18.655 Midterm Exam 2, Spring 2016 Mathematical Statistics Due Date: 5/12/2016

Answer 4 questions for full credit, and additional question for extra credit.

1. Estimation for Poisson Model

Let X_1, \ldots, X_n be iid $Poisson(\theta)$, where $E[X_i \mid \theta] = \theta$.

- (a). Find $\hat{\theta}_{MLE}$, the maximum likelihood estimate for θ .
- (b). Determine the explicit distribution for $\hat{\theta}_{MLE}$.
- (c). Compute the mean-squared-prediction error of $\hat{\theta}_{MLE}$.
- (d). In a Bayesian framework, suppose
 - π is the prior distribution for θ with probability density function $\pi(\theta), \ 0 < \theta < \infty$.
 - Loss function: $L_k(\theta, a) = \frac{(\theta a)^2}{\theta^k}$, for some fixed $k \ge 0$.

Give an explicit expression for the Bayes estimate of θ given $\boldsymbol{x} = (x_1, \ldots, x_n)$.

(e). In (d), suppose the prior distribution is $\pi = Gamma(a, b)$.

- Is this a conjugate prior distribution?
- Give an explicit formula for the Bayes estimate; if necessary, condition the values of k for the loss and/or (a, b) the specification of the prior.
- Comment on the sensitivity of the Bayes estimate to increases/decreases in k, the choice of loss function.

2. Model-Based Survey Sampling

Consider the following setup for estimating population parameters with survey sampling:

- The population is finite of size N, for example a census unit.
- We are interested in estimating the average value of a variable, X_i , say current family income.

The values of the variable for the population are:

 x_1, x_2, \ldots, x_N

and the parameter is

$$\theta = \overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i.$$

• Suppose that the family income values for the last census are known:

 $u_1, u_2, \ldots, u_N.$

• Ignoring difficulties such as families moving, consider a sample of n families drawn at random without replacement, let

 X_1, X_2, \ldots, X_n denote the incomes of the *n* families.

• The probability model for the sample is given by

$$P_{\boldsymbol{x}}[X_1 = a_1, \dots, X_n = a_n] = \begin{cases} \frac{1}{\binom{N}{n}} & \text{, if } \{a_1, \dots, a_n\} \subset \{x_1, \dots, x_N\} \\ \begin{pmatrix} n \\ 0 \end{pmatrix} & \text{, otherwise.} \end{cases}$$

where $\boldsymbol{x} = (x_1, \ldots, x_N)$, is the distribution parameter.

• Consider the sample estimate: $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$

of the population parameter \overline{x} .

(a). Compute the expectation of \overline{X} and determine whether it is an unbiased estimate for \overline{x} .

(b). Verify or correct the following formula for the mean-squared error of \overline{X}

$$MSE(\overline{X}) = \sigma_{\boldsymbol{x}}^2 \left(1 - \frac{n-1}{N-1} \right),$$

where $\sigma_{\boldsymbol{x}}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x})^2$.

(c). Consider using information contained in $\{u_1, \ldots, u_N\}$ and its probable correlation to $\{x_1, \ldots, x_N\}$, and define the regression estimate:

$$\overline{X}_R \equiv \overline{X} - b(\overline{U} - \overline{u})$$

where

- b is a prespecified positive constant
- U_i is the last census income corresponding to X_i

•
$$\overline{u} = \frac{1}{N} \quad {}^{N}_{1} u_{i}$$

•
$$\overline{U} = \frac{1}{n} \quad {}^n_1 U_i.$$

Prove that $\widehat{\overline{X}_R}$ is unbiased for any b > 0.

