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Chapter 4: The Method of Moments
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Weierstrass Approximation Theorem (WAT)

Theorem
Let f be a continuous function on the interval [a, b], then, for any
ε > 0, there exists a0, a1, . . . , ad ∈ IR such that

max
x∈[a,b]

∣

∣f(x)−
d

∑

k=0

akx
k
∣

∣ < ε .

In word: “continuous functions can be arbitrarily well approximated
by polynomials”
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Statistical application of the WAT (1)

◮ Let X1, . . . ,Xn be an i.i.d. sample associated with a
(identified) statistical model

(

E, {IPθ}θ∈Θ
)

. Write θ∗ for the
true parameter.

◮ Assume that for all θ, the distribution IPθ has a density fθ.

◮ If we find θ such that
∫

h(x)fθ∗(x)dx =

∫

h(x)fθ(x)dx

for all (bounded continuous) functions h, then θ = θ∗.

◮ Replace expectations by averages: find estimator θ̂ such that

1

n

n
∑

i=1

h(Xi) =

∫

h(x)f
θ̂
(x)dx

for all (bounded continuous) functions h. There is an infinity

of such functions: not doable!
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Statistical application of the WAT (2)

◮ By the WAT, it is enough to consider polynomials:

1

n

n
∑

i=1

d
∑

k=0

akX
k
i =

∫ d
∑

k=0

akx
kf

θ̂
(x)dx , ∀a0, . . . , ad ∈ IR

Still an infinity of equations!

◮ In turn, enough to consider

1

n

n
∑

i=1

Xk
i =

∫

xkf
θ̂
(x)dx , ∀k = 1, . . . , d

(only d+ 1 equations)

◮ The quantity mk(θ) :=

∫

xkfθ(x)dx is the kth moment of

IPθ. Can also be written as

mk(θ) = IEθ[X
k] .
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Gaussian quadrature (1)

◮ The Weierstrass approximation theorem has limitations:

1. works only for continuous functions (not really a problem!)
2. works only on intervals [a, b]
3. Does not tell us what d (# of moments) should be

◮ What if E is discrete: no PDF but PMF p(·)?
◮ Assume that E = {x1, x2, . . . , xr} is finite with r possible

values. The PMF has r − 1 parameters:

p(x1), . . . , p(xr−1)

because the last one: p(xr) = 1−
r−1
∑

j=1

p(xj) is given by the

first r − 1.

◮ Hopefully, we do not need much more than d = r − 1
moments to recover the PMF p(·).
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Gaussian quadrature (2)

◮ Note that for any k = 1, . . . , r1,

mk = IE[Xk] =

r
∑

j=1

p(xj)x
k
j

and
r

∑

j=1

p(xj) = 1

This is a system of linear equations with unknowns
p(x1), . . . , p(xr).

◮ We can write it in a compact form:














x11 x12 · · · x1r
x21 x22 · · · x2r
...

. . .
...

xr−1
1 xr−1

2 · · · xr−1
r

1 1 · · · 1















·















p(x1)
p(x2)

...
p(xr−1)
p(xr)















=















m1

m2
...

mr−1

1














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Gaussian quadrature (2)

◮ Check if matrix is invertible: Vandermonde determinant

det















x11 x12 · · · x1r
x21 x22 · · · x2r
...

. . .
...

xr−1
1 xr−1

2 · · · xr−1
r

1 1 · · · 1















=
∏

1<j<k<r

(xj − xk) 6= 0

◮ So given m1, . . . ,mr−1, there is a unique PMF that has these
moments. It is given by















p(x1)
p(x2)

...
p(xr−1)
p(xr)















=















x11 x12 · · · x1r
x21 x22 · · · x2r
...

. . .
...

xr−1
1 xr−1

2 · · · xr−1
r

1 1 · · · 1















−1













m1

m2
...

mr−1

1














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Conclusion from WAT and Gaussian quadrature

◮ Moments contain important information to recover the PDF
or the PMF

◮ If we can estimate these moments accurately, we may be able
to recover the distribution

◮ In a parametric setting, where knowing the distribution IPθ

amounts to knowing θ, it is often the case that even less
moments are needed to recover θ. This is on a case-by-case
basis.

◮ Rule of thumb if θ ∈ Θ ⊂ IRd, we need d moments.
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Method of moments (1)

Let X1, . . . ,Xn be an i.i.d. sample associated with a statistical
model

(

E, (IPθ)θ∈Θ
)

. Assume that Θ ⊆ IRd, for some d ≥ 1.

◮ Population moments: Let mk(θ) = IEθ[X
k
1 ], 1 ≤ k ≤ d.

◮ Empirical moments: Let m̂k = Xk
n =

1

n

n
∑

i=1

Xk
i , 1 ≤ k ≤ d.

◮ Let
ψ : Θ ⊂ IRd → IRd

θ 7→ (m1(θ), . . . ,md(θ)) .
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Method of moments (2)

Assume ψ is one to one:

θ = ψ−1(m1(θ), . . . ,md(θ)).

Definition

Moments estimator of θ:

θ̂MM
n = ψ−1(m̂1, . . . , m̂d),

provided it exists.
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Method of moments (3)

Analysis of θ̂MM
n

◮ Let M(θ) = (m1(θ), . . . ,md(θ));

◮ Let M̂ = (m̂1, . . . , m̂d).

◮ Let Σ(θ) = Vθ(X,X
2, . . . ,Xd) be the covariance matrix of

the random vector (X,X2, . . . ,Xd), where X ∼ IPθ.

◮ Assume ψ−1 is continuously differentiable at M(θ). Write
∇ψ−1

∣

∣

M(θ)
for the d× d gradient matrix at this point.
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Method of moments (4)

◮ LLN: θ̂MM
n is weakly/strongly consistent.

◮ CLT:

√
n
(

M̂ −M(θ)
)

(d)−−−→
n→∞

N (0,Σ(θ)) (w.r.t. IPθ).

Hence, by the Delta method (see next slide):

Theorem

√
n
(

θ̂MM
n − θ

)

(d)−−−→
n→∞

N (0,Γ(θ)) (w.r.t. IPθ),

where Γ(θ) =
[

∇ψ−1
∣

∣

M(θ)

]⊤
Σ(θ)

[

∇ψ−1
∣

∣

M(θ)

]

.
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Multivariate Delta method

Let (Tn)n≥1 sequence of random vectors in IRp (p ≥ 1) that
satisfies

√
n(Tn − θ)

(d)−−−→
n→∞

N (0,Σ),

for some θ ∈ IRp and some symmetric positive semidefinite matrix
Σ ∈ IRp×p.

Let g : IRp → IRk (k ≥ 1) be continuously differentiable at θ.
Then,

√
n (g(Tn)− g(θ))

(d)−−−→
n→∞

N (0,∇g(θ)⊤Σ∇g(θ)),

where ∇g(θ) =
(

∂gj

∂θi

)

1≤i≤d,1≤j≤k

∈ IRk×d.
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MLE vs. Moment estimator

◮ Comparison of the quadratic risks: In general, the MLE is
more accurate.

◮ Computational issues: Sometimes, the MLE is intractable.

◮ If likelihood is concave, we can use optimization algorithms
(Interior point method, gradient descent, etc.)

◮ If likelihood is not concave: only heuristics. Local maxima.
(Expectation-Maximization, etc.)



  
 

MIT OpenCourseWare 
https://ocw.mit.edu 

18.650 / 18.6501 Statistics for Applications 
Fall 2016 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu
https://ocw.mit.edu/terms



