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Statistics for Applications

Chapter 8: Bayesian Statistics
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The Bayesian approach (1)

◮ So far, we have studied the frequentist approach of statistics.

◮ The frequentist approach:

◮ Observe data

◮ These data were generated randomly (by Nature, by
measurements, by designing a survey, etc...)

◮ We made assumptions on the generating process (e.g., i.i.d.,
Gaussian data, smooth density, linear regression function,
etc...)

◮ The generating process was associated to some object of
interest (e.g., a parameter, a density, etc...)

◮ This object was unknown but fixed and we wanted to find it:
we either estimated it or tested a hypothesis about this object,
etc...
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The Bayesian approach (2)

◮ Now, we still observe data, assumed to be randomly generated
by some process. Under some assumptions (e.g., parametric
distribution), this process is associated with some fixed object.

◮ We have a prior belief about it.

◮ Using the data, we want to update that belief and transform
it into a posterior belief.
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The Bayesian approach (3)
Example

◮ Let p be the proportion of woman in the population.

◮ Sample n people randomly with replacement in the population
and denote by X1, . . . ,Xn their gender (1 for woman, 0
otherwise).

◮ In the frequentist approach, we estimated p (using the MLE),
we constructed some confidence interval for p, we did
hypothesis testing (e.g., H0 : p = .5 v.s. H1 : p 6= .5).

◮ Before analyzing the data, we may believe that p is likely to
be close to 1/2.

◮ The Bayesian approach is a tool to:

1. include mathematically our prior belief in statistical procedures.
2. update our prior belief using the data.
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The Bayesian approach (4)
Example (continued)

◮ Our prior belief about p can be quantified:

◮ E.g., we are 90% sure that p is between .4 and .6, 95% that it
is between .3 and .8, etc...

◮ Hence, we can model our prior belief using a distribution for
p, as if p was random.

◮ In reality, the true parameter is not random ! However, the
Bayesian approach is a way of modeling our belief about the
parameter by doing as if it was random.

◮ E.g., p ∼ B(a, a) (Beta distribution) for some a > 0.

◮ This distribution is called the prior distribution.
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The Bayesian approach (5)

Example (continued)

◮ In our statistical experiment, X1, . . . ,Xn are assumed to be
i.i.d. Bernoulli r.v. with parameter p conditionally on p.

◮ After observing the available sample X1, . . . ,Xn, we can
update our belief about p by taking its distribution
conditionally on the data.

◮ The distribution of p conditionally on the data is called the
posterior distribution.

◮ Here, the posterior distribution is

B
(

a+

n
∑

i=1

Xi, a+ n−
n
∑

i=1

Xi

)

.
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The Bayes rule and the posterior distribution (1)

◮ Consider a probability distribution on a parameter space Θ
with some pdf π(·): the prior distribution.

◮ Let X1, . . . ,Xn be a sample of n random variables.

◮ Denote by pn(·|θ) the joint pdf of X1, . . . ,Xn conditionally
on θ, where θ ∼ π.

◮ Usually, one assumes that X1, . . . ,Xn are i.i.d. conditionally
on θ.

◮ The conditional distribution of θ given X1, . . . ,Xn is called
the posterior distribution. Denote by π(·|X1, . . . ,Xn) its pdf.
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The Bayes rule and the posterior distribution (2)

◮ Bayes’ formula states that:

π(θ|X1, . . . ,Xn) ∝ π(θ)pn(X1, . . . ,Xn|θ), ∀θ ∈ Θ.

◮ The constant does not depend on θ:

π(θ|X1, . . . ,Xn) =
π(θ)pn(X1, . . . ,Xn|θ)

∫

Θ pn(X1, . . . ,Xn|t) dπ(t)
, ∀θ ∈ Θ.
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The Bayes rule and the posterior distribution (3)

In the previous example:

◮ π(p) ∝ pa−1(1− p)a−1, p ∈ (0, 1).

◮ Given p, X1, . . . ,Xn

i.i.d.∼ Ber(p), so

pn(X1, . . . ,Xn|θ) = p
∑

n

i=1
Xi(1− p)n−

∑
n

i=1
Xi .

◮ Hence,

π(θ|X1, . . . ,Xn) ∝ pa−1+
∑

n

i=1
Xi(1− p)a−1+n−

∑
n

i=1
Xi .

