### Methods of Estimation II

#### MIT 18.655

Dr. Kempthorne

Spring 2016

- E

э



### Methods of Estimation II

#### • Maximum Likelihood in Multiparameter Exponential Families

Algorithmic Issues

Maximum Likelihood in Multiparameter Exponential Families Algorithmic Issues

## Maximum Likelihood in Exponential Families

#### Issues:

- Existence of MLEs
- Uniqueness of MLEs

#### Significant Feature of Exponential Family of Distributions

## Existence and Uniqueness Theorem

**Proposition 2.3.1** Suppose  $X \sim P \in \{P_{\theta}, \theta \in \Theta\}$  with

- $\Theta \subset R^p$ , an open set.
- The corresponding densities of P<sub>θ</sub>, p(x | θ), are such that for any x ∈ X the likelihood function

 $l_x(\theta) = \log[p(x \mid \theta)]$  is strictly concave in  $\theta$ 

•  $l_x(\theta) \to -\infty$  as  $\theta \to \partial \Theta$ , where  $\partial \Theta = \overline{\Theta} - \Theta$ , the boundary of  $\Theta$ , defined using  $\overline{\Theta}$ , the closure of  $\Theta$  in  $[-\infty, \infty]$ .

Then:

- The MLE  $\hat{\theta}(x)$  exists.
- The MLE  $\hat{\theta}(x)$  is unique.

Proof:

• Apply properties of convexity of sets/functions.

timation II

# Convexity

### **Definitions (Section B.9)**

• A subset  $S \subset R^k$  is **convex** if for every  $x, y \in S$ ,  $\alpha x + (1 - \alpha)y \in S$ , for all  $\alpha : 0 < \alpha < 1$ . • for k = 1, convex sets are intervals (finite or infinite). • for k > 1, spheres, rectangles (finite or infinite) are convex. •  $\mathbf{x}_0 \in S^0$ , the interior of the convex set S if and only if  $\{x: \mathbf{d}^T \mathbf{x} > \mathbf{d}^T \mathbf{x}_0\} \cap S^0 \neq \emptyset$ and  $\{x: \mathbf{d}^{\mathsf{T}}\mathbf{x} < \mathbf{d}^{\mathsf{T}}\mathbf{x}_0\} \cap S^0 \neq \emptyset$ for every  $\mathbf{d} \neq \mathbf{0}$ . • A function  $g: S \rightarrow R$  is **convex** if  $g(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \leq \alpha g(\mathbf{x}) + (1 - \alpha)g(\mathbf{y})$ for all  $\mathbf{x}, \mathbf{y} \in S$ , and all  $\alpha : \mathbf{0} < \alpha < 1$ . • A function  $g: S \rightarrow R$  is strictly convex if  $g(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) < \alpha g(\mathbf{x}) + (1 - \alpha)g(\mathbf{y})$ 

for all 
$$\mathbf{x} \neq \mathbf{v} \in S$$
, and all  $\alpha : 0 < \alpha < 1$   
MIT 18.655 Methods of E

# Convexity

### Properties (Section B.9)

- A convex function is continuous on S<sup>0</sup>
- For k = 1, if g'' exists:

• 
$$g''(x) \ge 0, x \in S \iff g(\cdot)$$
 is convex.

•  $g''(x) > 0, x \in S \iff g(\cdot)$  is strictly convex.

• For 
$$g(\cdot): S \to R$$
 convex and fixed  $\mathbf{x}, \mathbf{y} \in S$ ,

$$h(\alpha) = g(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y})$$
 is convex in  $\alpha$ , for

$$0 \le \alpha \le 1.$$

• When k > 1, if  $\frac{\partial g^2(x)}{\partial x_i \partial x_j}$  exists, convexity is equivalent to  $\sum_{i \ i} u_i u_j \frac{\partial g^2(x)}{\partial x_i \partial x_j} \ge 0,$ 

for all  $\mathbf{u} = (u_1, \dots, u_k)^T \in \mathbb{R}^k$ , and  $x \in S$ . • A function  $h: S \to \mathbb{R}$  is **(strictly) concave** if g = -h is (strictly) convex.

# Convexity

### Jensen's Inequality If

- $S \subset R^k$  is convex and closed
- g is convex on S.
- U a random vector with sample space U = S,  $P[U \in S] = 1$  and E[U] finite

Then

- *E*[*U*] ∈ *S*
- E[g(U)] exists
- $E[g(U)] \ge g(E[U])$
- E[g(U)] = g(E[U]) if and only if  $P(g(U) = a + b^T U) = 1.$

for some fixed  $a \in R$  and  $\mathbf{b}(k \times 1) \in R^k$ .

• If g is strictly convex, then

E[g(U)] = g(E[U]) if and only if  $P(U = \mathbf{c}) = 1$ , for some  $\mathbf{c} \in R^k$ .

## Existence and Uniqueness of MLE

#### **Proof of Proposition 2.3.1**

- Because  $l_x(\theta): \Theta \to R$  is strictly concave, it follows that it is continuous on  $\Theta$ .
- Because *l<sub>x</sub>(θ)* → −∞ as *θ* → ∂Θ, the mle *θ̂(x)* exists. This follows from *Lemma* 2.3.1:
  - Suppose the function *I*: Θ → *R* where Θ ⊂ *R<sup>p</sup>* is open and *I* is continuous.
  - If lim{l(θ) : θ → ∂Θ} = -∞, then there exists θ̂ ∈ Θ such that: l(θ̂) = max{l(θ) : θ ∈ Θ}
- Suppose  $\hat{\theta}_1$  and  $\hat{\theta}_2$  are distinct MLEs:  $l_x(\hat{\theta}_1) = l_x(\hat{\theta}_2)$  and  $\hat{\theta}_1 \neq \hat{\theta}_2$ . By the strict concavity of  $l_x$ ,  $l_x(\frac{1}{2}\hat{\theta}_1 + \frac{1}{2}\hat{\theta}_2) > \frac{1}{2}l_x(\hat{\theta}_1) + \frac{1}{2}l_x(\hat{\theta}_2) > l_x(\hat{\theta}_1)$  but this contradicts  $\hat{\theta}_1$  being an MLE.