(d). In (c), prove that $\widehat{\overline{X}_R}$ has smaller variance than \overline{X} if $b < 2Cov(\overline{U}, \overline{X})/Var(\overline{U}).$

and that the best choice of b is

$$b_{opt} = cov(\overline{U}, \overline{X})/Var(\overline{X}).$$

(e). Show that if $\frac{n}{N} \to \lambda$ as $N \to \infty$, with $0 < \lambda < 1$, and if $E[X_1^2] < \infty$ then

$$\sqrt{n}(\overline{X} - \overline{x}) \xrightarrow{\mathcal{L}} N(0, \tau^2(1 - \lambda)),$$

where $\tau^2 = Var(X_1)$.

(f). Under the same conditions as (e), suppose that the probability model P_{θ} for

$$\{T_i = (X_i, U_i), i = 1, 2, \dots, n\}$$

is such that

 $X_i = bU_i + \epsilon_i, i = 1, ..., N$, where the $\{\epsilon_i\}$ are iid and independent of the $\{U_i\}$, with $E[\epsilon_i] = 0$, and $Var(\epsilon_i) = \sigma^2 < \infty$, and $Var(U_i) > 0$.

Show that:

 $\sqrt{n}(\overline{X}_R - \overline{x}) \xrightarrow{\mathcal{L}} N(0, (1 - \lambda)\sigma^2), \text{ with } \sigma^2 < \tau^2.$ where $\overline{X}_R = \overline{X} - \hat{b}_{opt}(\overline{U} - \overline{u}),$

and

$$\hat{b}_{opt} = \frac{\frac{1}{n}}{\frac{1}{n}} \frac{\binom{n}{i=1}(X_i - \overline{X})(U_i - \overline{U})}{\frac{1}{n}} \frac{\binom{n}{j=1}(U_j - \overline{U})^2}{\frac{1}{n}}$$

(See Problems 3.4.19 and 5.3.11).

3. Asymptotic Distribution of Correlation Coefficient

Let $(X_1, Y_1), \ldots, (X_n, Y_n)$ be iid as (X, Y) where:

- $0 < E[X^4] < \infty$ and $0 < E[Y^4] < \infty$
- $\sigma_1^2 = Var(X)$, and $\sigma_2^2 = Var(Y)$.
- $\rho^2 = Cov^2(X, Y) / \sigma_1^2 \sigma^2$.

Consider estimates:

$$\sum \hat{\sigma}_1^2 = \frac{1}{n} \quad {}_1^n (X_i - \overline{X})^2.$$

$$\sum \hat{\sigma}_2^2 = \frac{1}{n} \quad {}_1^n (Y_i - \overline{Y})^2.$$

$$\bullet \quad r^2 = \hat{C}^2 / \hat{\sigma}_1^2 \hat{\sigma}_2^2$$

where $\hat{C} = \frac{1}{n} \quad {}_1^n (X_i - \overline{X}) (Y_i - \overline{Y})$

(a). Write $r^2 = g(\hat{C}, \hat{\sigma}_1^2, \hat{\sigma}_2^2) : R^3 \to R$, where $g(u_1, u_2, u_3) = u_1^2/u_2u_3$. With focus on ρ and its estimate r, by location and scale invariance, we can use the transformations $\tilde{X}_i = (X_i - \mu_1)/\sigma_1$ and $\tilde{Y}_i = (Y_i - \mu_2)/\sigma_2$, and conclude that we may assume:

$$\mu_1 = \mu_2 = 0$$
, and $\sigma_1^2 = \sigma_2^2 = 1$, and $\rho = E[XY]$.

Under these assumptions, compute the first order differential of g(): $g^{(1)}(u_1, u_2, u_3)$.

