Methods of Estimation

MIT 18.655
Dr. Kempthorne
Spring 2016

Outline

(1) Methods of Estimation I

- Minimum Contrast Estimates
- Least Squares and Weighted Least Squares
- Gauss-Markov Theorem
- Generalized Least Squares (GLS)
- Maximum Likelihood

Minimum Contrast Estimates

$X \in \mathcal{X}, X \sim P \in \mathcal{P}=\left\{P_{\theta}, \theta \in \Theta\right\}$.
Problem: Finding a function $\hat{\theta}(X)$ which is "close" to θ.
Consider

$$
\rho: \mathcal{X} \times \Theta \rightarrow R
$$

and define $\mathcal{D}\left(\theta_{0}, \theta\right)$ to measure the discrepancy between θ and the true value θ_{0}.

$$
\mathcal{D}\left(\theta_{0}, \theta\right)=E_{\theta_{0}} \rho(X, \theta)
$$

As a discrepancy measure, \mathcal{D} makes sense if the value of θ minimizing the function is $\theta=\theta_{0}$.
If $P_{\theta_{0}}$ were true, and we knew $D\left(\theta_{0}, \theta\right)$, we could obtain θ_{0} as the minimizer.
Instead of observing $D\left(\theta_{0}, \theta\right)$, we observe $\rho(X, \theta)$.

- $\rho(\cdot, \cdot)$ is a contrast function
- $\hat{\theta}(X)$ is a minimum-contrast estimate.

The definition extends to

- Euclidean $\Theta \subset R^{d}$.
- θ_{0} an interior point of Θ.
- Smooth mapping: $\theta \rightarrow D\left(\theta_{0}, \theta\right)$.
- $\theta=\theta_{0}$ solves

$$
\nabla_{\theta} D\left(\theta_{2}, \theta\right)=0
$$

where $\nabla_{\theta}=\left(\frac{\partial}{\partial \theta_{1}}, \ldots, \frac{\partial}{\partial \theta_{d}}\right)^{T}$

- Substitute $\rho(X, \theta)$ for $D\left(\theta_{0}, \theta\right)$ and solve

$$
\nabla_{\theta} \rho(X, \theta)=0 \text { at } \theta=\hat{\theta}
$$

Estimating Equations:

- $\psi: \mathcal{X} \times R^{d} \rightarrow R^{d}$, where $\psi=\left(\psi_{1}, \ldots, \psi_{d}\right)^{T}$.
- For every $\theta_{0} \in \Theta$, the expectation of Ψ given $P_{\theta_{0}}$ has a unique solution

$$
\begin{aligned}
& \quad V\left(\theta_{0}, \theta\right)=E_{\theta_{0}}[\Psi(X, \theta)]=0 \\
& \text { at } \theta=\theta_{0} .
\end{aligned}
$$

Example 2.1.1 Least Squares.

- $\mu(z)=g(\beta, z), \beta \in R^{d}$.
- $x=\left\{\left(z_{i}, Y_{i}\right): 1 \leq i \leq n\right\}$, where Y_{1}, \ldots, Y_{n} are independent.
- Define $\rho(X, \beta)=|Y-\mu|^{2}=\sum_{i=1}^{n}\left[Y_{i}-g\left(\beta, z_{i}\right)\right]^{2}$.
- Consider $Y_{i}=\mu\left(z_{i}\right)+\epsilon_{i}$, where $\mu\left(z_{i}\right)=g\left(\beta, z_{i}\right)$ and the ϵ_{i} are iid $N\left(0, \sigma_{0}^{2}\right)$.
Then, β parametrizes the model and we can write:

$$
\begin{aligned}
D\left(\beta_{0}, \beta\right) & =E_{\beta_{0}} \rho(X, \beta) \\
& \left.=n \sigma_{0}^{2}+\sum_{i=1}^{n}\left[g\left(\beta_{0}, z_{i}\right)-g\left(\beta, z_{i}\right)\right]^{2}\right] .
\end{aligned}
$$

This is minimized by $\beta=\beta_{0}$ and uniquely so iff β identifiable.

