Prediction

MIT 18.655
Dr. Kempthorne

Spring 2016

Prediction Problems

Targets of Prediction

- Change in value of portfolio over fixed holding period.
- Long-term interest rate in 3 months
- Survival time of patients being treated for cancer
- Liability exposures of a drug company
- Sales of a new prescription drug
- Landfall zone of developing hurricane
- Total snowfall for next winter season
- First-year college grade point average given SAT test scores

General Setup

- Random Variable Y : response variable (target of prediction).
- Random Vector $Z=\left(Z_{1}, Z_{2}, \ldots, Z_{p}\right)$: explanatory variables
- Joint distribution: $(Z, Y) \sim P_{\theta}, \theta \in \Theta$.

Prediction Problem

General Setup (continued)

- Predictor function: $g(Z) \in\{g(\cdot): \mathcal{Z} \rightarrow \mathcal{R}\}$
$\mathcal{Z}=$ sample space of explanatory-variables vector Z
$\mathcal{R}=$ sample space of response variable Y.
- Performance Measures
- Mean Squared Prediction Error

$$
M S P E(g(Z))=E\left[(Y-g(Z))^{2}\right]
$$

- Mean Absolute Prediction Error

$$
\operatorname{MAPE}(g(Z))=E[|Y-g(Z)|]
$$

where $E[\cdot]$ is expectation under joint distribution of (Z, Y).

- Classes of possible predictor functions
- Non-parametric class $\mathcal{G}_{N P}=\left\{g: \mathcal{R}^{p} \rightarrow \mathcal{R}\right\}$
- Linear-predictor class

$$
\mathcal{G}_{L}=\left\{g: g(z)=a+\sum_{j=1}^{p} b_{j} Z_{j}, \text { for fixed } a, b_{1}, \ldots, b_{p} \in \mathcal{R}\right\}
$$

Optimal Predictors

Case 1: No Covariates

- With no covariates, $g(Z)=c$, a constant

Lemma 1.4.1 Suppose $E Y^{2}<\infty$. Then
(a) $E(Y-c)^{2}<\infty$ for all c
(b) $E(Y-c)^{2}$ is minimized uniquely by $c=\mu=E(Y)$.
(c) $\left.E(Y-c)^{2}\right)=\operatorname{Var}(Y)+(\mu-c)^{2}$

Proof
(a): See Exercise 1.4.25. Hint: Whatever Y and c :

$$
\frac{1}{2} Y^{2}-c^{2} \leq(Y-c)^{2} \leq 2\left(Y^{2}+c^{2}\right)
$$

(b): $E\left(Y^{2}\right)<\infty \Longrightarrow \mu$ exists.

$$
E\left[(Y-c)^{2}\right]=E\left[Y^{2}\right]-2 c E[Y]+c^{2}=f(c)
$$

$f(c)$ is a concave-up parabola in c with minimum at $c=E[Y]$
(c): $E\left[(Y-\mu)^{2}\right]=E\left[Y^{2}\right]-\mu^{2}=\operatorname{Var}(Y)$

Optimal Predictors

Case 2: Covariates Z

- Find the function g that minimizes $E\left[(Y-g(Z))^{2}\right]$

Theorem 1.4.1 If Z is any random vector and Y is any random variable and $\mu(Z)=E[Y \mid Z]$, then either
(a). $\left.E(Y-g(Z))^{2}\right)=\infty$ for every function g or
(b). $E(Y-\mu(Z))^{2} \leq E(Y-g(Z))^{2}$ for every g and

- Strict inequalty holds unless $g(Z)=\mu(Z)$
- $\mu(Z)=E[Y \mid Z]$ is unique best MSPE predictor.
- $\left.E(Y-g(Z))^{2}\right)=E(Y-\mu(Z))^{2}+E(g(Z)-\mu(Z))^{2}$

Proof By substitution theorem for cond. expectations (B.1.16)

$$
E\left[(Y-g(Z))^{2} \mid Z=z\right]=E\left[(Y-g(z))^{2} \mid Z=z\right]
$$

for any function $g(\cdot)$. By Lemma 1.4.1, since $g(z)$ is a constant

$$
\left.E(Y-g(z))^{2} \mid Z=z\right)=E\left((Y-\mu(z))^{2} \mid Z=z\right)+(g(z)-\mu(z))^{2}
$$

