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Minimum Contrast Estimates 

X ∈ X , X ∼ P ∈ P = {Pθ, θ ∈ Θ}. 
Problem: Finding a function θ̂(X ) which is “close” to θ. 
Consider 

ρ : X × Θ → R. 
and define D(θ0, θ) to measure the discrepancy between θ and the 
true value θ0. 

D(θ0, θ) = Eθ0 ρ(X , θ). 
As a discrepancy measure, D makes sense if the value of θ 
minimizing the function is θ = θ0. 
If Pθ0 were true, and we knew D(θ0, θ), we could obtain θ0 as the 
minimizer. 
Instead of observing D(θ0, θ), we observe ρ(X , θ). 

ρ(·, ·) is a contrast function 
θ̂(X ) is a minimum-contrast estimate. 
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The definition extends to 

Euclidean Θ ⊂ Rd . 

θ0 an interior point of Θ. 

Smooth mapping: θ → D(θ0, θ). 

θ = θ0 solves
 
'θD(θ0, θ) = 0.
 

∂where 'θ = ( ∂ , . . . , )T 
∂θ1 ∂θd 

Substitute ρ(X , θ) for D(θ0, θ) and solve 
ˆ'θρ(X , θ) = 0 at θ = θ. 

4 MIT 18.655 Methods of Estimation 



Methods of Estimation I 

Minimum Contrast Estimates 
Least Squares and Weighted Least Squares 
Gauss-Markov Theorem 
Generalized Least Squares (GLS) 
Maximum Likelihood 

Estimating Equations: 

Ψ : X × Rd → Rd , where Ψ = (ψ1, . . . , ψd )
T . 

For every θ0 ∈ Θ, the expectation of Ψ given Pθ0 has a unique 
solution 

V (θ0, θ) = Eθ0 [Ψ(X , θ)] = 0
 
at θ = θ0.
 

5 MIT 18.655 Methods of Estimation 



Methods of Estimation I 

Minimum Contrast Estimates 
Least Squares and Weighted Least Squares 
Gauss-Markov Theorem 
Generalized Least Squares (GLS) 
Maximum Likelihood 

Example 2.1.1 Least Squares. 

µ(z) = g(β, z), β ∈ Rd . 

x = {(zi , Yi ) : 1 ≤ i ≤ n}, where Y1, . . . , Yn are independent. 1nDefine ρ(X , β) = |Y − µ|2 = [Yi − g(β, zi )]2 .i=1

Consider Yi = µ(zi ) + Ei , where µ(zi ) = g(β, zi ) and the Ei 
are iid N(0, σ0

2). 
Then, β parametrizes the model and we can write: 

D(β0, β) = Eβ0 ρ(X , β)1n = nσ0
2 + [g(β0, zi ) − g(β, zi )]2].i=1

This is minimized by β = β0 and uniquely so iff β identifiable. 
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ˆThe least-squares estimate β minimizes ρ(X , β). 
Conditions to guarantee existence of β̂: 

Continuity of g(·, zi ). 
Minimum of ρ(X , ·) existing on compact set {β}

e.g., lim |g(β, zi )| = ∞. 
|β|→∞ 

If g(β, zi ) is differentiable in β, then β̂ satisfies the Normal 
Equations obtained by taking partial derivatives of 1n
ρ(X , β) = |Y − µ|2 = [Yi − g(β, zi )]2 and solving: i=1

∂ρ(X , β) 
= 0 

∂βj 
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1 nρ(X , β) = |Y − µ|2 = [Yi − g(β, zi )]2 
i=1

Solve: 

∂ρ(X , β) 
= 0 

∂βj 
n ∂g(β, zi )

2[Yi − g(β, zi )] (−1) = 0 
∂βj

i=1 
n n  ∂g(β, zi ) ∂g(β, zi )

Yi − g(β, zi ) = 0 
∂βj ∂βj

i=1 i=1 
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Linear case: 1d g(β, zi ) = = zT βj=1 zij βj i 

∂ρ(X , β) 
= 0 

∂βj 
n n
∂g(β, zi ) ∂g(β, zi )

Yi − g(β, zi ) = 0 
∂βj ∂βj

i=1 i=1 
n n 

T zij Yi − zi ,j (z β) = 0i 
i=1 i=1 

n d n 

zij Yi − zi ,j zi ,k βk = 0, j = 1, . . . , d 
i=1 k=1 i=1 

ZT 
D Y − ZT = 0D ZD β 

where ZD is the (n × d) design matrix with (i , j) element zi ,j 
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Note: 

Least Squares exemplifies minimum contrast and estimating 
equation methodology. 