- The least-squares estimate $\hat{\beta}$ minimizes $\rho(X, \beta)$. Conditions to guarantee existence of $\hat{\beta}$:
- Continuity of $g\left(\cdot, z_{i}\right)$.
- Minimum of $\rho(X, \cdot)$ existing on compact set $\{\beta\}$

$$
\text { e.g., } \lim _{|\beta| \rightarrow \infty}\left|g\left(\beta, z_{i}\right)\right|=\infty \text {. }
$$

- If $g\left(\beta, z_{i}\right)$ is differentiable in β, then $\hat{\beta}$ satisfies the Normal Equations obtained by taking partial derivatives of $\rho(X, \beta)=|Y-\mu|^{2}=\sum_{i=1}^{n}\left[Y_{i}-g\left(\beta, z_{i}\right)\right]^{2}$ and solving:

$$
\frac{\partial \rho(X, \beta)}{\partial \beta_{j}}=0
$$

$$
\rho(X, \beta)=|Y-\mu|^{2}=\sum_{i=1}^{n}\left[Y_{i}-g\left(\beta, z_{i}\right)\right]^{2}
$$

Solve:

$$
\begin{array}{ll}
\frac{\partial \rho(X, \beta)}{\partial \beta_{j}} & =0 \\
\sum_{i=1}^{n} 2\left[Y_{i}-g\left(\beta, z_{i}\right)\right] \frac{\partial g\left(\beta, z_{i}\right)}{\partial \beta_{j}}(-1) & =0 \\
\sum_{i=1}^{n} \frac{\partial g\left(\beta, z_{i}\right)}{\partial \beta_{j}} Y_{i}-\sum_{i=1}^{n} \frac{\partial g\left(\beta, z_{i}\right)}{\partial \beta_{j}} g\left(\beta, z_{i}\right) & =0
\end{array}
$$

- Linear case:

$$
\left.\begin{array}{rl}
g\left(\beta, z_{i}\right)=\sum_{j=1}^{d} z_{i j} \beta_{j}=\mathbf{z}_{i}^{T} \boldsymbol{\beta} & \frac{\partial \rho(X, \beta)}{\partial \beta_{j}}
\end{array}=0 \quad 0 \quad 0 \quad 0 \quad \sum_{i=1}^{n} \frac{\partial g\left(\beta, z_{i}\right)}{\partial \beta_{j}} Y_{i}-\sum_{i=1}^{n} \frac{\partial g\left(\beta, z_{i}\right)}{\partial \beta_{j}} g\left(\beta, z_{i}\right)=0, j=1, \ldots, d\right)
$$

where \mathbf{Z}_{D} is the $(n \times d)$ design matrix with (i, j) element $z_{i, j}$

Note:

- Least Squares exemplifies minimum contrast and estimating equation methodology.
- Distribution assumptions are not necessary to motivate the estimate as a mathematical approximation.

Method of Moments

Method of Moments

- X_{1}, \ldots, X_{n} iid $X \sim P_{\theta}, \theta \in R^{d}$.
- $\mu_{1}(\theta), \mu_{2}(\theta), \ldots, \mu_{d}(\theta)$:

$$
\mu_{j}(\theta)=\mu_{j}=E\left[X^{j} \mid \theta\right] \text { the } j \text { th moment of } X
$$

- Sample moments:

$$
\hat{\mu}_{j}=X_{i=1}^{j}, j=1, \ldots, d
$$

- Method of Moments: Solve for θ in the system of equations

$$
\begin{aligned}
& \mu_{1}(\theta)=\hat{\mu}_{1} \\
& \mu_{2}(\theta)=\hat{\mu}_{2} \\
& \vdots \\
& \mu_{d}(\theta)=\hat{\mu}_{d}
\end{aligned}
$$

```
Least Squares and Weighted Least Squares
Gauss-Markov Theorem
Generalized Least Squares (GLS)
Maximum Likelihood
```


Note:

- θ must be identifiable
- Existence of $\mu_{j}: \lim _{n \rightarrow \infty} \hat{\mu}_{j}=\mu_{j}$ with $\left|\mu_{j}\right|<\infty$.
- If $q(\theta)=h\left(\mu_{1}, \ldots, \mu_{d}\right)$, then the Method-of-Moments Estimate of $q(\theta)$ is

$$
\hat{q}(\theta)=h\left(\hat{\mu}_{1}, \ldots, \hat{\mu}_{d}\right) .
$$

- The MOM estimate of θ may not be unique! (See Problem 2.1.11)