Result (b) follows by B.1.20 taking expectations of both sides

Optimal Predictors

By Theorem 1.4.1 If $E\left(Y^{2}\right)<\infty$ then

$$
\begin{gathered}
E(Y-g(Z))^{2}=E(Y-\mu(Z))^{2}+E(g(Z)-\mu(Z))^{2} \\
\text { where } \mu(Z)=E[Y \mid Z]
\end{gathered}
$$

Special Case: $g(z) \equiv \mu=E(Y)$ (no dependence on z)

$$
E(Y-\mu)^{2}=E(Y-\mu(Z))^{2}+E(\mu-\mu(Z))^{2}
$$

i.e.,

$$
\operatorname{Var}(Y)=E(\operatorname{Var}(Y \mid Z))+\operatorname{Var}(E(Y \mid Z))
$$

Definition: Random variables U and V with $E[U V]<\infty$ are uncorrelated if $E([V-E(V)][U-E(U)])=0$

General Prediction Problem

- Predict Y given $Z=z$ using the joint distribution of (Z, Y).
- Let $\mu(Z)=E(Y \mid Z)$ be predictor of Y
- Let $\epsilon=Y-\mu(Z)$ be random prediction error

$$
Y=\mu(Z)+\epsilon
$$

Prediction

General Prediction Problem (again)

- Predict Y given $Z=z$ using the joint distribution of (Z, Y).
- Let $\mu(Z)=E(Y \mid Z)$ be predictor of Y
- Let $\epsilon=Y-\mu(Z)$ be random prediction error

$$
Y=\mu(Z)+\epsilon
$$

Proposition 1.4.1 Suppose that $\operatorname{Var}(Y)<\infty$, then
(a) ϵ is uncorrelated with every function of Z
(b) $\mu(Z)$ and ϵ are uncorrelated

$$
\text { (c) } \operatorname{Var}(Y)=\operatorname{Var}(\mu(Z))+\operatorname{Var}(\epsilon)
$$

Proof (a). Let $h(Z)$ be any function of Z, then

$$
\begin{aligned}
E\{h(Z) \epsilon\} & =E\{E[h(Z) \epsilon \mid Z]\} \\
& =E\{h(Z) E[Y-\mu(Z) \mid Z]\}=0
\end{aligned}
$$

(b) follows from (a), and (c) follows from (a) given $Y=\mu(Z)+\epsilon$

Prediction

Theorem 1.4.2 If $E(|Y|)<\infty$ but Z and Y are arbitrary random variables, then

$$
\operatorname{Var}(E(Y \mid Z)) \leq \operatorname{Var}(Y)
$$

If $\operatorname{Var}(Y)<\infty$ then strict inequality holds unless

$$
Y=E(Y \mid Z) \text {, i.e., } Y \text { is a function of } Z .
$$

Proof Recall the special case of Theorem 1.4.1
Special Case: $g(z) \equiv \mu=E(Y)$ (no dependence on z)

$$
E(Y-\mu)^{2}=E(Y-\mu(Z))^{2}+E(\mu-\mu(Z))^{2}
$$

i.e.,

$$
\operatorname{Var}(Y)=E(\operatorname{Var}(Y \mid Z))+\operatorname{Var}(E(Y \mid Z))
$$

The first part follows immediately. The second part follows iff

$$
E(\operatorname{Var}(Y \mid Z))=E(Y-E(Y \mid Z))^{2}=0
$$

Prediction Example

Example 1.4.1 Assembly line operating at varying capacity, month-by-month. Every day, the assembly line is susceptible to shutdowns due to mechanical failure.

- $Z=$ capacity state, $Z \in\left\{\frac{1}{4}, \frac{1}{2}, 1\right\}$ (fraction of full capacity)
- Y : number of shutdowns on a given day sample space $\mathcal{Y}=\{0,1,2,3]$
- Joint distribution of (Z, Y) given by the pmf function:

	$p(z, y)=P(Z=z, Y=y)$				
$z \backslash y$	0	1	2	3	$p_{Z}(z)$
$\frac{1}{4}$	0.10	0.05	0.05	0.05	0.25
$\frac{1}{2}$	0.025	0.025	0.10	0.10	0.25
1	0.025	0.025	0.15	0.30	0.50
$p_{Y}(y)$	0.15	0.10	0.30	0.45	1.00

Note: marginal pmf of $Z(Y)$ given by row (col) sums

Prediction Example

- $p_{Z}(z)$ gives marginal distribution of capacity states
- $p_{Y}(y)$ gives marginal distribution of the number of failures/shutdowns per day.