Distribution assumptions are not necessary to motivate the 
estimate as a mathematical approximation. 
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Method of Moments
 

Method of Moments 

X1, . . . , Xn iid X ∼ Pθ, θ ∈ Rd . 

µ1(θ), µ2(θ), . . . , µd (θ):
 
µj (θ) = µj = E [X j | θ] the jth moment of X .
 

Sample moments: 
n 

µ̂j = X j , j = 1, . . . , d .i
 
i=1
 

Method of Moments: Solve for θ in the system of equations 
µ1(θ) = µ̂1 

µ2(θ) = µ̂2 
. . . . . . 
µd (θ) = µ̂d 
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Note: . 

θ must be identifiable 

Existence of µj : lim µ̂j = µj with |µj | < ∞. 
n→∞ 

If q(θ) = h(µ1, . . . , µd ), then the Method-of-Moments 
Estimate of q(θ) is
 

q̂(θ) = h(µ̂1, . . . , µ̂d ).
 

The MOM estimate of θ may not be unique!
 
(See Problem 2.1.11)
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Plug-In and Extension Principles
 

Frequency Plug-In 

Multinomial Sample: X1, . . . , Xn with K values v1, . . . , vK 

P(Xi = vj ) = pj j = 1, . . . , K 
Plug in estimates: p̂j = Nj /n where Nj = count({i : Xi = vj }) 
Apply to any function q(p1, . . . , pK ):
 

q̂ = q(p̂1, . . . , p̂K )
 
Equivalent to substituting the true distribution function 

Pθ(t) = P(X ≤ t | θ) 
underlying an iid sample with the empirical distribution 
function: 

n 

P̂(t) = 1 1{xi ≤ t}n 
i=1 

P̂ is an estimate of P, and ν(P̂) is an estimate of ν(P).
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Example: αth population quantile
 
να(P) = 1 [F −1(α) + F −1(α)], with 0 < α < 1:
2 U 

where
 
F −1(α) = inf {x : F (x) ≥ α}

F −1(α) = sup{x : F (x) ≤ α}U 

The plug-in estimate is
 
ν̂α(P) = να(P̂) = 1 [F̂−1(α) + F̂−1(α)].
2 U 

Example: Method of Moments Estimates of jth Moment 
ν(P) = µj	 = E (X j ) 

= ν(ˆ
1n jν̂(P) = µ̂j P) = 1 

n i=1 xi 
Extension Principle 

Objective: estimate q(θ), a function of θ. 
Assume q(θ) = h(p1(θ), . . . , pK (θ)), where h() is continuous. 
The extension principle estimates q(θ) with
 

q̂(θ) = h(p̂1, . . . , p̂K )
 

MIT 18.655 Methods of Estimation 
h() may not be unique: what h() is optimal? 

14



Methods of Estimation I 

Minimum Contrast Estimates 
Least Squares and Weighted Least Squares 
Gauss-Markov Theorem 
Generalized Least Squares (GLS) 
Maximum Likelihood 

Notes on Method-of-Moments/Frequency Plug-In Estimates 

Easy to compute 

Valuable as initial estimates in iterative algorithms. 

Consistent estimates (close to true parameter in large 
samples). 

Best Frequency Plug-In Estimates are Maximum-Likelihood 
Estimates. 

In some cases, MOM estimators are foolish (See Example 
2.1.7). 
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Least Squares
 

General Model: Only Y Random 

X = {(zi , Yi ) : 1 ≤ i ≤ n}, where
 
Y1, . . . , Yn are independent.
 
z1, . . . , zn ∈ Rd are fixed, non-random.
 

For cases i = 1, . . . , n 
Yi = µ(zi ) + Ei , where 

µ(z) = g(β, z), β ∈ Rd . 
Ei are independent with E [Ei ] = 0. 

The Least-Squares Contrast function is 1nρ(X , β) = |Y − µ|2 = [Yi − g(β, zi )]2 .i=1

β parametrizes the model and we can write the discrepancy 
function
 

D(β0, β) = Eβ0 ρ(X , β)
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Least Squares: Only Y Random
 

Contrast Function: 1nρ(X , β) = |Y − µ|2 = [Yi − g(β, zi )]2 .i=1

Discrepancy Function: 
D(β0, β) = Eβ0 ρ(X , β)1 1n n = Var(Ei ) + [g(β0, zi ) − g(β, zi )]2].i=1 i=1

The model is semiparametric with unknown parameter β and 
unknown (joint) distribution Pe of E= (E1, . . . , En). 