## MLEs for Canonical Exponential Family

**Theorem 2.3.1** Suppose  $\mathcal{P}$  is the canonical exponential family generated by  $(\mathcal{T}, h)$ , and that

- $\bullet\,$  The natural parameter space  ${\cal E}$  is open
- The family is of rank k.

(a). If t<sub>0</sub> ∈ R<sup>k</sup> satisfies: P[c<sup>T</sup>T(X) > c<sup>T</sup>t<sub>0</sub>] > 0 for all c ≠ 0, (\*) then the MLE î exists, is unique, and is a solution to the equation Å(η) = E(T(X) | η) = t<sub>0</sub>. (\*\*)
(b). If t<sub>0</sub> ∈ R<sup>k</sup> does not satisfy (\*), then the MLE does not exist and (\*\*) has no solution. Recall canonical exponential family generated by (T, h):

- Natural Sufficient Statistic:  $\mathbf{T}(\mathbf{X}) = (T_1(X), \dots, T_k(X))^T$
- Natural Parameter:  $\boldsymbol{\eta} = (\eta_1, \dots, \eta_k)^T$
- Density function  $p(x \mid \eta) = h(x)exp\{\mathbf{T}^{T}(x)\eta) - A(\eta)\}$ where  $A(\cdot)$  is defined to normalize the density:  $A(\eta) = \log \int \cdots \int h(x)exp\{\mathbf{T}^{T}(x)\eta\}dx$ or

$$A(\boldsymbol{\eta}) = \log[\prod_{x \in \mathcal{X}} h(x) \exp\{\mathbf{T}^{T}(x)\boldsymbol{\eta}\}]$$

• Natural Parameter space:  $\mathcal{E} = \{\eta \in \mathbb{R}^k : -\infty < A(\eta) < \infty\}.$ 

・ 同 ト ・ ヨ ト ・ ヨ ト …

### Proof.

- We can suppose that  $h(x) = p(x \mid \eta_0)$  for some reference  $\eta_0 \in \mathcal{E}$ .
  - The canonical family generated by (T(x), h(x)) with natural parameter  $\eta$  and normalization term  $A(\eta)$ , is identical to the family generated by  $(T(x), h_0(x))$  with  $h_0(x) = p(x \mid \eta_0)$  and natural parameter  $\eta^*$  and normalization term  $A^*(\eta^*)$ .

• 
$$\eta^* = \eta - \eta_0$$

- $A^*(\eta^*) = A(\eta^* + \eta_0) A(\eta_0)$ (Problem 1.6.27)
- We can also assume that  $t_0 = T(x) = 0$ . (N.B. x is fixed)
  - The class  $\mathcal{P}$  is the same exponential family generated by  $\mathcal{T}^*(X) = \mathcal{T}(X) t_0.$
- The likelihood function for x is  $l_x(\eta) = log[p(x \mid \eta)] = -A(\eta) + log[h(x)]$ since T(x) = 0.

**Claim:** If  $\{\eta_m\}$  has no subsequence converging to a point in  $\mathcal{E}$ , then for any convergent subsequence  $\{\eta_{m_k}\}$ :

 $\lim_{k\to\infty} I_x(\eta_{m_k}) = -\infty.$ 

- Any sub-sequence that has a limit is on the boundary of  $\mathcal{E},$  outside  $\mathcal{E}.$
- The existence of the MLE  $\hat{\eta}(x)$  is guaranteed by Lemma 2.3.1.

**Proof of Claim:** Let  $\{\eta_m\}$  be a sequence with no subsequence converging to a point in  $\mathcal{E}$  and let  $\{\eta_{m_k}\}$  be convergent. Express the  $\eta_m$  in terms of scalars  $\lambda_m$  and unit *k*-vectors  $u_m \in \mathbb{R}^k$ :  $\eta_m = \lambda_m u_m$ , where  $u_m = \eta_m / |\eta_m|$  and  $\lambda_m = |\eta_m|$ **Two cases to consider: Case 1:**  $\lambda_{m_k} \to \infty$ , and  $u_{m_k} \to u$   $(|\eta_{m_k}| \to \infty)$ 

Case 2:  $\lambda_{m_k} \to \lambda$ , and  $u_{m_k} \to u$   $(\eta_{m_k} \to \lambda \mu \notin \mathcal{E})$ 

**Case 1:**  $\lambda_{m_k} \to \infty$ , and  $u_{m_k} \to u$ . Writing  $E_0$  for  $E[\cdot | \eta_0]$ , and  $P_0$ for  $P_{\eta_0}$ , then for some  $\delta > 0$ :  $\lim_{k \to \infty} \int e^{\eta_{m_k}^T T(x)} h(x) dx = \lim_{k \to \infty} E_0[e^{\lambda_{m_k} u_{m_k}^T T(x)}]$  $\geq \lim_{k \to \infty} E_0[e^{\lambda_{m_k} u_{m_k}^T T(x)} \times \mathbf{1}(\{u_{m_k}^T T(X) > \delta\})]$  $\geq \lim_{k \to \infty} e^{\lambda_{m_k} \delta} E_0[\mathbf{1}(\{u_{m_k}^T T(X) > \delta\})]$  $= \lim_{k \to \infty} e^{\lambda_{m_k} \delta} P_0[\{u_{m_k}^T T(X) > \delta\}]$  $= \lim_{k \to \infty} e^{\lambda_{m_k} \delta} P_0[\{u_{m_k}^T T(X) > \delta\}]$  $= +\infty$ 