Goal: Predict the number of failures per day given the capacity state of the assembly line for the month.
Solution: The best MSPE predictor function is $E[Y \mid Z]$ Using the joint distribution for (Z, Y) we can compute:

$$
\begin{aligned}
\mu(z)=E[Y \mid Z=z] & =\sum_{y=0}^{3} y p(z, y) / \sum_{y=0}^{3} p(z, y) \\
& = \begin{cases}1.20, & \text { if } \quad Z=\frac{1}{4}, \\
2.10, & \text { if } \quad Z=\frac{1}{2}, \\
2.45, & \text { if } \quad Z=1\end{cases}
\end{aligned}
$$

Prediction Example

Two ways to compute the MSPE of $\mu(z)$:

$$
E[Y-E(Y \mid Z)]^{2}=\sum_{x}^{3} 3=0(y-\mu(z))^{2} p(z, y)=0.088625
$$

or

$$
\begin{aligned}
E[Y-E(Y \mid Z)]^{2} & =\operatorname{Var}(Y)-\operatorname{Var}(E(Y \mid Z)) \\
& =E\left(Y^{2}\right)-E\left[(E(Y \mid Z))^{2}\right] \\
& =\sum_{y} y^{2} p_{Y}(y)-\sum_{z} E[(Y \mid Z=z)]^{2} p_{Z}(z) \\
& =0.088625
\end{aligned}
$$

Regression Toward the Mean

Bivariate Normal Distribution (See Section B.4)

- $\left[\begin{array}{l}Z \\ Y\end{array}\right] \sim N_{2}\left(\left[\begin{array}{l}\mu_{Z} \\ \mu_{Y}\end{array}\right], \Sigma\right)$
where $E\left[\begin{array}{l}Z \\ Y\end{array}\right]=\left[\begin{array}{l}\mu_{Z} \\ \mu_{Y}\end{array}\right]$
and $\Sigma=\left[\begin{array}{ll}\operatorname{Cov}(Z, Z) & \operatorname{Cov}(Z, Y) \\ \operatorname{Cov}(Y, Z) & \operatorname{Cov}(Y, Y)\end{array}\right]=\left[\begin{array}{cc}\sigma_{Z}^{2} & \rho \sigma_{Z} \sigma_{Y} \\ \rho \sigma_{Z} \sigma_{Y} & \sigma_{Y}^{2}\end{array}\right]$
- Conditional Distribution

$$
Y \mid Z=x \sim N\left(\mu_{Y}+\rho\left(\sigma_{Y} / \sigma_{Z}\right)\left(z-\mu_{Z}\right), \sigma_{Y}^{2}\left(1-\rho^{2}\right)\right.
$$

- Best Predictor of Y given Z: $\mu(z)=E[Y \mid Z=z]$

$$
\mu(z)=\mu_{Y}+\rho\left(\sigma_{Y} / \sigma_{Z}\right)\left(z-\mu_{Z}\right)
$$

"Regression toward the mean"

- MSPE of $\mu(z)$:

$$
\text { MSPE }=E\left[(Y-\mu(Z))^{2}\right]=\sigma_{Y}^{2}\left(1-\rho^{2}\right)
$$

Bivariate Normal: Bivariate Regression

- Special Cases:
- $\rho=1: Y$ is perfectly predicted given Z :

$$
\mu(Z)=\mu_{Y}+\rho\left(\sigma_{Y} / \sigma_{Z}\right)\left(z-\mu_{Z}\right)
$$

- $\rho=0$: Best predictor of Y is its mean:

$$
\mu(Z)=\mu_{Y}(\text { constant, independent of } Z)
$$

- Measure of dependence of Y on Z :

$$
\rho^{2}=1-\frac{M S P E}{\sigma_{Y}^{2}}
$$

Ranges from 0 (no dependence) to 1 (if $\rho=+1$ or -1)

- Galton: studied distributions of heights for fathers and sons. Will taller parents have taller children?