Gauss-Markov Assumptions 

Assume that the distribution of E satisfy:
 
E (Ei ) = 0
 
Var(Ei ) = σ2
 

Cov(Ei , Ej ) = 0 for i = j
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General Model: (Y,Z) Both Random 

(Y1, Z1), . . . , (Yn, Zn) are i.i.d. as X = (Y , Z ) ∼ P 

Define µ(z) = E [Y | Z = z ] = g(β, z), where 
g(·, ·) is a known function and 
β ∈ Rd is unknown parameter 

Given Zi = zi , define Ei = Yi − µ(zi ) for i = 1, . . . , n 

Conditioning on the zi we can write: 
Yi = g(β, zi ) + Ei , i = 1, 2, . . . , n 

where E = (E1, . . . , En) has (joint) distribution Pe 

The Least-Squares Estimate of β̂ is the plug-in estimate β(P̂),
 
where P̂ is the empirical distribution for the sample
 
{(Zi , Yi ), i = 1, . . . , n}
 

The function g(β, z) can be linear in β and z or nonlinear. 

Closed-form solutions exist for β̂ when g is linear in β. 
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Gauss-Markov Theorem: Assumptions
 ⎤⎡⎞⎛ 
y1 x1,1 x1,2 · · · x1,p 

Data y =
 
⎜⎜⎜⎝
 

y2 
.
 .
 .
 

⎟⎟⎟⎠
 
and X =
 

⎢⎢⎢⎣
 ⎥⎥⎥⎦
x2,1 x2,2 · · ·
 x2,p 
. . .. . . . . .. . .
 

yn xn,1 xn,2 · · · xp,n 
follow a linear model satisfying the Gauss-Markov Assumptions 
if y is an observation of random vector Y = (Y1, Y2, . . . YN )

T and 

E (Y | X, β) = Xβ, where β = (β1, β2, . . . βp)
T is the
 

p-vector of regression parameters.
 

Cov(Y | X, β) = σ2In, for some σ2 > 0.
 
I.e., the random variables generating the observations are
 
uncorrelated and have constant variance σ2 (conditional on X,
 
and β).
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Gauss-Markov Theorem 

For known constants c1, c2, . . . , cp, cp+1, consider the problem of 
estimating 

θ = c1β1 + c2β2 + · · · cpβp + cp+1. 
Under the Gauss-Markov assumptions, the estimator 

θ̂ = c1β̂1 + c2β̂2 + · · · cpβ̂p + cp+1, 
ˆ ˆwhere β̂1, β2, . . . βp are the least squares estimates is 

1) An Unbiased Estimator of θ 

2) A Linear Estimator of θ, that is 1nθ̃ = bi yi , for some known (given X) constants bi .i=1 

Theorem: Under the Gauss-Markov Assumptions, the estimator 
θ̂ has the smallest (Best) variance among all Linear Unbiased 
Estimators of θ, i.e., θ̂ is BLUE . 
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Gauss-Markov Theorem: Proof 

Proof: Without loss of generality, assume cp+1 = 0 and
 
define c =(c1, c2, . . . , cp)T .
 
The Least Squares Estimate of θ = cT β is:
 

θ̂ = cT β̂ = cT (XT X)−1XT y ≡ dT y 
a linear estimate in y given by coefficients d = (d1, d2, . . . , dn)T . 
Consider an alternative linear estimate of θ: 

θ̃ = bT y 
with fixed coefficients given by b = (b1, . . . , bn)T . 
Define f = b − d and note that 

θ̃ = bT y = (d + f)T y = θ̂ + fT y 

If θ̃ is unbiased then because θ̂ is unbiased 
0 = E (fT y) = fTE (y) = fT (Xβ) for all β ∈ Rp 

=⇒ f is orthogonal to column space of X 

=⇒ f is orthogonal to d = X(XT X)−1c 
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If θ̃ is unbiased then 

The orthogonality of f to d implies 

Var(θ̃)	 = Var(bT y) = Var(dT y + fT y) 
= Var(dT y) + Var(fT y) + 2Cov(dT y, fT y) 
= Var(θ̂) + Var(fT y) + 2dT Cov(y)f 
= Var(θ̂) + Var(fT y) + 2dT (σ2In)f 
= Var(θ̂) + Var(fT y) + 2σ2dT f 
= Var(θ̂) + Var(fT y) + 2σ2 × 0 
≥ Var(θ̂) 
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Generalized Least Squares (GLS) Estimates 

Consider generalizing the Gauss-Markov assumptions for the linear 
regression model to 

Y = Xβ + E 
where the random n-vector E: E [E] = 0n and E [EET ] = σ2Σ. 

σ2 is an unknown scale parameter 

Σ is a known (n × n) positive definite matrix specifying the 
relative variances and correlations of the component 
observations. 