(b). If $\mu_1 = \mu_2 = 0$ and $\sigma_1 = \sigma_2 = 1$, then show that $\sqrt{n}[\hat{C} - \rho, \hat{\sigma}_1^2 - 1, \hat{\sigma}_2^2 - 1]^T$

has the same asymptotic distribution as

$$\sum_{\substack{n \in X_{i}}} n^{1/2} \begin{bmatrix} \frac{1}{n} & n \\ 1 & \sum_{i} Y_{i} - \rho, \frac{1}{n} & \sum_{i} X_{i}^{2} - 1, \frac{1}{n} & n \\ Y_{i}^{2} - 1 \end{bmatrix}^{T}$$
(c). If $(X, Y) \sim N(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho)$, then
 $\sqrt{n}(r^{2} - \rho^{2}) \rightarrow N(0, 4\rho^{2}(1 - \rho^{2})^{2}).$

/ and if $\rho \neq 0$, then

$$\sqrt{n}(r-\rho) \xrightarrow{\mathcal{L}} N(0, (1-\rho^2)^2).$$

(d). If $\rho = 0$, then

$$\sqrt{n}(r-\rho) \xrightarrow{\mathcal{L}} N(0,1).$$

(See Problem 5.3.9)

4. Bounding Errors in Expectation Approximations

Suppose that

- X_1, \ldots, X_n are iid from a population with distribution P on $\mathcal{X} = R$.
- $\mu_j = E[X_1^j], j = 1, 2, 3, 4$
- $\mu_4 = E[X_1^4] < \infty$
- $h: R \to R$ has derivatives of order $k: h^{(k)}, k = 1, 2, 3, 4$ and $|h^{(4)}(x)| \le M$

for all x and some constant $M < \infty$.

Show that

$$E[h(\overline{X})] = h(\mu) + \frac{1}{2}h^{(2)}(\mu)\frac{\sigma^2}{n} + R_n$$

where

$$R_n \leq h^{(3)}(\mu) |\mu_3| / 6n^2 + M(\mu_4 + 3\sigma^2) / 24n^2.$$

(See Problem 5.3.23)

5. Linear Model with Stochastic Covariates

Let $X_i = (Z_i^T, Y_i)^T$, i = 1, 2, ..., n be iid as $X = (X^T, Y)^T$, where Z is a $p \times 1$ vector of explanatory variables and Y is the response variable of interest. Assume that

- $Y = \alpha + Z^T \beta + \epsilon$, where $\epsilon \sim N(0, \sigma^2)$, independent of Z and E[Z] = 0. It follows that $Y \mid Z = z \sim N(\alpha + z^T \beta, \sigma^2).$
- The stochastic covariates have distribution $Z \sim H_0$ with density h_0 and $E[ZZ^T]$ is nonsingular.

(a). Show that the MLE of β exists (with probability 1 for sufficiently large n) and is given by

$$\hat{\beta} = [\tilde{Z}_{(n)}^T \tilde{Z}_{(n)}]^{-1} \tilde{Z}_{(n)}^T \boldsymbol{Y}$$

where $\tilde{Z}_{(n)}$ is the $n \times p$ matrix $||Z_{ij} - \overline{Z}_{\cdot j}||$, with $\overline{Z}_{\cdot j} = \frac{1}{n} \sum_{i=1}^{n} Z_{ij}$. (b). Show that the MLEs of α and σ^2 are

$$\hat{\alpha} = \overline{Y} - \sum_{j=1}^{p} \overline{Z}_{j} \hat{\beta}_{j}$$
$$\hat{\sigma}^{2} = \frac{1}{n} |Y - (\hat{\alpha} + Z_{(n)} \hat{\beta}))|^{2} = \frac{1}{n} \sum_{i=1}^{n} (Y_{i} - (\hat{\alpha} + Z_{i}^{T} \hat{\beta}))^{2}$$

where $Z_{(n)}$ is the $n \times p$ matrix $||Z_{ij}||$.

(c). Prove that the asymptotic distribution of the mle's satisfy

 $(\sqrt{n}(\hat{\alpha}-\alpha,\hat{\beta}-\beta,\hat{\sigma}^2-\sigma^2) \xrightarrow{\mathcal{L}} N(\mathbf{0},diag(\sigma^2,\sigma^2[E(ZZ^T)]^{-1},2\sigma^4)).$

MIT OpenCourseWare http://ocw.mit.edu

18.655 Mathematical Statistics Spring 2016

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.