Multivariate Normal Distribution

Joint Distribution of (Z, Y) is

$$
\left[\begin{array}{l}
Z \\
Y
\end{array}\right] \sim N_{d+1}\left(\left[\begin{array}{l}
\mu_{Z} \\
\mu_{Y}
\end{array}\right], \Sigma\right) \text { where }
$$

- Z is now d-variate

$$
Z=\left(Z_{1}, Z_{2}, \ldots, Z_{d}\right)^{T}
$$

- Scalar μ_{Z} is now a vector: $\mu_{Z}=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{d}\right)^{T}$
- The covariance matrix Σ is now of dimension

$$
\begin{aligned}
& (d+1) \times(d+1): \\
& \quad \Sigma=\left(\begin{array}{cc}
\Sigma_{Z, Z} & \Sigma_{Z Y} \\
\Sigma_{Y Z} & \sigma_{Y Y}
\end{array}\right), \text { where } \sigma_{Y Y}=\sigma_{Y}^{2} \text { and }
\end{aligned}
$$

$\Sigma_{z z}$ is $d \times d$ matrix with $\left\|\Sigma_{z z}\right\|_{i, j}=\operatorname{Cov}\left(Z_{i}, Z_{j}\right)$
$\Sigma_{Z, Y}=\Sigma_{Y, Z}^{T}=\left(\operatorname{Cov}\left(Z_{1}, Y\right), \operatorname{Cov}\left(Z_{2}, Y\right), \ldots, \operatorname{Cov}\left(Z_{d}, Y\right)\right)^{T}$ See Section B. 6 for derivation of density function.

Multivariate Normal Distribution

Conditional Distribution: $[Y \mid Z=z]$. By Theorem B.6.5:

$$
Y \mid Z=z \sim N\left(\mu(z), \sigma_{Y Y \mid Z}\right)
$$

where

- $\mu(Z)=\mu_{Y}+\left(Z-\mu_{Z}\right)^{T} \boldsymbol{\beta}$ with $\boldsymbol{\beta}=\Sigma_{Z Z}^{-1} \Sigma_{Z Y}$
- $\sigma_{Y Y \mid Z}=\sigma_{Y Y}-\Sigma_{Y Z} \Sigma_{Z Z}^{-1} \Sigma_{Z Y}$.

Note:

- $\mu(Z)=E[Y \mid Z]$ is the best predictor of Y
- The MSPE of $\mu(Z)$ is

$$
\begin{aligned}
M S P E & \left.=E\left\{E[Y-\mu(Z)]^{2} \mid Z\right]\right\}=E\left(\sigma_{Y Y \mid Z}\right) \\
& =\sigma_{Y Y}-\Sigma_{Y Z} \Sigma_{Z Z}^{-1} \Sigma_{Z Y}
\end{aligned}
$$

- Measure of dependence of Y on Z (analagous to ρ^{2})

$$
\rho_{Z Y}^{2}=1-\frac{M S P E}{\sigma_{Y}^{2}}
$$

- Terms for $\rho_{Z Y}^{2}$: "coefficient of determination", "squared multiple-correlation coefficient"

Linear Prediction

Objective: Predict Y Given Z

- Joint distribution of (Z, Y) may be complex $\mu(Z)=E[Y \mid Z]$ may be hard to compute
- Alternative: consider class of simple predictors

Linear Predictors: 1-Dimensional Case

- Linear predictor: $g(Z)=a+b Z$, with constants a (intercept) and b (slope).
- Zero-Intercept linear predictor: $g(Z)=a+b Z$ with $a \equiv 0$
- Identify best linear predictors based on MSPE

Linear Prediction

Theorem 1.4.3 Suppose that $E\left(Z^{2}\right)$ and $E\left(Y^{2}\right)$ are finite and Z and Y are not constant. Then
(a). The unique best zero-intercept linear predictor is obtained by taking

$$
b=b_{0}=\frac{E(Z Y)}{E\left(Z^{2}\right.}
$$

(b). The unique best linear predictor is

$$
\begin{aligned}
& \mu_{L}(Z)=a_{1}+b_{1} Z, \text { where } \\
& b_{1}=\frac{\operatorname{Cov}(Z, Y)}{\operatorname{Var}(Z)}, \text { and } \\
& a_{1}=E(Y)-b_{1} E(Z) .
\end{aligned}
$$

Proof (a). $E\left[(Y-b Z)^{2}\right]=E\left[Y^{2}\right]-2 b E[Z Y]+b^{2} E\left[Z^{2}\right]=h(b)$. $h(b)$ is a parabola in b : achieves minimum when $h^{\prime}(b)=0$, i.e.,

$$
-2 E[Z Y]+2 b E\left[Z^{2}\right]=0 \Longrightarrow b=\frac{E(Z Y)}{E\left(Z^{2}\right)}
$$

In this case: $M S P E=E\left(Y-b_{0} Z\right)^{2}=E\left(Y^{2}\right)-\frac{[E(Z Y)]^{2}}{E\left(Z^{2}\right)}$