The first inequality follows because under condition (a) of the theorem, we are given that  $t_0 \in R^k$  satisfies:

$$P[c^T T(X) > c^T t_0] > 0 \text{ for all } c \neq 0, \quad (*)$$
  
So, with  $t_0 = 0$ , and  $c = u \ (\neq 0)$ , it must be that for some  $\delta > 0$ ,  
$$P_0(u^T T(X) > \delta) > 0.$$
$$A(\eta_{m_k}) = \log[\int e^{\eta_{m_k}^T T(x)} h(x) dx] \to \infty \implies l_x(\eta_{m_k}) \to -\infty$$

**Case 2:** 
$$\lambda_{m_k} \to \lambda$$
, and  $u_{m_k} \to u$ , with  $\eta^* = \lambda \mu \notin \mathcal{E}$ .  

$$\lim_{k \to \infty} \int e^{\eta_{m_k}^T T(x)} h(x) dx = \lim_{k \to \infty} E_0[e^{\lambda_{m_k} u_{m_k}^T T(x)}]$$

$$= E_0[e^{\lambda u^T T(X)}] = \log A(\eta^*),$$
But  $A(\eta^*) = +\infty$  since  $\eta^* \notin \mathcal{E} = \{\eta : A(\eta) < \infty\}$ . So  
 $A(\eta_{m_k}) = \log[\int e^{\eta_{m_k}^T T(x)} h(x) dx] \to \infty$ 

$$\begin{array}{ccc} n_k \end{pmatrix} = \log[\int e^{-m_k} & \neg h(x) dx] & \rightarrow & \infty \\ & \implies & l_x(\eta_{m_k}) & \rightarrow & -\infty \end{array}$$

We can conclude:

- Under both Cases 1 and 2, lim<sub>k</sub> l<sub>x</sub>(ηm<sub>k</sub>) → -∞ so it must be that l<sub>x</sub>(η<sub>n</sub>) → -∞. By Lemma 2.3.1 it must be that η̂(x) exists.
- By Theorem 1.6.4, the mle  $\hat{\eta}(x)$  is unique and satisfies:  $\dot{A}(\eta) = E(T(X) \mid \eta) = t_0.$  (\*\*)

#### Nonexistence:

(b). Suppose no  $t_0 \in R^k$  satisfies:  $P[c^T T(X) > c^T t_0] > 0$  for all  $c \neq 0$ . (\*) Then, with  $t_0 = 0$ , there exists a  $c \neq 0$  such that  $P[c^T T(X) > 0] = 0$ 

equivalently

$$P_0[c^T T(X) \le 0] = 1.$$

It follows that:

$$E_{\eta}[c^T T(X)] \leq 0$$
 for all  $\eta$ .

If  $\hat{\eta}$  exists, then it solves  $E_{\eta}(T(X)) = t_0 = 0$  which means there is an  $\eta$  such that

 $E_{\eta}(c^T T(X)) = 0$ . But for this  $\eta$ , it would have to be that  $P_{\eta}(c^T T(X) = 0) = 1$ .

and this contradicts the assumption that the family is of rank k.

**Corollary 2.3.1** Under the conditions of Theorem 2.3.1, if

 $C_T$  is the convex support of the distribution of T(X). then  $\hat{\eta}(x)$  exists and is unique if and only if  $t_1 = T(x) \in C^0$  the interior of  $C_T$ 

 $t_0 = T(x) \in C^0_T$ , the interior of  $C_T$ .

**Proof:** A point  $t_0$  is in the interior of  $C_T$  if and only if there exist points in  $C_T^0$  on either side of it; that is, for all  $d \neq 0$ :

$$\{t: d^T t > d^T t_0\} \cap C^0_T \neq \emptyset$$

and

$$\{t: d^T t < d^T t_0\} \cap C^0_T \neq \emptyset$$

and that the two sets are open.

It follows that condition (a) of Theorem 2.3.1 is satisfied:  $P[c^T T(X) > c^T t_0] > 0$  for all  $c \neq 0$ . Example 2.3.1 The Gaussian Model.

- $X_1, \ldots, X_n$  iid  $N(\mu, \sigma^2)$ , with  $\mu \in R$ , and  $\sigma^2 > 0$
- $T(X) = (\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i^2)$  is the natural sufficient statistic.
- $C_T = R \times R^+$ .
- The density of T(X) can be derived for n = 1, 2, ...
- For  $n \ge 2$ ,  $C_T = C_T^0$  and the mle of the natural parameter  $\eta$  exists (and thus of  $\theta = (\mu, \sigma^2)$ .
- For n = 1, T(X) is a parabola in  $x_1$  and T(x) is a point. So  $C_T^0 = \emptyset$  and the MLE does not exist. ( $\hat{\mu} = X_1$  and the likelihood becomes unbounded as  $\hat{\sigma} \to 0^+$ .)

伺 ト く ヨ ト く ヨ ト

**Theorem 2.3.2** Suppose the conditions of Theorem 2.3.1 hold and T ( $k \times 1$ ) has a continuous case density on  $R^k$ . Then the MLE  $\hat{\eta}$  exists with probability 1 and necessarily satisfies (2.3.3)

$$A(\eta) = E(T(X) \mid \eta) = t_0. \quad (**)$$

Proof. The boundary of a convex set necessarily has volume 0. If T has continuous density  $P_T(t)$ , then

$$P(T \in \partial C_T) = \int_{\partial C_T} p_T(t) dt = 0.$$

By Corollary 2.3.1, T(X) is in the interior of  $C_T$  with probability 1 and in that case, the MLE exists and is unique. Notes:

• Generalized method-of-moments principle. For exponential families, the MLE solves

$$E_{\eta}[T(X)] = t_0$$
, for  $\eta$  given  $T(x) = t_0$ ,

which matches moments because:

$$E_{\eta}[T(X)] = \dot{A}(\eta).$$

• MLEs are generally best; the better method-of-moments estimators are often those that are equivalent to MLEs.

