Methods of Estimation I

# Methods of Estimation

### MIT 18.655

Dr. Kempthorne

Spring 2016

- ● ● ●

Methods of Estimation I

Minimum Contrast Estimates Least Squares and Weighted Least Squares Gauss-Markov Theorem Generalized Least Squares (GLS) Maximum Likelihood



### Methods of Estimation I

#### • Minimum Contrast Estimates

- Least Squares and Weighted Least Squares
- Gauss-Markov Theorem
- Generalized Least Squares (GLS)
- Maximum Likelihood

### Minimum Contrast Estimates

 $X \in \mathcal{X}, X \sim P \in \mathcal{P} = \{P_{\theta}, \theta \in \Theta\}.$ Problem: Finding a function  $\hat{\theta}(X)$  which is "close" to  $\theta$ .

Consider

 $\rho: \mathcal{X} \times \Theta \to R.$ 

and define  $\mathcal{D}(\theta_0, \theta)$  to measure the *discrepancy* between  $\theta$  and the true value  $\theta_0$ .

 $\mathcal{D}(\theta_0, \theta) = E_{\theta_0} \rho(X, \theta).$ 

As a discrepancy measure,  $\mathcal{D}$  makes sense if the value of  $\theta$  minimizing the function is  $\theta = \theta_0$ .

If  $P_{\theta_0}$  were true, and we knew  $D(\theta_0, \theta)$ , we could obtain  $\theta_0$  as the minimizer.

Instead of observing  $D(\theta_0, \theta)$ , we observe  $\rho(X, \theta)$ .

- $\rho(\cdot, \cdot)$  is a contrast function
- $\hat{\theta}(X)$  is a minimum-contrast estimate.

< /□ > < 3

The definition extends to

- Euclidean  $\Theta \subset R^d$ .
- $\theta_0$  an interior point of  $\Theta$ .
- Smooth mapping:  $\theta \to D(\theta_0, \theta)$ .

• 
$$\theta = \theta_0$$
 solves  
 $\nabla_{\theta} D(\theta_0, \theta) = 0.$   
where  $\nabla_{\theta} = (\frac{\partial}{\partial \theta_1}, \dots, \frac{\partial}{\partial \theta_d})^T$   
• Substitute  $\rho(X, \theta)$  for  $D(\theta_0, \theta)$  and solve  
 $\nabla_{\theta} \rho(X, \theta) = 0$  at  $\theta = \hat{\theta}.$ 

### **Estimating Equations:**

- $\Psi : \mathcal{X} \times R^d \to R^d$ , where  $\Psi = (\psi_1, \dots, \psi_d)^T$ .
- For every  $\theta_0 \in \Theta$ , the expectation of  $\Psi$  given  $P_{\theta_0}$  has a unique solution

$$V( heta_0, heta)=E_{ heta_0}[\Psi(X, heta)]=0$$
 at  $heta= heta_0.$ 

#### Example 2.1.1 Least Squares.

• 
$$\mu(z) = g(\beta, z), \beta \in \mathbb{R}^d.$$

- $x = \{(z_i, Y_i) : 1 \le i \le n\}$ , where  $Y_1, \ldots, Y_n$  are independent.
- Define  $\rho(X,\beta) = |Y \mu|^2 = \sum_{i=1}^{n} [Y_i g(\beta, z_i)]^2$ .
- Consider  $Y_i = \mu(z_i) + \epsilon_i$ , where  $\mu(z_i) = g(\beta, z_i)$  and the  $\epsilon_i$  are iid  $N(0, \sigma_0^2)$ .

Then,  $\beta$  parametrizes the model and we can write:

 $\begin{array}{rcl} D(\beta_0,\beta) &=& E_{\beta_0}\rho(X,\beta) \\ &=& n\sigma_0^2 + \sum_{i=1}^n [g(\beta_0,z_i) - g(\beta,z_i)]^2]. \end{array}$ This is minimized by  $\beta = \beta_0$  and uniquely so iff  $\beta$  identifiable.