Proof (b). By Lemma 1.4.1

$$
E(Y-a-b Z)^{2}=\operatorname{Var}(Y-b Z)+[E(Y)-b E(Z)-a]^{2}
$$

For any fixed value of b, this is minimized by taking

$$
a=E(Y)-b E(Z)
$$

Substituting for a, we find b minimizing

$$
\begin{aligned}
E(Y-a-b Z)^{2}= & E([Y-E(Y)]-b[Z-E(Z)])^{2} \\
= & E[Y-E(Y)]^{2}+b^{2} E[Z-E(Z)]^{2} \\
& -2 b E([Z-E(Z)][Y-E(Y)]) \\
& =\operatorname{Var}(Y)-2 b \operatorname{Cov}(Z, Y)+b^{2} \operatorname{Var}(Z)=h_{*}(b)
\end{aligned}
$$

$h_{*}(b)$ is a parabola in b which is minimized when $h_{*}^{\prime}(b)=0$

$$
-2 b \operatorname{Cov}(Z, Y)+2 b \operatorname{Var}(Z)=0 \Longrightarrow b=b_{1}=\frac{\operatorname{Cov}(Z, Y)}{\operatorname{Var}(Z)}
$$

In this case: $M S P E=E\left[Y-a_{1}-b_{1} Z\right]^{2}=\operatorname{Var}(Y)-\frac{[\operatorname{Cov}(Z Y)]^{2}}{\operatorname{Var}(Z)}$

Linear Prediction

Notes

- If the best predictor is linear $(E(Y \mid Z)$ is linear in $Z)$ it must coincide with the best linear predictor.
- If the best predictor is non-linear $(E(Y \mid Z)$ is not linear in $Z)$ then the best linear predictor will not have optimal MSPE. See Example 1.4.1

Multivariate Linear Predictor For (Z, Y), where $Z=\left(Z_{1}, \ldots, Z_{d}\right)^{T}$ is d-dimensional covariate vector, linear predictors of Y are given by

$$
\mu_{L}(Z)=a+\sum_{j=1}^{d} b_{j} Z_{j}=a+Z^{T} \mathbf{b}
$$

where $\mathbf{b}=\left(b_{1}, b_{2}, \ldots, b_{d}\right)^{T}$

Linear Prediction

Definition/Notation:

- $E(Y)=\mu_{Y}$, (scalar) $\mu_{Z}=E(Z) \quad$ (column d-vector)
- $\Sigma_{Z Z}=E\left([Z-E(Z)][Z-E(Z)]^{T}\right) \quad(d \times d$ matrix $)$
- $\Sigma_{Z Y}=E([Z-E(Z)][Y-E(Y)] \quad$ (column d-vector)

Theorem 1.4.4 If $E Y^{2}<\infty$ and $\Sigma_{Z Z}^{-1}$ exists, then the unique best linear MSPE predictor is

$$
\mu_{L}(Z)=\mu_{Y}+\left(Z-\mu_{Z}\right)^{T} \boldsymbol{\beta} \text { where } \boldsymbol{\beta}=\Sigma_{Z Z}^{-1} \Sigma_{Z Y}
$$

Proof The MSPE of the linear predictor μ_{L} is

$$
M S P E=E_{P}\left[Y-\mu_{L}(Z)\right]^{2}, \text { where } P \text { is the joint }
$$

distribution of $X=\left(Z^{T}, Y\right)^{T}$. This expression depends only on the first and second moments of X, equivalently $\mu=E[X]$, and $\Sigma=\operatorname{Cov}(X)$.
If the distribution P were P_{0}, the multivariate normal distribution with this expectation and covariance, then MSPE is minimized by $E_{P_{0}}[Y \mid Z]=\mu_{Y}+\left(Z-\mu_{Z}\right)^{T} \boldsymbol{\beta}=\mu_{L}(Z)$. Since P and P_{0} have the same μ and Σ, if μ_{L} is best MSPE for P_{0} it is also best for $P_{\bar{z}}$

Linear Prediction

- Defining the multiple correlation coefficient or coefficient of determination

$$
\rho_{Z Y}^{2}=\operatorname{Corr}^{2}\left(Y, \mu_{L}(Z)\right)
$$

- Remark 1.4.4 Suppose the model for $\mu(Z)$ is linear:

$$
\mu(Z)=E(Y \mid Z)=\alpha+Z^{T} \boldsymbol{\beta}
$$

for unknown $\alpha \in R$, and $\beta \in R^{d}$.
Solving for α and $\boldsymbol{\beta}$ minimizing

$$
M S P E=E[Y-\mu(Z)]^{2}
$$

is solving for parameters minimizing a quadratic form in first/second moments of (Z, Y). These yield the same solution as Theorem 1.4.4.