Plug-In and Extension Principles

Frequency Plug-In

- Multinomial Sample: X_{1}, \ldots, X_{n} with K values v_{1}, \ldots, v_{K}

$$
P\left(X_{i}=v_{j}\right)=p_{j} j=1, \ldots, K
$$

- Plug in estimates: $\hat{p}_{j}=N_{j} / n$ where $N_{j}=\operatorname{count}\left(\left\{i: X_{i}=v_{j}\right\}\right)$
- Apply to any function $q\left(p_{1}, \ldots, p_{K}\right)$:

$$
\hat{q}=q\left(\hat{p}_{1}, \ldots, \hat{p}_{K}\right)
$$

- Equivalent to substituting the true distribution function

$$
P_{\theta}(t)=P(X \leq t \mid \theta)
$$

underlying an iid sample with the empirical distribution function:

$$
\hat{P}(t)=\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\left\{x_{i} \leq t\right\}
$$

\hat{P} is an estimate of P, and $\nu(\hat{P})$ is an estimate of $\nu(P)$.

- Example: α th population quantile

$$
\nu_{\alpha}(P)=\frac{1}{2}\left[F^{-1}(\alpha)+F_{U}^{-1}(\alpha)\right], \text { with } 0<\alpha<1:
$$

where

$$
\begin{aligned}
& F^{-1}(\alpha)=\inf \{x: F(x) \geq \alpha\} \\
& F_{U}^{-1}(\alpha)=\sup \{x: F(x) \leq \alpha\}
\end{aligned}
$$

The plug-in estimate is

$$
\hat{\nu}_{\alpha}(P)=\nu_{\alpha}(\hat{P})=\frac{1}{2}\left[\hat{F}^{-1}(\alpha)+\hat{F}_{U}^{-1}(\alpha)\right] .
$$

- Example: Method of Moments Estimates of jth Moment

$$
\begin{aligned}
& \nu(P)=\mu_{j}=E\left(X^{j}\right) \\
& \hat{\nu}(P)=\hat{\mu}_{j}=\nu(\hat{P})=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{j}
\end{aligned}
$$

Extension Principle

- Objective: estimate $q(\theta)$, a function of θ.
- Assume $q(\theta)=h\left(p_{1}(\theta), \ldots, p_{K}(\theta)\right)$, where $h()$ is continuous.
- The extension principle estimates $q(\theta)$ with

$$
\hat{q}(\theta)=h\left(\hat{p}_{1}, \ldots, \hat{p}_{K}\right)
$$

- $h()$ may not be unique: what $h()$ is optimal?

Notes on Method-of-Moments/Frequency Plug-In Estimates

- Easy to compute
- Valuable as initial estimates in iterative algorithms.
- Consistent estimates (close to true parameter in large samples).
- Best Frequency Plug-In Estimates are Maximum-Likelihood Estimates.
- In some cases, MOM estimators are foolish (See Example 2.1.7).

Outline

(1) Methods of Estimation I

- Minimum Contrast Estimates
- Least Squares and Weighted Least Squares
- Gauss-Markov Theorem
- Generalized Least Squares (GLS)
- Maximum Likelihood

Least Squares

General Model: Only Y Random

- $X=\left\{\left(z_{i}, Y_{i}\right): 1 \leq i \leq n\right\}$, where
Y_{1}, \ldots, Y_{n} are independent.
$z_{1}, \ldots, z_{n} \in R^{d}$ are fixed, non-random.
- For cases $i=1, \ldots, n$

$$
\begin{aligned}
& Y_{i}=\mu\left(z_{i}\right)+\epsilon_{i}, \text { where } \\
& \quad \mu(z)=g(\beta, z), \beta \in R^{d} .
\end{aligned}
$$

$$
\epsilon_{i} \text { are independent with } E\left[\epsilon_{i}\right]=0
$$

- The Least-Squares Contrast function is

$$
\rho(X, \beta)=|Y-\mu|^{2}=\sum_{i=1}^{n}\left[Y_{i}-g\left(\beta, z_{i}\right)\right]^{2}
$$

- β parametrizes the model and we can write the discrepancy function

$$
D\left(\beta_{0}, \beta\right)=E_{\beta_{0}} \rho(X, \beta)
$$

Least Squares: Only Y Random

Contrast Function:

$$
\rho(X, \beta)=|Y-\mu|^{2}=\sum_{i=1}^{n}\left[Y_{i}-g\left(\beta, z_{i}\right)\right]^{2}
$$