**Example 2.3.2** Two-Parameter Gamma Family.  $X_1, \ldots, X_n$  are iid  $Gamma(p, \lambda)$  random variables:  $p(x \mid p, \lambda) = \frac{\lambda^p x^{p-1} e^{-\lambda x}}{\Gamma(p)}$ where  $x > 0, \ p > 0, \ \lambda > 0$ .

- Natural Sufficient Statistic:  $T = (\sum_{i=1}^{n} \log X_i, \sum_{i=1}^{n} X_i)$
- Natural Parameters:  $\eta = (p, -\lambda)$
- $A(\eta_1, \eta_2) = n(\log [\Gamma(\eta_1) \eta_1 \log(-\eta_2)]$
- The likelihood equations:

$$\frac{\Gamma'}{\Gamma}(\hat{p}) - \log \hat{\lambda} = \overline{\log(X)}$$

$$\frac{\hat{p}}{\hat{\lambda}} = \overline{X}$$
where  $\overline{\log(X)} = \sum_{1}^{n} \log X_{i}/n$ .
To apply the theorems we need to demonstrate that the distribution of T has a continuous density

Maximum Likelihood in Multiparameter Exponential Families Algorithmic Issues

**Example 2.3.3** Multinomial Trials. Recall:

$$p(x \mid \theta) = \frac{n}{x_1 \cdots x_q l} \theta_1^{x_1} \theta_2^{x_2} \cdots \theta_q^{x_q}, \quad x_i \ge 0, \ \sum_1^q x_i = n$$
  
=  $\frac{n}{x_1 \cdots x_q l} \times \exp\{\log(\theta_1)x_1 + \cdots + \log(\theta_{q-1})x_{q-1} + \log(1 - \sum_1^{q-1} \theta_j)[n - \sum_1^{q-1} x_j]\}$   
=  $h(x)\exp\{\sum_{j=1}^{q-1} \eta_j(\theta) T_j(x) - B(\theta)\}$   
=  $h(x)\exp\{\sum_{j=1}^{q-1} \eta_j T_j(x) - A(\eta)\}$ 

where:

• 
$$h(x) = \frac{n}{x_1 \cdots x_q !}$$
  
•  $\eta(\theta) = (\eta_1(\theta), \eta_2(\theta), \dots, \eta_{q-1}(\theta))$   
 $\eta_j(\theta) = \log(\theta_j / (1 - \sum_1^{q-1} \theta_j)), j = 1, \dots, q-1$   
•  $T(x) = (X_1, X_2, \dots, X_{q-1}) = (T_1(x), T_2(x), \dots, T_{q-1}(x)).$   
•  $B(\theta) = -n\log(1 - \sum_{j=1}^{q-1} \theta_j) \text{ and } A(\eta) = +n\log(1 + \sum_{j=1}^{q-1} e^{\eta_j})$   
 $\dot{A}(\eta)_j = n \frac{e^{\eta_j}}{1 + \sum_{j=1}^{q-1} e^{\eta_j}} = n \frac{\theta_j / (1 - \sum_1^{q-1} \theta_k)}{1 + \sum_1^{q-1} \theta_k / (1 - \sum_1^{q-1} \theta_k)} = n \theta_j$   
 $\dot{A}(\eta)_{i,j} = -n \theta_i \theta_j, (i \neq j) \text{ and } \dot{A}(\eta)_{i,i} = n \theta_i (1 - \theta_i),$ 

( ) < ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) < )
 ( ) <

## Multinomial Example (continued)

**Note:** MLE for  $\theta$  exists only if  $X_i > 0$  for all i = 1, ..., qArgument:

• The condition of Theorem 2.3.1 (2.3.2) for existence of MLE is

$$P[c^T T(X) > c^T t_0] > 0, \text{ for all } c \neq 0.$$

• For any given c, decompose:

$$c^T t_0 = \sum_{c_i > 0} c_i [t_0]_i + \sum_{c_j < 0} c_j [t_0]_j$$

• To have positive probability that  $c^T T(X)$  is larger than  $c^T t_0$ , we need to have:

$$T(x)_i < n$$
 for  $i : c_i > 0$ 

and

$$T(x)_i > 0$$
 for  $j : c_j < 0$ 

• Varying c leads to the condition that  $0 < X_i < n$  for all i.

Corollary 2.3.2 Consider the exponential family:

$$p(x \mid \theta) = h(x)exp\{\sum_{j=1}^{\kappa} c_j(\theta)T_j(x) - B(\theta)\}, x \in \mathcal{X}, \theta \in \Theta.$$

• Let  $C^0$  be the interior of the range of  $(c_1(\theta), \ldots, c_k(\theta))^T$ 

• Let x be the observed data.

If the equations

$$E_{\theta}T_j(X)=T_j(x),\ i=1,\ldots,k$$

have a solution

$$\hat{ heta}(x)\in C^0,$$
 then  $\hat{ heta}(x)$  is the unique MLE of  $heta.$ 

P.



### Methods of Estimation II

- Maximum Likelihood in Multiparameter Exponential Families
- Algorithmic Issues

# Algorithmic Issues

**Bisection Method: Root Solution to Equation** Consider the problem of solving: f(x) = 0 for x.

- Function  $f(\cdot)$ : continuous for  $x \in (a, b)$
- $f(a^+) < 0$  and  $f(b^-) > 0$
- Intermediate value theorem of calculus:

$$\exists x^* \in (a, b) : f(x^*) = 0.$$

• If  $f(\cdot)$  is strictly increasing then  $x^*$  is unique.

