Statistics for Applications

Chapter 8: Bayesian Statistics



The Bayesian approach (1)

» So far, we have studied the frequentist approach of statistics.

» The frequentist approach:

>

| 4

Observe data

These data were generated randomly (by Nature, by
measurements, by designing a survey, etc...)

We made assumptions on the generating process (e.g., i.i.d.,
Gaussian data, smooth density, linear regression function,
etc...)

The generating process was associated to some object of
interest (e.g., a parameter, a density, etc...)

This object was unknown but fixed and we wanted to find it:
we either estimated it or tested a hypothesis about this object,
etc...



The Bayesian approach (2)

» Now, we still observe data, assumed to be randomly generated
by some process. Under some assumptions (e.g., parametric
distribution), this process is associated with some fixed object.

» We have a prior belief about it.

» Using the data, we want to update that belief and transform
it into a posterior belief.



The Bayesian approach (3)

Example

>

Let p be the proportion of woman in the population.

Sample n people randomly with replacement in the population
and denote by X7,..., X, their gender (1 for woman, 0
otherwise).

In the frequentist approach, we estimated p (using the MLE),
we constructed some confidence interval for p, we did
hypothesis testing (e.g., Hyp:p=.5v.s. Hy : p # .5).

Before analyzing the data, we may believe that p is likely to
be close to 1/2.

The Bayesian approach is a tool to:

1. include mathematically our prior belief in statistical procedures.
2. update our prior belief using the data.



The Bayesian approach (4)

Example (continued)

» Our prior belief about p can be quantified:

» E.g., we are 90% sure that p is between .4 and .6, 95% that it
is between .3 and .8, etc...

» Hence, we can model our prior belief using a distribution for
p, as if p was random.

> In reality, the true parameter is not random ! However, the
Bayesian approach is a way of modeling our belief about the
parameter by doing as if it was random.

» E.g., p~ B(a,a) (Beta distribution) for some a > 0.

» This distribution is called the prior distribution.



The Bayesian approach (5)

Example (continued)

» In our statistical experiment, X1,..., X, are assumed to be
i.i.d. Bernoulli r.v. with parameter p conditionally on p.

> After observing the available sample X1,..., X,,, we can
update our belief about p by taking its distribution

conditionally on the data.

» The distribution of p conditionally on the data is called the
posterior distribution.

» Here, the posterior distribution is

B(a‘i‘zn:Xi,a'i‘n—zn:Xi) .
=1 i=1



The Bayes rule and the posterior distribution (1)
» Consider a probability distribution on a parameter space ©
with some pdf 7(-): the prior distribution.
» Let Xq,...,X, be asample of n random variables.

» Denote by p,,(-|0) the joint pdf of X1,...,X,, conditionally
on @, where 6 ~ 7.

> Usually, one assumes that X1,..., X, are i.i.d. conditionally
on 6.

» The conditional distribution of 8 given Xy,..., X, is called
the posterior distribution. Denote by 7(-|X1,...,X,,) its pdf.



The Bayes rule and the posterior distribution (2)

» Bayes' formula states that:

(0| X1,..., Xpn) x 7(0)pp(X1,...,X,0), VOcO.

» The constant does not depend on 6:

TO1Xn, ... X)) = Py, Xnf6)

= f@pn(X17~--,Xn|t) dﬂ'(t)’ Vo € O.



The Bayes rule and the posterior distribution (3)
In the previous example:
> m(p) o p® (1 —p)*p € (0,1).
» Given p, X1,..., X, i Ber(p), so
Pul(X1, .., Xpl0) = pi=1 Xi(1 — )2z X,
» Hence,
T(O1X1, ..., Xp) o p? R Ki(] — ppamtinmiin X,

» The posterior distribution is

n n
B(a—i—ZXi,a—i—n—ZXi).
i=1 i=1



Non informative priors (1)

» Idea: In case of ignorance, or of lack of prior information, one
may want to use a prior that is as little informative as
possible.

» Good candidate: 7(f) 1, i.e., constant pdf on O.

» If © is bounded, this is the uniform prior on ©.

» If © is unbounded, this does not define a proper pdf on © !

» An improper prior on © is a measurable, nonnegative function
7(-) defined on © that is not integrable.

> In general, one can still define a posterior distribution using an
improper prior, using Bayes' formula.



Non informative priors (2)
Examples:

> If p ~ U(0,1) and given p, X1,..., X, "% Ber(p) :

T(p|X1,. .., Xn) o pi=t Xi(1 — )= L= Xo|

i.e., the posterior distribution is

i=1 i=1
» If 7(6) =1,V0 € IR and given 0, X,..., X, b N(6,1):

1
7T(9|X17"°7Xn) X €xXp <_§ Z(XZ_0)2 ’

i=1

i.e., the posterior distribution is

N <Xn,1>.
n



Non informative priors (3)

> Jeffreys prior:
wy(0) x \/det I(0),

where () is the Fisher information matrix of the statistical
model associated with X,...,X,, in the frequentist approach
(provided it exists).

> In the previous examples:

» Ex. 1. my(p) m, p € (0,1): the prior is B(1/2,1/2).

» Ex. 2: m;(0) < 1, € R is an improper prior.



Non informative priors (4)

» Jeffreys prior satisfies a reparametrization invariance principle:
If ) is a reparametrization of 6 (i.e., n = ¢(#) for some
one-to-one map ¢), then the pdf 7(-) of n satisfies:

() oc \/det I(n),

where I(n) is the Fisher information of the statistical model
parametrized by 7 instead of 6.



Bayesian confidence regions

» For o € (0,1), a Bayesian confidence region with level « is a
random subset R of the parameter space ©, which depends
on the sample X1,...,X,, such that:

IP[H S R|X1,...,Xn] =1—-a.
» Note that R depends on the prior 7(+).

» "Bayesian confidence region” and "confidence interval” are
two distinct notions.



Bayesian estimation (1)

» The Bayesian framework can also be used to estimate the true
underlying parameter (hence, in a frequentist approach).

> In this case, the prior distribution does not reflect a prior
belief: It is just an artificial tool used in order to define a new
class of estimators.

» Back to the frequentist approach: The sample
Xi,...,X, is associated with a statistical model

(E,(IPg)oco).

» Define a distribution (that can be improper) with pdf 7 on
the parameter space O.

» Compute the posterior pdf 7(:|X1,..., X)) associated with T,
seen as a prior distribution.



Bayesian estimation (2)

» Bayes estimator:
9 = / 0dm(0|X1,...,Xn) :
S
This is the posterior mean.

» The Bayesian estimator depends on the choice of the prior
distribution 7 (hence the superscript ).



Bayesian estimation (3)

> In the previous examples:
» Ex. 1 with prior B(a,a) (a > 0):

(o a+> X a/n+ X,
L P 2a/n+1"

In particular, for a = 1/2 (Jeffreys prior),

porn = 1/@n) + Xo
1/n+1
» Ex. 2: () =X,.

> In each of these examples, the Bayes estimator is consistent
and asymptotically normal.

> In general, the asymptotic properties of the Bayes estimator
do not depend on the choice of the prior.
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