Discrepancy Function:

$$
\begin{aligned}
D\left(\beta_{0}, \beta\right) & =E_{\beta_{0}} \rho(X, \beta) \\
& \left.=\sum_{i=1}^{n} \operatorname{Var}\left(\epsilon_{i}\right)+\sum_{i=1}^{n}\left[g\left(\beta_{0}, z_{i}\right)-g\left(\beta, z_{i}\right)\right]^{2}\right] .
\end{aligned}
$$

- The model is semiparametric with unknown parameter β and unknown (joint) distribution P_{ϵ} of $\boldsymbol{\epsilon}=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$.

Gauss-Markov Assumptions

- Assume that the distribution of $\boldsymbol{\epsilon}$ satisfy:

$$
\begin{array}{ll}
E\left(\epsilon_{i}\right) & =0 \\
\operatorname{Var}\left(\epsilon_{i}\right) & =\sigma^{2} \\
\operatorname{Cov}\left(\epsilon_{i}, \epsilon_{j}\right) & =0 \text { for } i \neq j
\end{array}
$$

General Model: (Y,Z) Both Random

- $\left(Y_{1}, Z_{1}\right), \ldots,\left(Y_{n}, Z_{n}\right)$ are i.i.d. as $X=(Y, Z) \sim P$
- Define $\mu(z)=E[Y \mid Z=z]=g(\beta, z)$, where
$g(\cdot, \cdot)$ is a known function and $\beta \in R^{d}$ is unknown parameter
- Given $Z_{i}=z_{i}$, define $\epsilon_{i}=Y_{i}-\mu\left(z_{i}\right)$ for $i=1, \ldots, n$
- Conditioning on the z_{i} we can write:

$$
Y_{i}=g\left(\beta, z_{i}\right)+\epsilon_{i}, i=1,2, \ldots, n
$$

where $\boldsymbol{\epsilon}=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$ has (joint) distribution $P_{\boldsymbol{\epsilon}}$

- The Least-Squares Estimate of $\hat{\beta}$ is the plug-in estimate $\beta(\hat{P})$, where \hat{P} is the empirical distribution for the sample $\left\{\left(Z_{i}, Y_{i}\right), i=1, \ldots, n\right\}$
- The function $g(\beta, z)$ can be linear in β and z or nonlinear.
- Closed-form solutions exist for $\hat{\beta}$ when g is linear in β.

Outline

(1) Methods of Estimation I

- Minimum Contrast Estimates
- Least Squares and Weighted Least Squares
- Gauss-Markov Theorem
- Generalized Least Squares (GLS)
- Maximum Likelihood

Gauss-Markov Theorem: Assumptions

Data $\mathbf{y}=\left(\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right)$ and $\mathbf{X}=\left[\begin{array}{cccc}x_{1,1} & x_{1,2} & \cdots & x_{1, p} \\ x_{2,1} & x_{2,2} & \cdots & x_{2, p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n, 1} & x_{n, 2} & \cdots & x_{p, n}\end{array}\right]$
follow a linear model satisfying the Gauss-Markov Assumptions if \mathbf{y} is an observation of random vector $\mathbf{Y}=\left(Y_{1}, Y_{2}, \ldots Y_{N}\right)^{T}$ and

- $E(\mathbf{Y} \mid \mathbf{X}, \boldsymbol{\beta})=\mathbf{X} \boldsymbol{\beta}$, where $\boldsymbol{\beta}=\left(\beta_{1}, \beta_{2}, \ldots \beta_{p}\right)^{T}$ is the p-vector of regression parameters.
- $\operatorname{Cov}(\mathbf{Y} \mid \mathbf{X}, \boldsymbol{\beta})=\sigma^{2} \mathbf{I}_{n}$, for some $\sigma^{2}>0$.
l.e., the random variables generating the observations are uncorrelated and have constant variance σ^{2} (conditional on \mathbf{X}, and β).