Transform the data (Y, X) to Y ∗ = Σ− 
2
1 
Y and X ∗ = Σ− 

2
1 
X and 

the model becomes 
Y ∗ = X ∗ β + E∗, where E [E∗] = 0n and E [E∗(E∗)T ] = σ2In 

By the Gauss-Markov Theorem, the BLUE (‘GLS’) of β is 
β̂ = [(X∗ )T (X∗ )]−1(X∗ )T (Y∗ ) = [XT Σ−1X]−1(XT Σ−1Y) 
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Maximum Likelihood Estimation
 

X ∼ Pθ, θ ∈ Θ with density or pmf function
 
p(x | θ).
 

Given an observation X = x , define the likelihood function 
Lx (θ) = p(x | θ) :
 

a mapping: Θ → R.
 
ˆ ˆθML = θML(x): the Maximum-Likelihood Estimate of θ is the 
value making Lx (·) a maximum
 

ˆ
θ is the MLE if
 
Lx (θ̂) = max Lx (θ).
 

θ∈Θ 

The MLE θ̂ML(x) identifies the distribution making x “most 
likely” 
The MLE coincides with the mode of the Posterior 
Distribution if the Prior Distribution on Θ is uniform: 

MIT 18.655 
|

Methods of Estimation 
π(θ | x) ∝ p(x | θ)π(θ) ∝ p(x θ). 
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Examples 

Example 2.2.4: Normal Distribution with Known Variance 

Example 2.2.5: Size of a Population
 
X1, . . . , Xn are iid U{1, 2, . . . , θ}, with θ ∈ {1, 2, . . .}.
 
For x = (x1, . . . , xn),
.nLx (θ) = θ−11(1 ≤ xi ≤ θ)i=1 

= θ−n × 1(max(x1, . . . , xn)) ≤ θ) 
0 , if θ = 0, 1, . . . , max(xi ) − 1 

=
θ−n if θ ≥ max(xi ) 
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Maximum Likelihood As a Minimum Contrast Method 

Define lx (θ) = log Lx (θ) = log p(x | θ) 
Because −log(·) is monotone decreasing,
 

ˆ
θML(x) minimizes −lx (θ) 

For an iid sample X = (X1, . . . , Xn) with densities p(xi | θ), 
lX (θ) = log p(x1, . . . , xn | theta).n = log [ i=1 p(xi | θ)]1n = log p(xi | θ)i=1 

As a minimum contrast function , 
ρ(X , θ) =−lX (θ)
 

yields the MLE θ̂ML(x)
 

The discrepancy function corresonding to the contrast 
function ρ(X , θ) is 

D(θ0, θ) = E [ρ(X , θ) | θ0] = −E [log p(x | θ) | θ0] 
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Suppose that θ = θ0 uniquely minimizes D(θ0, ·). Then 

D(θ0, θ) − D(θ0, θ0) = −E [log p(x | θ) | θ0] − (−E [log p(x | θ0) | θ0]) 
= −E [log p

p
(
(
x
x
|
|
θ
θ

0

)
) | θ0] 

> 0, unless θ = θ0. 
This difference is the Kullback-Leibler Information Divergence 
between distribution Pθ0 and Pθ: 

K (Pθ0 , Pθ) = −E [log(p
p
(
(
x
x
|
|
θ
θ

0

)
) ) | θ0] 

Lemma 2.2.1 (Shannon, 1948) The mutual entropy K (Pθ0 , Pθ) 
is always well defined and 

K (Pθ0 , Pθ) ≥ 0 

Equality holds if and only if {x : p(x | θ) = p(x | θ0)} has 
probability 1 under both Pθ0 and Pθ. 

Proof Apply Jensen’s Inequality (B.9.3) 
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Likelihood Equations 
Suppose: 

X ∼ Pθ, with θ ∈ Θ, an open parameter space 

the likelihood function lX (θ) is differentiable in θ 

θ̂ML(x) exists 

Then: θ̂ML(x) must satisfy the Likelihood Equation(s) 
' θlX (θ) = 0. 

Important Cases 
For independent Xi with densities/pmfs pi (xi | θ),1n' θlX (θ) = ' θ log pi (xi | θ) = 0 i=1 
NOTE: pi (· | θ) may vary with i . 
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Examples 

Hardy-Weinberg Proportions (Example 2.2.6) 

Queues: Poisson Process Models (Exponential Arrival Times 
and Poisson Counts) (Example 2.2.7) 

Multinomial Trials (Example 2.2.8) 

Normal Regression Models (Example 2.2.9). 
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