- The *least-squares estimate* β̂ minimizes ρ(X, β).
   Conditions to guarantee existence of β̂:
  - Continuity of  $g(\cdot, z_i)$ .
  - Minimum of  $\rho(X, \cdot)$  existing on compact set  $\{\beta\}$ e.g.,  $\lim_{|\beta| \to \infty} |g(\beta, z_i)| = \infty.$
  - If  $g(\beta, z_i)$  is differentiable in  $\beta$ , then  $\hat{\beta}$  satisfies the Normal Equations obtained by taking partial derivatives of  $\rho(X, \beta) = |Y \mu|^2 = \sum_{i=1}^{n} [Y_i g(\beta, z_i)]^2$  and solving:

$$rac{\partial 
ho(X,eta)}{\partial eta_j} = 0$$

- 4 同 ト 4 ヨ ト 4 ヨ ト

$$ho(X, eta) = |Y - \mu|^2 = \sum_{i=1}^{n} [Y_i - g(\beta, z_i)]^2$$

Solve:



#### Methods of Estimation I

Minimum Contrast Estimates Least Squares and Weighted Least Squares Gauss-Markov Theorem Generalized Least Squares (GLS) Maximum Likelihood

• Linear case:  $g(\beta, z_i) = \sum_{i=1}^d z_{ij}\beta_i = \mathbf{z}_i^T \boldsymbol{\beta}$  $\frac{\partial \rho(X,\beta)}{\partial \beta_i} = 0$  $\sum_{i=1}^{\cdots} \frac{\partial g(\beta, z_i)}{\partial \beta_j} Y_i - \sum_{i=1}^{''} \frac{\partial g(\beta, z_i)}{\partial \beta_j} g(\beta, z_i) =$  $\sum_{i=1}^{n} z_{ij} Y_i - \sum_{i=1}^{n} z_{i,j} (\mathbf{z}_i^{\mathsf{T}} \boldsymbol{\beta}) = 0$  $\sum_{i=1}^{n} z_{ij} Y_i - \sum_{\substack{k=1 \ D \ D}}^{d} \sum_{\substack{i=1 \ D \ D}}^{n} z_{i,j} z_{i,k} \beta_k = 0, \quad j = 1, \dots, d$  $\mathbf{Z}_D^T \mathbf{Y} - \mathbf{Z}_D^T \mathbf{Z}_D \beta = 0$ 

where  $\mathbf{Z}_D$  is the  $(n \times d)$  design matrix with (i, j) element  $z_{i,j}$ 

#### Note:

- Least Squares exemplifies *minimum contrast* and *estimating equation* methodology.
- Distribution assumptions are not necessary to motivate the estimate as a mathematical approximation.

### Method of Moments

### **Method of Moments**

• 
$$X_1, \ldots, X_n$$
 iid  $X \sim P_{\theta}, \theta \in \mathbb{R}^d$ .  
•  $\mu_1(\theta), \mu_2(\theta), \ldots, \mu_d(\theta)$ :  
 $\mu_j(\theta) = \mu_j = E[X^j \mid \theta]$  the *j*th moment of *X*.

• Sample moments:

$$\hat{\mu}_j = \prod_{i=1}^n X_i^j$$
,  $j = 1, \dots, d$ .

• Method of Moments: Solve for  $\theta$  in the system of equations

$$\begin{array}{rcl} \mu_1(\theta) &=& \hat{\mu}_1 \\ \mu_2(\theta) &=& \hat{\mu}_2 \\ \vdots && \vdots \\ \mu_d(\theta) &=& \hat{\mu}_d \end{array}$$

#### Note: .

- $\theta$  must be identifiable
- Existence of  $\mu_j$ :  $\lim_{n \to \infty} \hat{\mu}_j = \mu_j$  with  $|\mu_j| < \infty$ .
- If  $q(\theta) = h(\mu_1, \dots, \mu_d)$ , then the Method-of-Moments Estimate of  $q(\theta)$  is  $\hat{q}(\theta) = h(\hat{\mu}_1, \dots, \hat{\mu}_d)$ .
- The MOM estimate of θ may not be unique! (See Problem 2.1.11)