Gauss-Markov Theorem

For known constants $c_{1}, c_{2}, \ldots, c_{p}, c_{p+1}$, consider the problem of estimating

$$
\theta=c_{1} \beta_{1}+c_{2} \beta_{2}+\cdots c_{p} \beta_{p}+c_{p+1} .
$$

Under the Gauss-Markov assumptions, the estimator

$$
\hat{\theta}=c_{1} \hat{\beta}_{1}+c_{2} \hat{\beta}_{2}+\cdots c_{p} \hat{\beta}_{p}+c_{p+1}
$$

where $\hat{\beta}_{1}, \hat{\beta}_{2}, \ldots \hat{\beta}_{p}$ are the least squares estimates is

1) An Unbiased Estimator of θ
2) A Linear Estimator of θ, that is

$$
\tilde{\theta}=\sum_{i=1}^{n} b_{i} y_{i}, \text { for some known (given } \mathbf{X} \text {) constants } b_{i} \text {. }
$$

Theorem: Under the Gauss-Markov Assumptions, the estimator $\hat{\theta}$ has the smallest (Best) variance among all Linear Unbiased Estimators of θ, i.e., $\hat{\theta}$ is $B L U E$.

Gauss-Markov Theorem: Proof

Proof: Without loss of generality, assume $c_{p+1}=0$ and define $\mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{p}\right)^{T}$.
The Least Squares Estimate of $\theta=\mathbf{c}^{\top} \boldsymbol{\beta}$ is:

$$
\hat{\theta}=\mathbf{c}^{T} \hat{\boldsymbol{\beta}}=\mathbf{c}^{T}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y} \equiv \mathbf{d}^{T} \mathbf{y}
$$

a linear estimate in \mathbf{y} given by coefficients $\mathbf{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)^{T}$.
Consider an alternative linear estimate of θ :

$$
\tilde{\theta}=\mathbf{b}^{T} y
$$

with fixed coefficients given by $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right)^{T}$.
Define $\mathbf{f}=\mathbf{b}-\mathbf{d}$ and note that

$$
\tilde{\theta}=\mathbf{b}^{T} \mathbf{y}=(\mathbf{d}+\mathbf{f})^{T} \mathbf{y}=\hat{\theta}+\mathbf{f}^{T} \mathbf{y}
$$

- If $\tilde{\theta}$ is unbiased then because $\hat{\theta}$ is unbiased

$$
0=E\left(\mathbf{f}^{T} \mathbf{y}\right)=\mathbf{f}^{T} E(\mathbf{y})=\mathbf{f}^{T}(\mathbf{X} \boldsymbol{\beta}) \text { for all } \boldsymbol{\beta} \in R^{p}
$$

$\Longrightarrow \mathbf{f}$ is orthogonal to column space of \mathbf{X}
$\Longrightarrow \mathbf{f}$ is orthogonal to $\mathbf{d}=\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{c}$

If $\tilde{\theta}$ is unbiased then

- The orthogonality of \mathbf{f} to \mathbf{d} implies

$$
\begin{aligned}
\operatorname{Var}(\tilde{\theta}) & =\operatorname{Var}\left(\mathbf{b}^{T} \mathbf{y}\right)=\operatorname{Var}\left(\mathbf{d}^{T} \mathbf{y}+\mathbf{f}^{T} \mathbf{y}\right) \\
& =\operatorname{Var}\left(\mathbf{d}^{T} \mathbf{y}\right)+\operatorname{Var}\left(\mathbf{f}^{T} \mathbf{y}\right)+2 \operatorname{Cov}\left(\mathbf{d}^{T} \mathbf{y}, \mathbf{f}^{T} \mathbf{y}\right) \\
& =\operatorname{Var}(\hat{\theta})+\operatorname{Var}\left(\mathbf{f}^{T} \mathbf{y}\right)+2 \mathbf{d}^{T} \operatorname{Cov}(\mathbf{y}) \mathbf{f} \\
& =\operatorname{Var}(\hat{\theta})+\operatorname{Var}\left(\mathbf{f}^{T} \mathbf{y}\right)+2 \mathbf{d}^{T}\left(\sigma^{2} \mathbf{I}_{n}\right) \mathbf{f} \\
& =\operatorname{Var}(\hat{\theta})+\operatorname{Var}\left(\mathbf{f}^{T} \mathbf{y}\right)+2 \sigma^{2} \mathbf{d}^{T} \mathbf{f} \\
& =\operatorname{Var}(\hat{\theta})+\operatorname{Var}\left(\mathbf{f}^{T} \mathbf{y}\right)+2 \sigma^{2} \times 0 \\
& \geq \operatorname{Var}(\hat{\theta})
\end{aligned}
$$