### **Bisection Algorithm**

- Find  $x_0 < x_1 : f(x_0) < 0 < f(x_1)$ .
- 2 Evaluate  $f(x_*)$  for  $x_* = (x_0 + x_1)/2$ .
- If f(x<sub>\*</sub>) < 0, replace x<sub>0</sub> with x<sub>\*</sub> or if f(x<sub>\*</sub>) > 0, replace x<sub>1</sub> with x<sub>\*</sub>
- **③** Go back to step 2 until  $|x_1 x_0| < \epsilon$  for some fixed  $\epsilon > 0$
- Solution Return  $x_*$  as the approximate solution  $(|x_* x^*| < \epsilon)$

### Theorem 2.4.1

- p(x | η) is the density/pmf function of a one-parameter canonical exponential family generated by (T(X), h(x))
- The conditions of Theorem 2.3.1 are satisfied:
  - $\bullet\,$  Natural parameter space  ${\cal E}$  is open
  - Family is of rank k
- T(x) = t<sub>0</sub> ∈ C<sup>0</sup><sub>T</sub>, the interior of convex support for p(t | η), the density/pmf of T(X).

The unique MLE  $\hat{\eta}$  (by Theorem 2.3.1) may be approximated by the bisection method applied to

$$f(\eta) = E[T(X) \mid \eta] - t_0.$$

Proof

- $f(\eta)$  is strictly increasing because  $f'(\eta) = Var[T(X) | \eta] > 0$ .
- $f(\eta)$  is continuous .
- The existence of the MLE  $\hat{\eta}$  implies that with  $\mathcal{E} = (a, b)$ , it must be that

$$f(a^+) < 0 < f(b^-).$$
MIT 18,655

# Other Algorithms

- Coordinate Ascent
  - Line search: coordinate by coordinate
- Newton-Raphson Algorithm
  - Iterative solution of quadratic approximations of  $f(\eta)$ .
- Expectation-Maximization (EM) Algorithm
  - Problems where likelihood function easily maximized if observed variables extended to include additional variables (missing data/latent variables).
  - Iterative solution alternates:

E-Step: estimating unobserved variables given a preliminary estimate  $\hat{\eta}_j$ 

M-Step: maximizing the full-data likelihood to obtain an updated estimate  $\hat{\eta}_{j+1}$ 

A⊒ ▶ ∢ ∃ ▶

# EM Algorithm

### Preliminaries

- Complete Data:  $X \sim P_{\theta}$ , with density  $p(x \mid \theta), \theta \in \Theta \subset R^{d}$ .
- Log likelihood: *l<sub>p,x</sub>(θ)* easy to maximize.
   Suppose the distribution is a member of the canonical exponential family with
  - Natural parameter  $\eta(\theta)$
  - Natural sufficient statistic:  $T(X) = (T_1(X), \dots, T_k(X))$

• 
$$E[T(X) \mid \eta] = \dot{A}(\eta)$$

- Given  $T(x) = t_0$ , the mle for  $\eta$  is the solution to:  $\dot{A}(\eta) = E(T(X) \mid \eta) = t_0.$  (\*\*)
- Incomplete Data / Observed Data:

 $S = S(X) \sim Q_{\theta}$  with density  $q(s \mid \theta)$ .

• Log likelihood:  $I_{q,s}(\theta)$  is hard to maximize.

直 ト イヨ ト イヨ ト

# EM Algorithm

**Example 2.4.5** Mixture of Gaussians. Let  $S_1, \ldots, S_n$  be iid P with density

$$p(s \mid \theta) = \lambda \phi_{\sigma_1}(s - \mu_1) + (1 - \lambda)\phi_{\sigma_2}(s - \mu_2)$$

where

- $\lambda : 0 \leq \lambda \leq 1$ .
- $\phi_{\sigma}(\cdot)$  is the density of a Gaussian distribution with mean zero and variance  $\sigma^2$ , i.e.,  $\phi_{\sigma}(s) = \frac{1}{\sigma}\phi(s/\sigma)$ ) where  $\phi(\cdot)$  is the density of a standard Gaussian distribution (mean 0 and variance 1).

• 
$$\theta = (\lambda, \mu_1, \sigma_1^2, \mu_2, \sigma_2^2)$$

The  $\{S_i\}$  are a sample from a Gaussian-mixture distribution which is  $N(\mu_1, \sigma_1^2)$  with probability  $\lambda$  and is  $N(\mu_2, \sigma_2^2)$  with probability  $(1 - \lambda)$ .

### EM Algorithm: Gaussian Mixture

Consider adding to  $\{S_i\}$  the variables  $(\Delta_1, \ldots, \Delta_n)$  indicating whether or not case *i* came from the first Gaussian distribution  $(\Delta_i = 1)$  or the second  $(\Delta_i = 0)$ . The complete data are thus  $\{X_i = (\Delta_i, S_i), i = 1, \ldots, n\}$ 

and

•  $\Delta_i$  are iid  $Bernoulli(\lambda)$ , i.e.,  $P(\Delta_i = 1) = \lambda = 1 - P(\Delta_i = 0)$ .

• Given  $\Delta_i$ , the density of  $S_i$  is

$$p(s \mid \Delta_i, \theta) = \phi_{\sigma_*}(s - \mu_*)$$

where

$$\begin{split} \mu_* &= \Delta_i \mu_1 + (1 - \Delta_i) \mu_2, \quad \text{and} \\ \sigma_*^2 &= \Delta_i \sigma_1^2 + (1 - \Delta_i) \sigma_2^2. \end{split}$$

Consider inference about  $\theta = (\lambda, \mu_1, \sigma_1^2, \mu_2, \sigma_2^2)$  observing

$$S(\mathbf{X}) = (S_1, \ldots, S_n)$$

rather than

$$\mathbf{X} = (X_1, \dots, X_n) = ((\Delta_1, S_1), \dots, (\Delta_n, S_n)) \quad \text{for all } n \in \mathbb{N}$$

同 ト イ ヨ ト イ ヨ ト

## EM Algorithm: Theoretical Basis

For complete data X and incomplete data S(X), the complete-data density  $p(x \mid \theta)$  satisfies

$$p(x \mid \theta) = q(s \mid \theta)r(x \mid s, \theta)$$

where

- $q(s \mid \theta)$  is the density of S(X) = s given  $\theta$ , and
- r(x | s, θ) is the density of the conditional distribution of X given S(x) = s, and θ.