# Plug-In and Extension Principles

### **Frequency Plug-In**

- Multinomial Sample:  $X_1, \ldots, X_n$  with K values  $v_1, \ldots, v_K$  $P(X_i = v_j) = p_j \ j = 1, \ldots, K$
- Plug in estimates:  $\hat{p}_j = N_j/n$  where  $N_j = count(\{i : X_i = v_j\})$
- Apply to any function  $q(p_1, \ldots, p_K)$ :  $\hat{q} = q(\hat{p}_1, \ldots, \hat{p}_K)$
- Equivalent to substituting the true distribution function  $P_{\theta}(t) = P(X \leq t \mid \theta)$

underlying an iid sample with the empirical distribution function:

$$\hat{P}(t) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\{x_i \le t\}$$

 $\hat{P}$  is an estimate of P, and  $\nu(\hat{P})$  is an estimate of  $\nu(P)$ .

• Example:  $\alpha$ th population quantile  $\nu_{\alpha}(P) = \frac{1}{2}[F^{-1}(\alpha) + F_U^{-1}(\alpha)], \text{ with } 0 < \alpha < 1:$ 

where

$$F^{-1}(\alpha) = \inf \{ x : F(x) \ge \alpha \}$$
  
$$F^{-1}_{U}(\alpha) = \sup \{ x : F(x) \le \alpha \}$$

The plug-in estimate is

$$\hat{\nu}_{\alpha}(P) = \nu_{\alpha}(\hat{P}) = \frac{1}{2}[\hat{F}^{-1}(\alpha) + \hat{F}_{U}^{-1}(\alpha)].$$

• Example: Method of Moments Estimates of *j*th Moment

$$\nu(P) = \mu_j = E(X^j)$$
$$\hat{\nu}(P) = \hat{\mu}_j = \nu(\hat{P}) = \frac{1}{n} \sum_{i=1}^n x_i^j$$

### **Extension Principle**

- Objective: estimate  $q(\theta)$ , a function of  $\theta$ .
- Assume  $q(\theta) = h(p_1(\theta), \dots, p_K(\theta))$ , where h() is continuous.
- The extension principle estimates  $q(\theta)$  with

$$\hat{q}(\theta) = h(\hat{p}_1, \ldots, \hat{p}_K)$$

● h() may not be unique: what h() is optimal? ♂ + = + + = + = - ? <

### Notes on Method-of-Moments/Frequency Plug-In Estimates

- Easy to compute
- Valuable as initial estimates in iterative algorithms.
- Consistent estimates (close to true parameter in large samples).
- Best Frequency Plug-In Estimates are Maximum-Likelihood Estimates.
- In some cases, MOM estimators are foolish (See Example 2.1.7).

Least Squares and Weighted Least Squares





### Methods of Estimation I

Minimum Contrast Estimates

#### Least Squares and Weighted Least Squares

- Gauss-Markov Theorem
- Generalized Least Squares (GLS)
- Maximum Likelihood

・ 同 ト ・ ヨ ト ・ ヨ ト

## Least Squares

### General Model: Only Y Random

• 
$$X = \{(z_i, Y_i) : 1 \le i \le n\}$$
, where  
 $Y_1, \ldots, Y_n$  are independent.  
 $z_1, \ldots, z_n \in R^d$  are fixed, non-random.

• For cases i = 1, ..., n  $Y_i = \mu(z_i) + \epsilon_i$ , where  $\mu(z) = g(\beta, z), \beta \in \mathbb{R}^d$ .  $\epsilon_i$  are independent with  $E[\epsilon_i] = 0$ .

