18.655 Midterm Exam 2, Spring 2016 Mathematical Statistics
 Due Date: 5/12/2016

Answer 4 questions for full credit, and additional question for extra credit.

1. Estimation for Poisson Model

Let X_{1}, \ldots, X_{n} be iid $\operatorname{Poisson}(\theta)$, where $E\left[X_{i} \mid \theta\right]=\theta$.
(a). Find $\hat{\theta}_{M L E}$, the maximum likelihood estimate for θ.
(b). Determine the explicit distribution for $\hat{\theta}_{M L E}$.
(c). Compute the mean-squared-prediction error of $\hat{\theta}_{M L E}$.
(d). In a Bayesian framework, suppose

- π is the prior distribution for θ with probability density function $\pi(\theta), 0<\theta<\infty$.
- Loss function: $L_{k}(\theta, a)=\frac{(\theta-a)^{2}}{\theta^{k}}$, for some fixed $k \geq 0$.

Give an explicit expression for the Bayes estimate of θ given $\boldsymbol{x}=$ $\left(x_{1}, \ldots, x_{n}\right)$.
(e). In (d), suppose the prior distribution is $\pi=\operatorname{Gamma}(a, b)$.

- Is this a conjugate prior distribution?
- Give an explicit formula for the Bayes estimate; if necessary, condition the values of k for the loss and/or (a, b) the specification of the prior.
- Comment on the sensitivity of the Bayes estimate to increases/decreases in k, the choice of loss function.

2. Model-Based Survey Sampling

Consider the following setup for estimating population parameters with survey sampling:

- The population is finite of size N, for example a census unit.
- We are interested in estimating the average value of a variable, X_{i}, say current family income.
The values of the variable for the population are:

$$
x_{1}, x_{2}, \ldots, x_{N}
$$

and the parameter is

$$
\theta=\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i} .
$$

- Suppose that the family income values for the last census are known:

$$
u_{1}, u_{2}, \ldots, u_{N} .
$$

- Ignoring difficulties such as families moving, consider a sample of n families drawn at random without replacement, let
$X_{1}, X_{2}, \ldots, X_{n}$ denote the incomes of the n families.
- The probability model for the sample is given by

$$
P_{\boldsymbol{x}}\left[X_{1}=a_{1}, \ldots, X_{n}=a_{n}\right]=\left\{\begin{array}{cl}
\frac{1}{\binom{N}{n}} & , \text { if }\left\{a_{1}, \ldots, a_{n}\right\} \subset\left\{x_{1}, \ldots, x_{N}\right\} \\
0 & , \\
\text { otherwise. }
\end{array}\right.
$$

where $\boldsymbol{x}=\left(x_{1}, \ldots, x_{N}\right)$, is the distribution parameter.

- Consider the sample estimate:

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

of the population parameter \bar{x}.
(a). Compute the expectation of \bar{X} and determine whether it is an unbiased estimate for \bar{x}.
(b). Verify or correct the following formula for the mean-squared error of \bar{X}

$$
\operatorname{MSE}(\bar{X})=\sigma_{x}^{2}\left(1-\frac{n-1}{N-1}\right)
$$

where $\sigma_{\boldsymbol{x}}^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}$.
(c). Consider using information contained in $\left\{u_{1}, \ldots, u_{N}\right\}$ and its probable correlation to $\left\{x_{1}, \ldots, x_{N}\right\}$, and define the regression estimate:

$$
\widehat{\bar{X}_{R}} \equiv \bar{X}-b(\bar{U}-\bar{u})
$$

where

- b is a prespecified positive constant
- U_{i} is the last census income corresponding to X_{i}
- $\bar{u}=\frac{1}{N} \quad{ }_{1}^{N} u_{i}$.
- $\bar{U}=\frac{1}{n}{ }_{1}^{n} U_{i}$.