**Claim 1**: The likelihood ratio of  $\theta$  to  $\theta_0$  based on S(X) is the conditional expectation of the likelihood ratio based on X given S(X) = s and  $\theta_0$ .  $\frac{q(s \mid \theta)}{q(s \mid \theta_0)} = E\left[\frac{p(x \mid \theta)}{p(x \mid \theta_0)}|S(X) = s, \theta_0\right]$ 

Image: A image: A

э

æ

## EM Algorithm: Theoretical Basis

#### **Proof of Claim 1:**

$$E\left[\frac{p(x\mid\theta)}{p(x\mid\theta_0)}|S(X)=s,\theta_0\right] = E\left[\frac{q(s\mid\theta)r(x\mid s,\theta)}{q(s\mid\theta_0)r(x\mid s,\theta_0)}|S(X)=s,\theta_0\right]$$
$$= \frac{q(s\mid\theta)}{q(s\mid\theta_0)} \cdot E\left[\frac{r(x\mid s,\theta)}{r(x\mid s,\theta_0)}|S(X)=s,\theta_0\right]$$
$$= \frac{q(s\mid\theta)}{q(s\mid\theta_0)} \cdot \sum_{\{x:S(x)=s\}} \left[\frac{r(x\mid s,\theta)}{r(x\mid s,\theta_0)}\right]r(x\mid s,\theta_0)$$
$$= \frac{q(s\mid\theta)}{q(s\mid\theta_0)} \cdot \sum_{\{x:S(x)=s\}} [r(x\mid s,\theta)]$$
$$= \frac{q(s\mid\theta)}{q(s\mid\theta_0)}.$$

## EM Algorithm: Theoretical Basis

**Claim 2:** Suppose  $\theta = \theta_0$  is not the MLE  $\hat{\theta}(S)$  for S(X) = s. As a function of  $\theta$ , the likelihood ratio based on S at  $\theta$  versus  $\theta_0$  $q(s \mid \theta)$  $a(s \mid \theta_0)$ will increase (above 1) for  $\theta^*$  maximizing:  $J(\theta \mid \theta_0) = E\left[\log\left(\frac{p(x|\theta)}{p(x|\theta_0)}\right) \mid S(X) = s, \theta_0\right]$ (\* \* \*)**Proof:** Substitute  $p(x \mid \theta) = q(s \mid \theta)r(x \mid S(X) = s, \theta)$  in (\* \* \*)to give  $J(\theta \mid \theta_0) = \log \frac{q(s \mid \theta)}{q(s \mid \theta_0)} + E \left[ \log \frac{r(X \mid s, \theta)}{r(X \mid s, \theta_0)} \mid S(X) = s, \theta_0 \right]$ By Jensen's inequality, since log() is a concave function:  $E\left[\log \frac{r(X \mid s, \theta)}{r(X \mid s, \theta_0)} \mid S(X) = s, \theta_0\right]^{\sim} \leq \log\left(E\left[\frac{r(X \mid s, \theta)}{r(X \mid s, \theta_0)} \mid S(X) = s, \theta_0\right]\right)$  $< \log(1) = 0$  $\log \frac{q(s \mid \theta^*)}{q(s \mid \theta_0)} \ge J(\theta^* \mid \theta_0) > 0, \text{ since } J(\theta_0 \mid \theta_0) = 0.$ It follows that:

# EM Algorithm: Theoretical Basis

Claim 3: Under suitable regularity conditions,

- $\frac{\partial}{\partial \theta} \log q(s \mid \theta)$ , the gradient of the log likelihood for the incomplete data *S*, and
- $\frac{\partial}{\partial \theta} J(\theta \mid \theta_0)$ , the gradient of the conditional expectation of the complete-data log likelihood ratio given  $\theta_0$

are identical when evaluated at  $\theta = \theta_0$ .

**Proof:** From Claim 1:  

$$\frac{q(s \mid \theta)}{q(s \mid \theta_0)} = E\left[\frac{p(x\mid\theta)}{p(x\mid\theta_0)}|S(X) = s, \theta_0\right]$$

$$\implies \frac{\partial}{\partial \theta}\left[\frac{q(s \mid \theta)}{q(s \mid \theta_0)}\right] = \frac{\partial}{\partial \theta}\left(E\left[\frac{p(x\mid\theta)}{p(x\mid\theta_0)}|S(X) = s, \theta_0\right]\right)$$

$$\implies \frac{\partial}{\partial \theta}\left[\log q(s \mid \theta)\right]|_{\theta=\theta_0} = E\left[\frac{\partial}{\partial \theta}\left(\frac{p(x\mid\theta)}{p(x\mid\theta_0)}\right)|S(X) = s, \theta_0\right]$$

$$= E\left[\frac{\partial}{\partial \theta}\left[\log (p(x \mid \theta))\right]|S(X) = s, \theta_0\right]|_{\theta=\theta_0}$$

$$= \frac{\partial}{\partial \theta}J(\theta \mid \theta_0)|_{\theta=\theta_0}, \quad e \in \mathbb{R}, \theta \in \mathbb$$

## EM Algorithm: Practical Implementation

**Theorem 2.4.3**. Suppose  $\{P_{\theta}, \theta \in \Theta\}$  is a canonical exponential family generated by (T, h) satisfying (conditions of Theorem 2.3.1):

- $\bullet\,$  The natural parameter space  ${\cal E}$  is open
- The family is of rank k.
- For complete data X, if  $T(X) = t_0 \in R^k$ , and

$$P[c' T(X) > c' t_0] > 0$$
, for all  $c = 0$ .

and the MLE  $\hat{\eta}$  exists, is unique and the solution to the equation:

$$\dot{A}(\eta) = E[T(X) \mid \eta] = t_0.$$

Let S(X) be any statistic (incomplete-data version of X), then the EM Algorithm given S(X) = s consists of:

• Initialize 
$$\eta = \eta_0$$

2 Solve 
$$\dot{A}(\eta) = E[T(X) \mid \eta_0, S(X) = s]$$
 for  $\eta^*$ 

3) Replace  $\eta_0$  with  $\eta^*$ , and return to step 2. . . .

