18.650. Statistics for Applications Fall 2016. Problem Set 11

Due Friday, Dec. 9 at 12 noon
NOTE: there was a typo in the definition of the logistic function in Problem 3, Question 4.

Problem 1 Exponential families

For each of the following families of distributions, tell whether it is an exponential family:

- $\operatorname{Ber}(p), p \in(0,1)$;
- $\mathcal{N}(\mu, 1), \mu \in \mathbb{R}$;
- $\mathcal{N}\left(\mu, \sigma^{2}\right), \mu \in \mathbb{R}, \sigma^{2}>0$;
- $\operatorname{Exp}(\lambda), \lambda>0 ;$
- $\mathcal{U}([0, \vartheta]), \vartheta>0$;
- $\Gamma(\alpha, \beta), \alpha>0, \beta>0$;
- $\operatorname{Poiss}(\lambda), \lambda>0$.

Recall that the Gamma distribution with parameters $\alpha, \beta>0$ has density

$$
f(x)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}, \quad x>0
$$

where Γ is the Gamma function.

Problem 2 One parameter canonical Exponential families

Let $\Theta \subseteq \mathbb{R}$ and consider the family of densities $f_{\theta}, \theta \in \Theta$ defined on a subset \mathcal{X} of \mathbb{R} (called sample space) by

$$
f_{\theta}(x)=a(x) \exp (-\theta x+b(\theta)), \quad x \in \mathcal{X}
$$

where a is a positive function defined on \mathcal{X} and b is a function defined on the space Θ (called parameter space).

Let $\ell(\theta)=\ln f_{\theta}(X), \theta \in \Theta$, be the \log-likelihood function, where X is a random variable on \mathcal{X}.

1. In the rest of the problem, if $\theta \in \Theta$ and g is a function defined on \mathbb{R}, denote by $\mathbb{E}_{\theta}[g(X)]$ (resp. $\left.\operatorname{Var}_{\theta}[g(X)]\right)$ the expectation (resp. variance) of $g(X)$ under the assumption that X has density f_{θ}.
a) Why is it true that

$$
\int_{\mathbb{R}} f_{\theta}(x) \mathrm{d} x=1, \quad \forall \theta \in \Theta \quad ?
$$

b) Assuming that you can switch expectations and derivatives with respect to θ, prove the following identities:

1. $\mathbb{E}_{\theta}\left[\ell^{\prime}(\theta)\right]=0$;
2. $\operatorname{Var}_{\theta}\left[\ell^{\prime}(\theta)\right]=-\mathbb{E}_{\theta}\left[\ell^{\prime \prime}(\theta)\right]$.
c) What is the name of the last quantity in the previous question?
3. Compute $\ell^{\prime}(\theta)$ and $\ell^{\prime \prime}(\theta)$ in terms of the functions a and b.
4. Using the previous functions, compute $\mathbb{E}_{\theta}[X]$ and $\operatorname{Var}_{\theta}[X]$, for all $\theta \in \Theta$.
5. Example: Assume that $\Theta=(0, \infty)$ and for $\theta>0, f_{\theta}$ is the density of the Gamma distribution with parameters α and θ, where α is a fixed number.
a) What is the sample space \mathcal{X} ?
b) What are the functions a and b ?
c) Using the previous questions, compute the expectation and the variance of the Gamma distribution with parameters $\alpha, \beta>0$.

Problem 3 Linear model with latent variables

Consider the linear regression

$$
Y=X^{\prime} \beta+\varepsilon
$$

where $\beta \in \mathbb{R}^{p}$ is the unknown parameter, $X \in \mathbb{R}^{p}$ is the vector or explanatory variables and, $Y \in \mathbb{R}$ is the response variable and $\varepsilon \in \mathbb{R}$ is the error term. Assume that ε and X are independent and let F be the cdf of ε.

Let $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ be a sample of i.i.d. copies of (X, Y). Assume that for each observation, X_{i} is observed but Y_{i} is not observed. Instead, what is observed is

$$
Z_{i}=\mathbb{1}_{Y_{i} \geq 0}
$$

The random variables Y_{i} are called latent variables because they are not observed and the observed sample is $\left(X_{1}, Z_{1}\right), \ldots,\left(X_{n}, Z_{n}\right)$.

1. Conditional on X_{1}, what is the distribution of Z_{1} ?
2. Write the link function in terms of F.
3. If ϵ is standard Gaussian, prove that the link function is Φ^{-1}, where Φ is the cdf of $\mathcal{N}(0,1)$. What is the name of the model in that case ?
4. Assume that the density of ϵ is the logistic function:

$$
f(t)=\frac{e^{-t}}{\left(1+e^{-t}\right)^{2}}, \quad t \in \mathbb{R}
$$

a) Compute $F(t)$, for $t \in \mathbb{R}$.
b) Compute the link function.
c) What is the name of the model in that case ?

MIT OpenCourseWare
https://ocw.mit.edu

18.650 / 18.6501 Statistics for Applications

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