Prove that $\widehat{\bar{X}_{R}}$ is unbiased for any $b>0$.
(d). In (c), prove that $\widehat{\bar{X}_{R}}$ has smaller variance than \bar{X} if

$$
b<2 \operatorname{Cov}(\bar{U}, \bar{X}) / \operatorname{Var}(\bar{U})
$$

and that the best choice of b is

$$
b_{o p t}=\operatorname{cov}(\bar{U}, \bar{X}) / \operatorname{Var}(\bar{X}) .
$$

(e). Show that if $\frac{n}{N} \rightarrow \lambda$ as $N \rightarrow \infty$, with $0<\lambda<1$, and if $E\left[X_{1}^{2}\right]<\infty$ then

$$
\sqrt{n}(\bar{X}-\bar{x}) \xrightarrow{\mathcal{L}} N\left(0, \tau^{2}(1-\lambda)\right),
$$

where $\tau^{2}=\operatorname{Var}\left(X_{1}\right)$.
(f). Under the same conditions as (e), suppose that the probability model P_{θ} for

$$
\left\{T_{i}=\left(X_{i}, U_{i}\right), i=1,2, \ldots, n\right\}
$$

is such that
$X_{i}=b U_{i}+\epsilon_{i}, i=1, \ldots, N$, where the $\left\{\epsilon_{i}\right\}$ are iid and independent of the $\left\{U_{i}\right\}$, with $E\left[\epsilon_{i}\right]=0$, and $\operatorname{Var}\left(\epsilon_{i}\right)=\sigma^{2}<\infty$, and $\operatorname{Var}\left(U_{i}\right)>0$.
Show that:

$$
\sqrt{n}\left(\bar{X}_{R}-\bar{x}\right) \xrightarrow{\mathcal{L}} N\left(0,(1-\lambda) \sigma^{2}\right), \text { with } \sigma^{2}<\tau^{2} .
$$

where $\bar{X}_{R}=\bar{X}-\hat{b}_{\text {opt }}(\bar{U}-\bar{u})$,
and

$$
\hat{b}_{\text {opt }}=\frac{\frac{1}{n}}{\frac{{ }_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(U_{i}-\bar{U}\right)}{\frac{1}{n} \underset{j=1}{n}\left(U_{j}-\bar{U}\right)^{2}}}
$$

(See Problems 3.4.19 and 5.3.11).

3. Asymptotic Distribution of Correlation Coefficient

Let $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ be iid as (X, Y) where:

- $0<E\left[X^{4}\right]<\infty$ and $0<E\left[Y^{4}\right]<\infty$
- $\sigma_{1}^{2}=\operatorname{Var}(X)$, and $\sigma_{2}^{2}=\operatorname{Var}(Y)$.
- $\rho^{2}=\operatorname{Cov}^{2}(X, Y) / \sigma_{1}^{2} \sigma^{2}$.

Consider estimates:
$\sum \hat{\sigma}_{1}^{2}=\frac{1}{n} \quad{ }_{1}^{n}\left(X_{i}-\bar{X}\right)^{2}$.
$\sum \hat{\sigma}_{2}^{2}=\frac{1}{n} \quad{ }_{1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}$.

- $r^{2}=\hat{C}^{2} / \hat{\sigma}_{1}^{2} \hat{\sigma}_{2}^{2}$
where $\hat{C}=\frac{1}{n} \quad{ }_{1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)$
(a). Write $r^{2}=g\left(\hat{C}, \hat{\sigma}_{1}^{2}, \hat{\sigma}_{2}^{2}\right): R^{3} \rightarrow R$, where $g\left(u_{1}, u_{2}, u_{3}\right)=u_{1}^{2} / u_{2} u_{3}$. With focus on ρ and its estimate r, by location and scale invariance, we can use the transformations $\tilde{X}_{i}=\left(X_{i}-\mu_{1}\right) / \sigma_{1}$ and $\tilde{Y}_{i}=\left(Y_{i}-\mu_{2}\right) / \sigma_{2}$, and conclude that we may assume:

$$
\mu_{1}=\mu_{2}=0, \text { and } \sigma_{1}^{2}=\sigma_{2}^{2}=1, \text { and } \rho=E[X Y]
$$

Under these assumptions, compute the first order differential of $g()$: $g^{(1)}\left(u_{1}, u_{2}, u_{3}\right)$.
(b). If $\mu_{1}=\mu_{2}=0$ and $\sigma_{1}=\sigma_{2}=1$, then show that

$$
\sqrt{n}\left[\hat{C}-\rho, \hat{\sigma}_{1}^{2}-1, \hat{\sigma}_{2}^{2}-1\right]^{T}
$$

has the same asymptotic distribution as

$$
\sum \quad n^{1 / 2}\left[\frac{1}{n} \quad{ }_{1}^{n} \sum_{i} Y_{i}-\rho, \frac{1}{n} \quad \sum_{0}^{n} X_{i}^{2}-1, \frac{1}{n} \quad{ }_{1}^{n} Y_{i}^{2}-1\right]^{T}
$$