Outline

(1) Methods of Estimation I

- Minimum Contrast Estimates
- Least Squares and Weighted Least Squares
- Gauss-Markov Theorem
- Generalized Least Squares (GLS)
- Maximum Likelihood

Generalized Least Squares (GLS) Estimates

Consider generalizing the Gauss-Markov assumptions for the linear regression model to

$$
\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}
$$

where the random n-vector $\boldsymbol{\epsilon}: E[\epsilon]=\mathbf{0}_{n}$ and $E\left[\epsilon \epsilon^{T}\right]=\sigma^{2} \Sigma$.

- σ^{2} is an unknown scale parameter
- Σ is a known ($n \times n$) positive definite matrix specifying the relative variances and correlations of the component observations.
Transform the data (\mathbf{Y}, \mathbf{X}) to $\mathbf{Y}^{*}=\Sigma^{-\frac{1}{2}} \mathbf{Y}$ and $\mathbf{X}^{*}=\Sigma^{-\frac{1}{2}} \mathbf{X}$ and the model becomes

$$
\mathbf{Y}^{*}=\mathbf{X}^{*} \boldsymbol{\beta}+\boldsymbol{\epsilon}^{*}, \text { where } E\left[\epsilon^{*}\right]=\mathbf{0}_{n} \text { and } E\left[\epsilon^{*}\left(\epsilon^{*}\right)^{T}\right]=\sigma^{2} \mathbf{I}_{n}
$$

By the Gauss-Markov Theorem, the BLUE ('GLS') of $\boldsymbol{\beta}$ is

$$
\hat{\beta}=\left[\left(\mathbf{X}^{*}\right)^{T}\left(\mathbf{X}^{*}\right)\right]^{-1}\left(\mathbf{X}^{*}\right)^{T}\left(\mathbf{Y}^{*}\right)=\left[\mathbf{X}^{T} \Sigma^{-1} \mathbf{X}\right]^{-1}\left(\mathbf{X}^{T} \Sigma^{-1} \mathbf{Y}\right)
$$

Outline

(1) Methods of Estimation I

- Minimum Contrast Estimates
- Least Squares and Weighted Least Squares
- Gauss-Markov Theorem
- Generalized Least Squares (GLS)
- Maximum Likelihood

Maximum Likelihood Estimation

- $X \sim P_{\theta}, \theta \in \Theta$ with density or pmf function $p(x \mid \theta)$.
- Given an observation $X=x$, define the likelihood function

$$
L_{x}(\theta)=p(x \mid \theta):
$$

a mapping: $\Theta \rightarrow R$.

- $\hat{\theta}_{M L}=\hat{\theta}_{M L}(x)$: the Maximum-Likelihood Estimate of θ is the value making $L_{x}(\cdot)$ a maximum

$$
\hat{\theta} \text { is the MLE if }
$$

$$
L_{x}(\hat{\theta})=\max _{\theta \in \Theta} L_{x}(\theta)
$$

- The MLE $\hat{\theta}_{M L}(x)$ identifies the distribution making x "most likely"
- The MLE coincides with the mode of the Posterior Distribution if the Prior Distribution on Θ is uniform:

$$
\pi(\theta \mid x) \propto p(x \mid \theta) \pi(\theta) \propto p(x \mid \theta)
$$

Maximum Likelihood

Examples

- Example 2.2.4: Normal Distribution with Known Variance
- Example 2.2.5: Size of a Population

$$
\begin{aligned}
& X_{1}, \ldots, X_{n} \text { are iid } U\{1,2, \ldots, \theta\} \text {, with } \theta \in\{1,2, \ldots\} . \\
& \text { For } x=\left(x_{1}, \ldots, x_{n}\right), \\
& \begin{aligned}
L_{x}(\theta) & =\prod_{i=1}^{n} \theta^{-1} \mathbf{1}\left(1 \leq x_{i} \leq \theta\right) \\
& \left.=\theta^{-n} \times \mathbf{1}\left(\max \left(x_{1}, \ldots, x_{n}\right)\right) \leq \theta\right) \\
& = \begin{cases}0 & \text { if } \theta=0,1, \ldots, \max \left(x_{i}\right)-1 \\
\theta^{-n} & \text { if } \theta \geq \max \left(x_{i}\right)\end{cases}
\end{aligned} .
\end{aligned}
$$