- Remark 1.4.5 Consider a Bayesian estimation problem where $X \sim P_{\theta}$ and $\theta \sim \pi$, and the loss function is squared-error loss:

$$
L(\theta, a)=(a-\theta)^{2} .
$$

Identify Y with θ, and X with Z, then the Bayes risk of an estimator $\delta(X)$ of θ is:

$$
r(\delta)=E\left[(\theta-\delta(X))^{2}\right]=\operatorname{MSPE}(\delta) \text { which is }
$$

minimized by $\delta(X)=E[\theta \mid X]$.

- Remark 1.4.6 Connections to Hilbert Spaces (Sectin B.10)
- Space \mathcal{H} with inner product $\langle\cdot, \cdot\rangle: \mathcal{H} \times \mathcal{H} \rightarrow R$. (bilinear, symmetric, and $\langle h, h\rangle=0$ iff $h=0$)
- $\|h\|^{2}=<h, h>$ is a norm
$\| c h| |=|c| \cdot| | h| |$ for scalar c, and
$\left\|h_{1}+h_{2}\right\| \leq\left\|h_{1}\right\|+\left\|h_{2}\right\|$ (triangle inequality)
- \mathcal{H} is complete: (contains limits)

If $\left\{h_{m}, m \geq 1\right\}:\left\|h_{m}-h_{n}\right\| \rightarrow 0$, as $m, n \rightarrow \infty$ then there exists $h \in \mathcal{H}:\left\|h_{n}-h\right\| \rightarrow 0$.

Connections to Hilbert Spaces (continued)

- Projections on Linear Spaces
- $\mathcal{L} \subset \mathcal{H}$, a closed linear subspace of \mathcal{H}.
- Project operator
$\Pi(\cdot \mid \mathcal{L}): \mathcal{H} \rightarrow \mathcal{L}:$
$\Pi(h \mid \mathcal{L})=h^{\prime} \in \mathcal{L}:$ achieves $\min \left\{\left\|h-h^{\prime}\right\|, h^{\prime} \in \mathcal{L}\right\}$ which has the property

$$
h-\Pi(h \mid \mathcal{L}) \perp h^{\prime}, \text { for all } h^{\prime} \in \mathcal{L} .
$$

- Π is idempotent $\left(\Pi^{2}=\Pi\right)$.
- Π is norm-reducing: $\|\Pi(h)\| \leq\|h\|$
- From Pythagoras' Theorem:

$$
\|h\|^{2}=\|\Pi(h \mid \mathcal{L})\|^{2}+\|h-\Pi(h \mid \mathcal{L})\|^{2}
$$

- Hilbert Space Example:
- $L_{2}(P)=\left\{\right.$ All r.v.'s X on a probability space: $\left.E X^{2}<\infty\right\}$
- $<Z, Y>=E(X Y)$
- If $E(Z)=E(Y)=0$ and $E(Z Y)=0$, then
$\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$ (Pythagoras' Therem)
- \mathcal{L} is the linear span of $1, Z_{1}, \ldots, Z_{d}$

$$
\Pi(Y \mid \mathcal{L})=E(Y)+\left(\Sigma_{Z Z}^{-1} \Sigma_{Z Y}\right)^{T}(Z-E(Z))
$$

See 1.4.14.

- \mathcal{L} is the space of all $X=g(Z)$ for some g (measurable). This is a linear space that can be shown to be closed and

$$
\Pi(Y \mid \mathcal{L})=E(Y \mid Z)
$$

See 1.4.6.

Problems

Problem 1.4.4 Determining dependence between random variables.
Problem 1.4.7 Minimizing mean-absolute prediction error - the role of the median.
Problem 1.4.11 Best estimators of Y given Z when (Y, Z) are bivariate normal considering MSPE vs considering mean abolute prediction error.
Problem 1.4.19 Minimizing a convex risk function $R(a, b)$ by solving for (a, b)
Problem 1.4.20 Binomial mixture model.
Problem 1.4.25 Mutual bounding of $E\left[Y^{2}\right]$ and $E(Y-c)^{2}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.655 Mathematical Statistics

Spring 2016

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