同 ト イ ヨ ト イ ヨ ト

# EM Algorithm: Theorem 2.4.3

Theorem 2.4.3 (continued). If

- The sequence  $\{\hat{\eta}_n\}$  obtained from the EM algorithm is bounded.
- The equation A
   <sup>i</sup>(η) = E[T(X) | ηS(X) = s] has a unique solution

Then the limit of  $\hat{\eta}_n$  exists and is a local maximum of  $q(s, \theta)$ . **Proof:** 

 $J(\eta \mid \eta_0) = E \left[ (\eta - \eta_0)^T T(X) - [A(\eta) - A(\eta_0)] \mid S(X) = s, \eta_0 \right]$ =  $(\eta - \eta_0)^T E \left[ T(X) \mid S(X) = s, \eta_0 \right] - [A(\eta) - A(\eta_0)]$ So,  $\frac{\partial}{\partial \eta} [J(\eta \mid \eta_0)] = 0$  yields the equation:  $E \left[ T(X) \mid S(X) = s, \eta_0 \right] = \mathring{A}(\eta)$ 

- **→** → **→** 

# EM Algorithm: Gaussian Mixture

For the Gaussian Mixture (Example 2.4.5) derive the EM Algorithm.

The complete-data likelihood of  $X_i = (\Delta_i, S_i)$  for  $\theta = (\lambda, \mu_1, \sigma_1^2, \mu_2, \sigma_2^2)$  is:

$$\begin{array}{rcl} p(\Delta_i,S_i\mid\theta) &=& p(\Delta_i\mid\theta)p(S_i\mid\theta,\Delta_i)\\ &=& \lambda^{\Delta_i}p(S_i\mid\theta,\Delta_i)^{\Delta_i}(1-\lambda)^{(1-\Delta_i)}p(S_i\mid\theta,\Delta_i)^{(1-\Delta_i)}\\ &=& exp\{\Delta_i\log\left(\frac{\lambda}{1-\lambda}\right)-[-log(1-\lambda)]\\ &+\Delta_i\left[\frac{\mu_1}{\sigma_1^2}S_i+\left(-\frac{1}{2\sigma_1^2}\right)S_i^2-\frac{1}{2}\left(\frac{\mu_1^2}{\sigma_1^2}+\log\left(2\pi\sigma_1^2\right)\right)\right]+\\ &\quad \left(1-\Delta_i\right)\left[\frac{\mu_2}{\sigma_2^2}S_i+\left(-\frac{1}{2\sigma_2^2}\right)S_i^2-\frac{1}{2}\left(\frac{\mu_2^2}{\sigma_2^2}+\log\left(2\pi\sigma_2^2\right)\right)\right]\\ && \} \end{array}$$

## EM Algorithm: Gaussian Mixture

#### **Complete-Data Natural Sufficient Statistic and Expectation:**

$$\mathbf{T}(X_i) = \begin{bmatrix} \Delta_i \\ \Delta_i S_i \\ \Delta_i S_i^2 \\ (1 - \Delta_i) S_i \\ (1 - \Delta_i) S_i^2 \end{bmatrix} \text{ and } E[\mathbf{T}(X_i) \mid \theta] = \begin{bmatrix} \lambda \\ \lambda \mu_1 \\ \lambda (\sigma_1^2 + \mu_1^2) \\ (1 - \lambda) \mu_2 \\ (1 - \lambda) (\sigma_2^2 + \mu_2^2) \end{bmatrix}$$

Compute the MLE  $\hat{\theta}$  by solving  $\mathbf{T}(\mathbf{X}) = \prod_{i=1}^{n} \mathbf{T}(X_i) = nE[T(X_i \mid \theta)] (*)$ EM Algorithm:

- Initialize estimate  $\tilde{\theta}_n$ , n = 1
- **②** Given preliminary estimate  $\tilde{\theta}_n$  solve (\*) for  $\theta^*$  using  $E[\mathbf{T}(\mathbf{X}) | S(X), \theta = \tilde{\theta}_n]$  in place of  $\mathbf{T}(\mathbf{X})$ .
- **③** Replace  $\theta_n$  with  $\theta_{n+1} = \theta^*$  and return to step 2.