◮ The posterior distribution is

B
(

a+

n
∑

i=1

Xi, a+ n−
n
∑

i=1

Xi

)

.
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Non informative priors (1)

◮ Idea: In case of ignorance, or of lack of prior information, one
may want to use a prior that is as little informative as
possible.

◮ Good candidate: π(θ) ∝ 1, i.e., constant pdf on Θ.

◮ If Θ is bounded, this is the uniform prior on Θ.

◮ If Θ is unbounded, this does not define a proper pdf on Θ !

◮ An improper prior on Θ is a measurable, nonnegative function
π(·) defined on Θ that is not integrable.

◮ In general, one can still define a posterior distribution using an
improper prior, using Bayes’ formula.



11/17

Non informative priors (2)

Examples:

◮ If p ∼ U(0, 1) and given p, X1, . . . ,Xn

i.i.d.∼ Ber(p) :

π(p|X1, . . . ,Xn) ∝ p
∑

n

i=1
Xi(1− p)n−

∑
n

i=1
Xi ,

i.e., the posterior distribution is

B
(

1 +
n
∑

i=1

Xi, 1 + n−
n
∑

i=1

Xi

)

.

◮ If π(θ) = 1,∀θ ∈ IR and given θ, X1, . . . ,Xn

i.i.d.∼ N (θ, 1):

π(θ|X1, . . . ,Xn) ∝ exp

(

−1

2

n
∑

i=1

(Xi − θ)2

)

,

i.e., the posterior distribution is

N
(

X̄n,
1

n

)

.
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Non informative priors (3)

◮ Jeffreys prior:

πJ(θ) ∝
√

det I(θ),

where I(θ) is the Fisher information matrix of the statistical
model associated with X1, . . . ,Xn in the frequentist approach
(provided it exists).

◮ In the previous examples:

◮ Ex. 1: πJ (p) ∝ 1√
p(1−p)

, p ∈ (0, 1): the prior is B(1/2, 1/2).

◮ Ex. 2: πJ (θ) ∝ 1, θ ∈ IR is an improper prior.
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Non informative priors (4)

◮ Jeffreys prior satisfies a reparametrization invariance principle:
If η is a reparametrization of θ (i.e., η = φ(θ) for some
one-to-one map φ), then the pdf π̃(·) of η satisfies:

π̃(η) ∝
√

det Ĩ(η),

where Ĩ(η) is the Fisher information of the statistical model
parametrized by η instead of θ.
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Bayesian confidence regions

◮ For α ∈ (0, 1), a Bayesian confidence region with level α is a
random subset R of the parameter space Θ, which depends
on the sample X1, . . . ,Xn, such that:

IP[θ ∈ R|X1, . . . ,Xn] = 1− α.

◮ Note that R depends on the prior π(·).

◮ ”Bayesian confidence region” and ”confidence interval” are
two distinct notions.
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Bayesian estimation (1)

◮ The Bayesian framework can also be used to estimate the true
underlying parameter (hence, in a frequentist approach).

◮ In this case, the prior distribution does not reflect a prior
belief: It is just an artificial tool used in order to define a new
class of estimators.

◮ Back to the frequentist approach: The sample
X1, . . . ,Xn is associated with a statistical model
(E, (IPθ)θ∈Θ).

◮ Define a distribution (that can be improper) with pdf π on
the parameter space Θ.

◮ Compute the posterior pdf π(·|X1, . . . ,Xn) associated with π,
seen as a prior distribution.



16/17

Bayesian estimation (2)

◮ Bayes estimator:

θ̂(π) =

∫

Θ
θ dπ(θ|X1, . . . ,Xn) :

This is the posterior mean.

◮ The Bayesian estimator depends on the choice of the prior
distribution π (hence the superscript π).
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Bayesian estimation (3)

◮ In the previous examples:

◮ Ex. 1 with prior B(a, a) (a > 0):

p̂(π) =
a+

∑n

i=1 Xi

2a+ n
=

a/n+ X̄n

2a/n+ 1
.

In particular, for a = 1/2 (Jeffreys prior),

p̂(πJ ) =
1/(2n) + X̄n

1/n+ 1
.

◮ Ex. 2: θ̂(πJ ) = X̄n.

◮ In each of these examples, the Bayes estimator is consistent
and asymptotically normal.

◮ In general, the asymptotic properties of the Bayes estimator
do not depend on the choice of the prior.
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