymptotically normal, and compute its asymptotic covariance matrix in terms of σ^2 and the moments of X_1 .
- d) Propose a test with asymptotic level at most $\alpha \in (0, 1)$ for the null hypothesis $H_0: "b > 0"$ (the moments of X_1 and σ^2 are **not** known).

Problem 3 Logistic regression

Consider independent random pairs $(X_1, Y_1), \ldots, (X_n, Y_n)$, such that:

- $Y_i \in \{0, 1\}$ is a binary variable,
- $\mathbb{X}_i \in \mathbb{R}^p$,

•
$$\ln\left(\frac{\mathbb{P}[Y_i=1|\mathbb{X}_i]}{\mathbb{P}[Y_i=0|\mathbb{X}_i]}\right) = \mathbb{X}'_i \boldsymbol{\beta}$$
, for some $\boldsymbol{\beta} \in \mathbb{R}^p$.

For the sake of simplicity, we assume that X_1 has a density, that is unknown. We denote it by f.

- 1. Compute $\mathbb{P}[Y_i = 1 | \mathbb{X}_i]$ (for $i = 1, \ldots, n$).
- 2. Write the likelihood of the model in terms of β and f.
- 3. Show that the maximum likelihood estimator of β does not depend on the unknown density f.

Remark: In practice, there is no closed form for the maximum likelihood estimator, but there are some algorithms that allow to approach it.

18.650 / 18.6501 Statistics for Applications Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.