- The Least-Squares Contrast function is  $\rho(X,\beta) = |Y - \mu|^2 = \sum_{i=1}^{n} [Y_i - g(\beta, z_i)]^2.$
- $\beta$  parametrizes the model and we can write the discrepancy function

$$D(\beta_0,\beta) = E_{\beta_0}\rho(X,\beta)$$

Methods of Estimation I

Minimum Contrast Estimates Least Squares and Weighted Least Squares Gauss-Markov Theorem Generalized Least Squares (GLS) Maximum Likelihood

# Least Squares: Only Y Random

**Contrast Function:** 

 $\rho(X,\beta) = |Y - \mu|^2 = \sum_{i=1}^{n} [Y_i - g(\beta, z_i)]^2.$ 

**Discrepancy Function:** 

$$\begin{array}{rcl} \mathcal{D}(\beta_0,\beta) &=& E_{\beta_0}\rho(X,\beta) \\ &=& \sum_{i=1}^n Var(\epsilon_i) + \sum_{i=1}^n [g(\beta_0,z_i) - g(\beta,z_i)]^2]. \end{array}$$

 The model is semiparametric with unknown parameter β and unknown (joint) distribution P<sub>ε</sub> of ε = (ε<sub>1</sub>,..., ε<sub>n</sub>).

#### **Gauss-Markov Assumptions**

• Assume that the distribution of  $\epsilon$  satisfy:

$$E(\epsilon_i) = 0$$
  

$$Var(\epsilon_i) = \sigma^2$$
  

$$Cov(\epsilon_i, \epsilon_j) = 0 \text{ for } i \neq j$$

### General Model: (Y,Z) Both Random

- $(Y_1, Z_1), \ldots, (Y_n, Z_n)$  are i.i.d. as  $X = (Y, Z) \sim P$
- Define  $\mu(z) = E[Y | Z = z] = g(\beta, z)$ , where  $g(\cdot, \cdot)$  is a known function and  $\beta \in R^d$  is unknown parameter
- Given  $Z_i = z_i$ , define  $\epsilon_i = Y_i \mu(z_i)$  for i = 1, ..., n

• Conditioning on the *z<sub>i</sub>* we can write:

 $Y_i = g(\beta, z_i) + \epsilon_i, i = 1, 2, ..., n$ where  $\epsilon = (\epsilon_1, ..., \epsilon_n)$  has (joint) distribution  $P_{\epsilon}$ 

- The Least-Squares Estimate of β̂ is the plug-in estimate β(P̂), where P̂ is the empirical distribution for the sample {(Z<sub>i</sub>, Y<sub>i</sub>), i = 1,..., n}
- The function  $g(\beta, z)$  can be linear in  $\beta$  and z or nonlinear.
- Closed-form solutions exist for  $\hat{\beta}$  when g is linear in  $\beta$ .

Gauss-Markov Theorem

# Outline



### 1 Methods of Estimation I

- Minimum Contrast Estimates
- Least Squares and Weighted Least Squares
- Gauss-Markov Theorem
- Generalized Least Squares (GLS)
- Maximum Likelihood

### Gauss-Markov Theorem: Assumptions

Data 
$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$
 and  $\mathbf{X} = \begin{bmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,p} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & x_{n,2} & \cdots & x_{p,n} \end{bmatrix}$ 

follow a linear model satisfying the **Gauss-Markov Assumptions** if **y** is an observation of random vector  $\mathbf{Y} = (Y_1, Y_2, \dots, Y_N)^T$  and

- $E(\mathbf{Y} | \mathbf{X}, \beta) = \mathbf{X}\beta$ , where  $\beta = (\beta_1, \beta_2, \dots, \beta_p)^T$  is the *p*-vector of regression parameters.
- Cov(Y | X, β) = σ<sup>2</sup>I<sub>n</sub>, for some σ<sup>2</sup> > 0.
   I.e., the random variables generating the observations are uncorrelated and have constant variance σ<sup>2</sup> (conditional on X, and β).

