18.650. Statistics for Applications Fall 2016. Problem Set 10

Due Friday, Dec. 2 at 12 noon

Problem 1 Bayesian Estimation

Let $X_{1}, \ldots, X_{n} \stackrel{i . i . d .}{\sim} \mathcal{N}(0, \theta)$, for some unknown positive number θ.

1. Compute the maximum likelihood estimator of θ.
2. Prove that the MLE is asymptotically normal and find its asymptotic variance.
3. In a Bayesian approach:
a) Compute Jeffreys prior ? Is it proper ?
b) Use Bayes' formula in order to compute the posterior distribution. Is it well defined?
c) Compute the Bayesian estimator of θ associated with Jeffreys prior.

Recall that the inverse Gamma distribution with parameters $\alpha>1, \beta>0$ has density

$$
f(x)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} \frac{e^{-\beta / x}}{x^{\alpha+1}}, x>0
$$

Its expectation is given by $\frac{\beta}{\alpha-1}$.

Problem 2 Bayesian Estimation and Linear Regression

Let X_{1}, \ldots, X_{n} be n deterministic vectors in \mathbb{R}^{p} and let \boldsymbol{X} be the $n \times p$ matrix whose rows are $X_{1}^{\prime}, \ldots, X_{n}^{\prime}$. Consider a sample Y_{1}, \ldots, Y_{n}, such that conditionally on some p dimensional random vector $\boldsymbol{\beta}, Y_{1}, \ldots, Y_{n}$ are independent and for each $i=1, \ldots, n$,

$$
Y_{i}-X_{i}^{\prime} \boldsymbol{\beta} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

where σ^{2} is a given positive number. Denote by $\boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{\prime}$.

1. Conditionally on $\boldsymbol{\beta}$, what is the distribution of \boldsymbol{Y} ?
2. Assume that the prior distribution on $\boldsymbol{\beta}$ is $\mathcal{N}_{p}\left(0, \tau^{2} I_{p}\right)$, where τ^{2} is a fixed positive number.
a) Prove that the posterior distribution of $\boldsymbol{\beta}$ (i.e., the distribution of $\boldsymbol{\beta}$ conditional on $\boldsymbol{Y})$ has a density proportional to $\exp \left(-\frac{1}{2 \sigma^{2}}\left(\|\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{\beta}\|^{2}+\lambda\|\beta\|^{2}\right)\right)$, for some λ to be determined.
b) Conclude that the posterior distribution of $\boldsymbol{\beta}$ is Gaussian and determine the corresponding parameters.
Hint: The density of the Gaussian distribution with mean vector $\boldsymbol{\mu}$ and covariance matrix Σ is given by

$$
g(\boldsymbol{\beta})=\frac{1}{(2 \pi)^{p / 2} \sqrt{\operatorname{det} \Sigma}} \exp \left(-\frac{1}{2}(\boldsymbol{\beta}-\boldsymbol{\mu})^{\prime} \Sigma^{-1}(\boldsymbol{\beta}-\boldsymbol{\mu})\right) .
$$

c) What is the posterior mean of $\boldsymbol{\beta}$?
3. Consider a frequentist approach: Assume that the linear regression of Y_{i} on X_{i} is $Y_{i}=X_{i}^{\prime} \boldsymbol{\beta}+\varepsilon_{i}$, for some unknown vector $\boldsymbol{\beta} \in \mathbb{R}^{p}$, where $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are i.i.d. $\mathcal{N}\left(0, \sigma^{2}\right)$, for some $\sigma^{2}>0$. The Ridge estimator of $\boldsymbol{\beta}$ is defined as:

$$
\hat{\boldsymbol{\beta}}^{(R)} \in \underset{\boldsymbol{t} \in \mathbb{R}^{S}}{\operatorname{argmin}}\|\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{t}\|^{2}+\lambda\|\boldsymbol{t}\|^{2},
$$

where λ is a tuning parameter, i.e., a given number chosen by the statistician. Note that similarly to the BIC or the Lasso estimators, the Ridge estimator minimizes a penalized version of the sum of squared errors.
a) Compute the Ridge estimator.
b) Using the previous questions, prove that there exists a value of τ^{2} such that $\hat{\boldsymbol{\beta}}^{(R)}$ is equal to the Bayesian estimator with prior distribution $\mathcal{N}_{p}\left(0, \tau^{2} I_{p}\right)$.
c) What is the distribution of $\hat{\boldsymbol{\beta}}^{(R)}$?
d) Compute the quadratic risk of $\hat{\boldsymbol{\beta}}^{(R)}$ in terms of the matrix \boldsymbol{X}, λ and $\boldsymbol{\beta}$.

Problem 3 Covariance Matrices

1. Recall the definition of the covariance matrix of a p-dimensional random vector $\boldsymbol{X}=\left(X_{1}, \ldots, X_{p}\right)^{\prime}$. What are its dimensions ?
2. Given a sample of n random vectors $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}$ of size p, recall the definition of the sample covariance matrix.
3. Prove that the covariance matrix of a random vector is positive semi-definite.
4. Prove that the sample covariance matrix of a sample of random vectors is positive semi-definite.
5. Let \boldsymbol{X} be a p-dimensional random vector and let Σ be its covariance matrix. Let A be a $q \times p$ matrix.
a) What is the covariance matrix of the random vector $\boldsymbol{A} \boldsymbol{X}$? Prove your answer.
b) If $q>p$, can the covariance matrix of $A \boldsymbol{X}$ be invertible ? Why ?
c) If $\boldsymbol{u} \in \mathbb{R}^{p}$, what is the variance of $\boldsymbol{u}^{\prime} \boldsymbol{X}$?
6. Let $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}$ be p-dimensional random vectors and let $\hat{\Sigma}$ be the corresponding sample covariance matrix.
a) Let B be a $q \times p$ matrix. What is the sample covariance matrix of $B \boldsymbol{X}_{1}, \ldots, B \boldsymbol{X}_{n}$? Prove your answer.
b) If $\boldsymbol{u} \in \mathbb{R}^{p}$, what is the sample covariance of $\boldsymbol{u}^{\prime} \boldsymbol{X}_{1}, \ldots, \boldsymbol{u}^{\prime} \boldsymbol{X}_{n}$?
7. Let \boldsymbol{X} be a d-dimensional random vector with mean $\boldsymbol{\mu}$ and covariance matrix Σ. Let $A \in \mathbb{R}^{k \times d}$. Prove that

$$
\mathbb{E}\left[\boldsymbol{X}^{\prime} A^{\prime} A \boldsymbol{X}\right]=\|A \boldsymbol{\mu}\|_{2}^{2}+\operatorname{Tr}\left(A \Sigma A^{\prime}\right) .
$$

MIT OpenCourseWare
https://ocw.mit.edu

18.650 / 18.6501 Statistics for Applications

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