(c). If $(X, Y) \sim N\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho\right)$, then

$$
\sqrt{n}\left(r^{2}-\rho^{2}\right) \rightarrow N\left(0,4 \rho^{2}\left(1-\rho^{2}\right)^{2}\right)
$$

$/$ and if $\rho \neq 0$, then

$$
\sqrt{n}(r-\rho) \xrightarrow{\mathcal{L}} N\left(0,\left(1-\rho^{2}\right)^{2}\right)
$$

(d). If $\rho=0$, then

$$
\sqrt{n}(r-\rho) \xrightarrow{\mathcal{L}} N(0,1) .
$$

(See Problem 5.3.9)

4. Bounding Errors in Expectation Approximations

Suppose that

- X_{1}, \ldots, X_{n} are iid from a population with distribution P on $\mathcal{X}=$ R.
- $\mu_{j}=E\left[X_{1}^{j}\right], j=1,2,3,4$
- $\mu_{4}=E\left[X_{1}^{4}\right]<\infty$
- $h: R \rightarrow R$ has derivatives of order $k: h^{(k)}, k=1,2,3,4$ and $\left|h^{(4)}(x)\right| \leq M$ for all x and some constant $M<\infty$.

Show that

$$
E[h(\bar{X})]=h(\mu)+\frac{1}{2} h^{(2)}(\mu) \frac{\sigma^{2}}{n}+R_{n}
$$

where

$$
\left|R_{n}\right| \leq h^{(3)}(\mu)\left|\mu_{3}\right| / 6 n^{2}+M\left(\mu_{4}+3 \sigma^{2}\right) / 24 n^{2}
$$

(See Problem 5.3.23)

5. Linear Model with Stochastic Covariates

Let $X_{i}=\left(Z_{i}^{T}, Y_{i}\right)^{T}, i=1,2, \ldots, n$ be iid as $X=\left(X^{T}, Y\right)^{T}$, where Z is a $p \times 1$ vector of explanatory varialbes and Y is the response variable of interest. Assume that

- $Y=\alpha+Z^{T} \beta+\epsilon$, where
$\epsilon \sim N\left(0, \sigma^{2}\right)$, independent of Z and $E[Z]=0$. It follows that $Y \mid Z=z \sim N\left(\alpha+z^{T} \beta, \sigma^{2}\right)$.
- The stochastic covariates have distribution $Z \sim H_{0}$ with density h_{0} and $E\left[Z Z^{T}\right]$ is nonsingular.
(a). Show that the MLE of β exists (with probability 1 for sufficiently large n) and is given by

$$
\hat{\beta}=\left[\tilde{Z}_{(n)}^{T} \tilde{Z}_{(n)}\right]^{-1} \tilde{Z}_{(n)}^{T} \boldsymbol{Y}
$$

where $\tilde{Z}_{(n)}$ is the $n \times p$ matrix $\left\|Z_{i j}-\bar{Z}_{\cdot j}\right\|$, with $\bar{Z}_{\cdot j}=\frac{1}{n} \sum_{i=1}^{n} Z_{i j}$.
(b). Show that the MLEs of α and σ^{2} are

$$
\begin{aligned}
\hat{\alpha} & =\bar{Y}-\sum_{j=1}^{p} \bar{Z}_{\cdot j} \hat{\beta}_{j} \\
\hat{\sigma}^{2} & \left.\left.=\frac{1}{n} \right\rvert\, \boldsymbol{Y}-\left(\hat{\alpha}+Z_{(n)} \hat{\beta}\right)\right)\left.\right|^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(\boldsymbol{Y}_{i}-\left(\hat{\alpha}+Z_{i}^{T} \hat{\beta}\right)\right)^{2}
\end{aligned}
$$

where $Z_{(n)}$ is the $n \times p$ matrix $\left\|Z_{i j}\right\|$.
(c). Prove that the asymptotic distribution of the mle's satisfy

$$
\left(\sqrt{n}\left(\hat{\alpha}-\alpha, \hat{\beta}-\beta, \hat{\sigma}^{2}-\sigma^{2}\right) \xrightarrow{\mathcal{L}} N\left(\mathbf{0}, \operatorname{diag}\left(\sigma^{2}, \sigma^{2}\left[E\left(Z Z^{T}\right)\right]^{-1}, 2 \sigma^{4}\right)\right)\right.
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.655 Mathematical Statistics

Spring 2016

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