Maximum Likelihood As a Minimum Contrast Method

- Define $I_{x}(\theta)=\log L_{x}(\theta)=\log p(x \mid \theta)$
- Because $-\log (\cdot)$ is monotone decreasing, $\hat{\theta}_{M L}(x)$ minimizes $-I_{x}(\theta)$
- For an iid sample $X=\left(X_{1}, \ldots, X_{n}\right)$ with densities $p\left(x_{i} \mid \theta\right)$,

$$
\begin{aligned}
I_{X}(\theta) & =\log p\left(x_{1}, \ldots, x_{n} \mid \text { theta }\right) \\
& =\log \left[\prod_{i=1}^{n} p\left(x_{i} \mid \theta\right)\right] \\
& =\sum_{i=1}^{n} \log p\left(x_{i} \mid \theta\right)
\end{aligned}
$$

- As a minimum contrast function ,

$$
\rho(X, \theta)=-I_{X}(\theta)
$$

yields the MLE $\hat{\theta}_{M L}(x)$

- The discrepancy function corresonding to the contrast function $\rho(X, \theta)$ is

$$
D\left(\theta_{0}, \theta\right)=E\left[\rho(X, \theta) \mid \theta_{0}\right]=-E\left[\log p(x \mid \theta) \mid \theta_{0}\right]
$$

- Suppose that $\theta=\theta_{0}$ uniquely minimizes $D\left(\theta_{0}, \cdot\right)$. Then

$$
\begin{aligned}
D\left(\theta_{0}, \theta\right)-D\left(\theta_{0}, \theta_{0}\right) & =-E\left[\log p(x \mid \theta) \mid \theta_{0}\right]-\left(-E\left[\log p\left(x \mid \theta_{0}\right) \mid \theta_{0}\right]\right) \\
& =-E\left[\left.\log \frac{p(x \mid \theta)}{p\left(x \mid \theta_{0}\right)} \right\rvert\, \theta_{0}\right] \\
& >0, \text { unless } \theta=\theta_{0} .
\end{aligned}
$$

This difference is the Kullback-Leibler Information Divergence between distribution $P_{\theta_{0}}$ and P_{θ} :

$$
K\left(P_{\theta_{0}}, P_{\theta}\right)=-E\left[\left.\log \left(\frac{p(x \mid \theta)}{p\left(x \mid \theta_{0}\right)}\right) \right\rvert\, \theta_{0}\right]
$$

Lemma 2.2.1 (Shannon, 1948) The mutual entropy $K\left(P_{\theta_{0}}, P_{\theta}\right)$ is always well defined and

- $K\left(P_{\theta_{0}}, P_{\theta}\right) \geq 0$
- Equality holds if and only if $\left\{x: p(x \mid \theta)=p\left(x \mid \theta_{0}\right)\right\}$ has probability 1 under both $P_{\theta_{0}}$ and P_{θ}.

Proof Apply Jensen's Inequality (B.9.3)

Likelihood Equations

Suppose:

- $X \sim P_{\theta}$, with $\theta \in \Theta$, an open parameter space
- the likelihood function $I_{X}(\theta)$ is differentiable in θ
- $\hat{\theta}_{M L}(x)$ exists

Then: $\hat{\theta}_{M L}(x)$ must satisfy the Likelihood Equation(s)

$$
\nabla_{\theta} I_{X}(\theta)=0 .
$$

Important Cases

For independent X_{i} with densities/pmfs $p_{i}\left(x_{i} \mid \theta\right)$,

$$
\nabla_{\theta} I_{X}(\theta)=\sum_{i=1}^{n} \nabla_{\theta} \log p_{i}\left(x_{i} \mid \theta\right)=0
$$

NOTE: $p_{i}(\cdot \mid \theta)$ may vary with i.

Examples

- Hardy-Weinberg Proportions (Example 2.2.6)
- Queues: Poisson Process Models (Exponential Arrival Times and Poisson Counts) (Example 2.2.7)
- Multinomial Trials (Example 2.2.8)
- Normal Regression Models (Example 2.2.9).

MIT OpenCourseWare
http://ocw.mit.edu

18.655 Mathematical Statistics

Spring 2016

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