## Gauss-Markov Theorem

For known constants  $c_1, c_2, \ldots, c_p, c_{p+1}$ , consider the problem of estimating

 $\theta = c_1\beta_1 + c_2\beta_2 + \cdots + c_p\beta_p + c_{p+1}.$ 

Under the Gauss-Markov assumptions, the estimator

$$\hat{\theta} = c_1 \hat{\beta}_1 + c_2 \hat{\beta}_2 + \cdots + c_p \hat{\beta}_p + c_{p+1},$$

where  $\hat{\beta}_1, \hat{\beta}_2, \dots \hat{\beta}_p$  are the least squares estimates is

### 1) An **Unbiased Estimator** of $\theta$

### 2) A Linear Estimator of $\theta$ , that is

 $\tilde{\theta} = \sum_{i=1}^{n} b_i y_i$ , for some known (given **X**) constants  $b_i$ .

**Theorem:** Under the Gauss-Markov Assumptions, the estimator  $\hat{\theta}$  has the smallest (*Best*) variance among all *Linear Unbiased Estimators* of  $\theta$ , i.e.,  $\hat{\theta}$  is *BLUE*.

### Gauss-Markov Theorem: Proof

**Proof:** Without loss of generality, assume  $c_{p+1} = 0$  and define  $\mathbf{c} = (c_1, c_2, \dots, c_n)^T$ . The Least Squares Estimate of  $\theta = \mathbf{c}^T \boldsymbol{\beta}$  is:  $\hat{\theta} = \mathbf{c}^T \hat{\boldsymbol{\beta}} = \mathbf{c}^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} \equiv \mathbf{d}^T \mathbf{y}$ a linear estimate in **y** given by coefficients  $\mathbf{d} = (d_1, d_2, \dots, d_n)^T$ . Consider an alternative linear estimate of  $\theta$ :  $\tilde{\theta} = \mathbf{b}^T \mathbf{v}$ with fixed coefficients given by  $\mathbf{b} = (b_1, \dots, b_n)^T$ . Define  $\mathbf{f} = \mathbf{b} - \mathbf{d}$  and note that  $\tilde{\theta} = \mathbf{b}^T \mathbf{v} = (\mathbf{d} + \mathbf{f})^T \mathbf{v} = \hat{\theta} + \mathbf{f}^T \mathbf{v}$ • If  $\hat{\theta}$  is unbiased then because  $\hat{\theta}$  is unbiased  $0 = E(\mathbf{f}^T \mathbf{y}) = \mathbf{f}^T E(\mathbf{y}) = \mathbf{f}^T (\mathbf{X} \boldsymbol{\beta})$  for all  $\boldsymbol{\beta} \in R^p$  $\implies$  **f** is orthogonal to column space of **X**  $\implies$  **f** is orthogonal to **d** = **X**(**X**<sup>T</sup>**X**)<sup>-1</sup>**c** 

< 4 ₽ > < 3

### If $\tilde{\theta}$ is unbiased then

 $\bullet\,$  The orthogonality of f to d implies

$$Var(\tilde{\theta}) = Var(\mathbf{b}^{\mathsf{T}}\mathbf{y}) = Var(\mathbf{d}^{\mathsf{T}}\mathbf{y} + \mathbf{f}^{\mathsf{T}}\mathbf{y})$$
  

$$= Var(\mathbf{d}^{\mathsf{T}}\mathbf{y}) + Var(\mathbf{f}^{\mathsf{T}}\mathbf{y}) + 2Cov(\mathbf{d}^{\mathsf{T}}\mathbf{y}, \mathbf{f}^{\mathsf{T}}\mathbf{y})$$
  

$$= Var(\hat{\theta}) + Var(\mathbf{f}^{\mathsf{T}}\mathbf{y}) + 2\mathbf{d}^{\mathsf{T}}Cov(\mathbf{y})\mathbf{f}$$
  

$$= Var(\hat{\theta}) + Var(\mathbf{f}^{\mathsf{T}}\mathbf{y}) + 2\mathbf{d}^{\mathsf{T}}(\sigma^{2}\mathbf{l}_{n})\mathbf{f}$$
  

$$= Var(\hat{\theta}) + Var(\mathbf{f}^{\mathsf{T}}\mathbf{y}) + 2\sigma^{2}\mathbf{d}^{\mathsf{T}}\mathbf{f}$$
  

$$= Var(\hat{\theta}) + Var(\mathbf{f}^{\mathsf{T}}\mathbf{y}) + 2\sigma^{2} \times 0$$
  

$$\geq Var(\hat{\theta})$$

Generalized Least Squares (GLS)