æ

# Finite Mixture Model

39

Maximum Likelihood in Multiparameter Exponential Families Algorithmic Issues

### Complete Data Augmentation for Finite Mixtures

Observed Data: 
$$S_1, S_2, ..., S_n$$
  
Missing Data:  $Z_1, Z_2, ..., Z_n$ , which are *i.i.d*.  
 $Multinomial(N = 1, probs = (\lambda_1, ..., \lambda_m))$ , i.e.,  
 $Z_i = (Z_{i,1}, Z_{i,2}, ..., Z_{i,m})$   
 $Z_{i,j} = 1$  if case *i* drawn from component *j*  
(otherwise 0)  
 $Z_{i,j} \in \{0,1\}$  (Bernoulli)  
 $P(Z_{i,j} = 1) = \lambda_j,$   
 $\lambda_j > 0, j = 1, ..., m$ , and  $\sum_{j=1}^m \lambda_j = 1$ .  
Complete Data:  $X_1, X_2, ..., X_n$   
 $X_i = (S_i, Z_i), i = 1, ..., n$  with density  
 $p(x_i \mid \theta) = p(S_i, Z_i \mid \theta)$   
 $= p(Z_i \mid \theta)p(S_i \mid Z_i, \theta)$   
 $= \sum_{j=1}^m I_{Z_{i,j}} \lambda_j \phi_j(S_i)$   
with:  $\theta = (\lambda_1, ..., \lambda_m, \phi_1, ..., \phi_m)$ .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

# EM Algorithm for Finite Mixtures

Log-Likelihood of Observed Data  $S = (S_1, ..., S_n)$   $\ell_S(\theta) = \sum_{i=1}^n \log p(S_i \mid \theta) = \sum_{i=1}^n \log[\sum_{j=1}^m \lambda_j \phi_j(S_i)]$ Conditional Expectation of Complete-Data Log-Likelihood  $J(\theta \mid \theta^{(t)}) = E\left(\sum_{i=1}^n \log[p(X_i \mid \theta) \mid S, \theta^{(t)}]\right)$ EM Algorithm

- Generate sequence of parameter estimates  $\{\theta^{(t)}, t = 1, 2, \ldots\}$
- Initialize  $\theta^{(t)}$  for t = 1.
- Given  $\theta^{(t)}$ , generate  $\theta^{(t+1)}$  as follows: **E-Step:** Compute  $J(\theta \mid \theta^{(t)})$ . **M-Step:** Set  $\theta^{(t+1)} = \operatorname{argmax}_{\theta} J(\theta \mid \theta^{(t)})$ .
- Repeat previous step until successive changes in  $\boldsymbol{\theta}^{(t)}$  indicate convergence

Image: A = A

э

## E-Step in EM Algorithm for Finite Mixtures

Conditional Expectation of Complete-Data Log-Likelihood  

$$J(\theta \mid \theta^{(t)}) = E\left(\sum_{i=1}^{n} \log[p(X_i \mid \theta)] \mid S, \theta^{(t)}\right)$$

$$= E\left(\sum_{i=1}^{n} \log[\sum_{j=1}^{m} I_{Z_{i,j}} \lambda_j \phi_j(S_i)] \mid S, \theta^{(t)}\right)$$

$$= E\left(\sum_{i=1}^{n} \sum_{j=1}^{m} I_{Z_{i,j}} \log[\lambda_j \phi_j(S_i)] \mid S, \theta^{(t)}\right)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} E\left(I_{Z_{i,j}} \log[\lambda_j \phi_j(S_i)] \mid S, \theta^{(t)}\right)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} [E\left(I_{Z_{i,j}} \mid S, \theta^{(t)}\right)] \log[\lambda_j \phi_j(S_i)]$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} P_{i,j}^{(t)} \log[\lambda_j \phi_j(S_i)]$$

$$= [\sum_{j=1}^{m} \log(\lambda_j)(\sum_{i=1}^{n} p_{i,j}^{(t)})]$$

$$+ [\sum_{j=1}^{m} (\sum_{i=1}^{n} p_{i,j}^{(t)} \log[\phi_j(S_i)])]$$
where  $p_{i,j}^{(t)} = P(Z_{i,j} = 1 \mid S, \theta^{(t)}) = \frac{\lambda_j^{(t)} \phi_j^{(t)}(S_i)}{\sum_{j=1}^{m} \lambda_j s f^{(t)} \phi_j^{(t)}(S_i)}$ 

### M-Step in EM Algorithm for Finite Mixtures

Solve for 
$$\theta = (\lambda_1, \dots, \lambda_m, \phi_1, \dots, \phi_m)$$
 maximizing

$$\begin{aligned} J(\theta \mid \theta^{(t)}) &= E\left(\sum_{i=1}^{n} \log[p(X_i \mid \theta)] \mid S, \theta^{(t)}\right) \\ &= \left[\sum_{j=1}^{m} \log(\lambda_j) (\sum_{i=1}^{n} p_{i,j}^{(t)})\right] \\ &+ \left[\sum_{j=1}^{m} (\sum_{i=1}^{n} p_{i,j}^{(t)} \log[\phi_j(S_i)])\right] \end{aligned} \\ \end{aligned} \\ \text{where } p_{i,j}^{(t)} &= P(Z_{i,j} = 1 \mid S, \theta^{(t)}) = \frac{\lambda_j^{(t)} \phi_j^{(t)}(S_i)}{\sum_{j=1}^{m} \lambda_j s^{j(t)} \phi_j s^{j(t)}(S_i)} \end{aligned}$$

M-Step for  $\lambda_1, \ldots, \lambda_m$ :  $\lambda_j^{(t+1)} = \frac{1}{n} \sum_{i=1}^n p_{i,j}^{(t)}$ (same formula for all  $\phi_j^{(t)}$ ) M-Step for  $\phi_1, \ldots, \phi_m$ : maximize sum of case-weighted conditional-log-likelihoods of the  $\phi_j(\cdot)$  $[\sum_{i=1}^m (\sum_{i=1}^n p_{i,i}^{(t)} \log[\phi_j(S_i)])]$  Dempster, AP, Laird, NM, and Rubin, DB (1977). "Maximum Likelihood from Incomplete Data Via the EM Algorithm." *Journal of the Royal Statistial Society. Series B (Methodological)*, **39**(1), 1-38.

Bengalia, T., Chauveau, D. Hunter, D.R., and Young, D.S. "mixtools: An R Package for Analyzing Finite Mixture Models" *Journal of Statistial Software*, October 2009, Volume 32, Issue 6, 1-29, https://www.jstatsoft.org/article/view/v032i06 18.655 Mathematical Statistics Spring 2016

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.