A D





### 1 Methods of Estimation I

- Minimum Contrast Estimates
- Least Squares and Weighted Least Squares
- Gauss-Markov Theorem
- Generalized Least Squares (GLS)
- Maximum Likelihood

# Generalized Least Squares (GLS) Estimates

Consider generalizing the Gauss-Markov assumptions for the linear regression model to

 $\mathbf{Y} = \mathbf{X} \boldsymbol{eta} + \boldsymbol{\epsilon}$ 

where the random *n*-vector  $\boldsymbol{\epsilon}$ :  $E[\boldsymbol{\epsilon}] = \mathbf{0}_n$  and  $E[\boldsymbol{\epsilon}\boldsymbol{\epsilon}^T] = \sigma^2 \Sigma$ .

- $\bullet \ \sigma^2$  is an unknown scale parameter
- Σ is a known (n × n) positive definite matrix specifying the relative variances and correlations of the component observations.

Transform the data  $(\mathbf{Y}, \mathbf{X})$  to  $\mathbf{Y}^* = \Sigma^{-\frac{1}{2}} \mathbf{Y}$  and  $\mathbf{X}^* = \Sigma^{-\frac{1}{2}} \mathbf{X}$  and the model becomes

 $\mathbf{Y}^* = \mathbf{X}^* \boldsymbol{\beta} + \boldsymbol{\epsilon}^*, \text{ where } E[\boldsymbol{\epsilon}^*] = \mathbf{0}_n \text{ and } E[\boldsymbol{\epsilon}^*(\boldsymbol{\epsilon}^*)^T] = \sigma^2 \mathbf{I}_n$ By the Gauss-Markov Theorem, the BLUE ('GLS') of  $\boldsymbol{\beta}$  is  $\hat{\boldsymbol{\beta}} = [(\mathbf{X}^*)^T (\mathbf{X}^*)]^{-1} (\mathbf{X}^*)^T (\mathbf{Y}^*) = [\mathbf{X}^T \boldsymbol{\Sigma}^{-1} \mathbf{X}]^{-1} (\mathbf{X}^T \boldsymbol{\Sigma}^{-1} \mathbf{Y})$ 

Maximum Likelihood

A D

# Outline



### 1 Methods of Estimation I

- Minimum Contrast Estimates
- Least Squares and Weighted Least Squares
- Gauss-Markov Theorem
- Generalized Least Squares (GLS)
- Maximum Likelihood

Methods of Estimation I

Minimum Contrast Estimates Least Squares and Weighted Least Squares Gauss-Markov Theorem Generalized Least Squares (GLS) Maximum Likelihood

# Maximum Likelihood Estimation

- $X \sim P_{\theta}, \theta \in \Theta$  with density or pmf function  $p(x \mid \theta)$ .
- Given an observation X = x, define the likelihood function  $L_x(\theta) = p(x \mid \theta)$ :
  - a mapping:  $\Theta \rightarrow R$ .
- $\hat{\theta}_{ML} = \hat{\theta}_{ML}(x)$ : the Maximum-Likelihood Estimate of  $\theta$  is the value making  $L_x(\cdot)$  a maximum

$$heta$$
 is the MLE if  $L_x(\hat{ heta}) = \max_{ heta \in \Theta} L_x( heta).$ 

- The MLE  $\hat{\theta}_{ML}(x)$  identifies the distribution making x "most likely"
- The MLE coincides with the mode of the Posterior Distribution if the Prior Distribution on Θ is uniform:

# Maximum Likelihood

#### Examples

- Example 2.2.4: Normal Distribution with Known Variance
- Example 2.2.5: Size of a Population  $X_1, \ldots, X_n$  are iid  $U\{1, 2, \ldots, \theta\}$ , with  $\theta \in \{1, 2, \ldots\}$ . For  $x = (x_1, \ldots, x_n)$ ,  $L_x(\theta) = \prod_{i=1}^n \theta^{-1} \mathbf{1} (1 \le x_i \le \theta)$   $= \theta^{-n} \times \mathbf{1} (\max(x_1, \ldots, x_n)) \le \theta)$  $= \begin{cases} 0 & \text{, if } \theta = 0, 1, \ldots, \max(x_i) - 1 \\ \theta^{-n} & \text{if } \theta \ge \max(x_i) \end{cases}$

### Maximum Likelihood As a Minimum Contrast Method

- Define  $l_x(\theta) = \log L_x(\theta) = \log p(x \mid \theta)$
- Because  $-log(\cdot)$  is monotone decreasing,  $\hat{\theta}_{ML}(x)$  minimizes  $-l_x(\theta)$
- For an iid sample  $X = (X_1, ..., X_n)$  with densities  $p(x_i | \theta)$ ,  $I_X(\theta) = \log p(x_1, ..., x_n | theta)$   $= \log [\prod_{i=1}^n p(x_i | \theta)]$  $= \sum_{i=1}^n \log p(x_i | \theta)$
- As a minimum contrast function ,

$$\label{eq:rho} \begin{split} \rho(X,\theta) = & -l_X(\theta) \\ \text{yields the MLE } \hat{\theta}_{ML}(x) \end{split}$$

• The discrepancy function corresonding to the contrast function  $\rho(X, \theta)$  is  $D(\theta_0, \theta) = E[\rho(X, \theta) \mid \theta_0] = -E[\log p(x \mid \theta) \mid \theta_0]$  • Suppose that  $\theta = \theta_0$  uniquely minimizes  $D(\theta_0, \cdot)$ . Then

$$D(\theta_0, \theta) - D(\theta_0, \theta_0) = -E[\log p(x \mid \theta) \mid \theta_0] - (-E[\log p(x \mid \theta_0) \mid \theta_0]]$$
  
=  $-E[\log \frac{p(x \mid \theta)}{p(x \mid \theta_0)} \mid \theta_0]$   
> 0, unless  $\theta = \theta_0$ .

This difference is the Kullback-Leibler Information Divergence between distribution  $P_{\theta_0}$  and  $P_{\theta}$ :

$$K(P_{\theta_0}, P_{\theta}) = -E[log(\frac{p(x|\theta)}{p(x|\theta_0)}) | \theta_0]$$
  
Lemma 2.2.1 (Shannon, 1948) The mutual entropy  $K(P_{\theta_0}, P_{\theta})$   
is always well defined and

- $K(P_{\theta_0}, P_{\theta}) \geq 0$
- Equality holds if and only if {x : p(x | θ) = p(x | θ<sub>0</sub>)} has probability 1 under both P<sub>θ0</sub> and P<sub>θ</sub>.

**Proof** Apply Jensen's Inequality (B.9.3)

### Likelihood Equations

Suppose:

- $X \sim P_{ heta}$ , with  $heta \in \Theta$ , an open parameter space
- the likelihood function  $I_X(\theta)$  is differentiable in  $\theta$
- $\hat{\theta}_{ML}(x)$  exists

Then:  $\hat{\theta}_{ML}(x)$  must satisfy the **Likelihood Equation(s)**  $\nabla_{\theta} l_X(\theta) = 0.$ 

### Important Cases

For independent  $X_i$  with densities/pmfs  $p_i(x_i | \theta)$ ,  $\bigtriangledown_{\theta} l_X(\theta) = \sum_{i=1}^n \bigtriangledown_{\theta} \log p_i(x_i | \theta) = 0$ NOTE:  $p_i(\cdot | \theta)$  may vary with *i*.

#### Examples

- Hardy-Weinberg Proportions (Example 2.2.6)
- Queues: Poisson Process Models (Exponential Arrival Times and Poisson Counts) (Example 2.2.7)
- Multinomial Trials (Example 2.2.8)
- Normal Regression Models (Example 2.2.9).

18.655 Mathematical Statistics Spring 2016

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.