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Unbiased Estimation 

Comments on Unbiased Estimation 

Estimation decision problem: 
X ∼ Pθ, θ ∈ Θ
 
θ(P) = E [X | Pθ]
 
Estimation: A = ×
 
Loss function: L : Θ ×A → R.
 
Decision procedures: D = {δ : X → A}
 

Restrict estimation procedures to the subclass:
 
D0 = {δ ∈ D : E [δ(X ) | θ] = θ, for all θ ∈ Θ}.
 

Apply decision-theoretic principles to identify optimal 
procedures in D0. 

Choice of D0 equivalent to choice of constraints: 

Unbiasedness 
Linearity (in X ) 
Computational algorithms (e.g., orthogonal polynomials in X , 
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Fourier series, generalized-basis series) 
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Unbiased Estimation 

Comments on Unbiased estimation (continued) 

Significant role of unbiasedness in survey sampling. 

Bayes estimates are necessarily biased (Problem 3.4.20). 

Unbiasedness not preserved under non-linear
 
re-parametrization (not equivariant).
 

Asymptotic unbiasedness:
 
Bias2(θ̂n)
 → 0. 
Var [θ̂n | θ] 
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Information Inequality: Preliminaries 

Definition: Regular Problem A statistical inference problem with 
X ∼ Pθ, θ ∈ Θ which satisfies the following regularity conditions: 

X = {x : p(x | θ) > 0} does not depend on θ. 
∂logp(x | θ) 

exists and is finite for all x ∈ X and θ ∈ Θ. 
∂θ 

For any statistic T such that E [|T (X )| | θ] < ∞iX [ X 
∂ ∂ 

T (x)p(x | θ)dx = T (x) [p(x | θ)]dx . 
∂θ ∂θ 

Definition: Efficient Score Function. For a fixed θ0 ∈ Θ, the 
efficient score for X is 

∂ log p(x | θ) 
u(X ; θ0) = |θ=θ0∂θ 

Note: The magnitude of u(X ; θ0) scales how far θ0 is from θ̂MLE . 
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Proposition The Efficient Score Function has the following 
properties: 

E [u(X ; θ0) | θ = θ0] = 0. 
Var [u(X ; θ0) | θ = θ0] = E ([u(X ; θ0)]2 | θ = θ0) = I (θ0). 

I (θ) is the Fisher information about θ contained in X which 
satisfies the following identity i [

∂2 log p(X | θ0)
I (θ0) = Var [(u(X ; θ0) | θ0] = E − | θ0

∂θ2 

Proof:  
p(x | θ)dx = 1  ∂p(x | θ) ∂ 

=⇒ dx = (1) = 0 
∂θ ∂θ  ∂p(x | θ) 

=⇒ [ /p(x | θ)]p(x | θ)dx = 0 
∂θ  ∂log [p(x | θ)] 

=⇒ [ p(x | θ)dx = 0 
∂θ 

=⇒ E [u(X ; θ) | θ] = 0 

7 MIT 18.655 Unbiased Estimation and Risk Inequalities 



 
 

 
 

Unbiased Estimation and Risk Inequalities Unbiased Estimation 
The Information Inequality 

E [u(X ; θ) | θ] = 0 
∂log [p(x | θ)]⇐⇒ [ p(x | θ)dx = 0  ∂θ  

∂log [p(x | θ)]∂ ∂[ p(x | θ)dx = (0)∂θ ∂θ ∂θ   
∂2log [p(x | θ)] ∂log [p(x | θ)] ∂p(x | θ) 

p(x | θ) + ( ) dx = 0 
∂θ2 ∂θ ∂θ 

The last line can be written as: X 
∂2log [p(x | θ)] ∂log [p(x | θ)]
[ p(x | θ)dx ] + [ ]2 p(x | θ)dx = 0 

∂θ2 ∂θ 
I.e.,  i [    2∂2log [p(x | θ)] ∂log [p(x | θ)]
E | θ + E | θ = 0 

∂θ2 ∂θ

So we have i [
∂2log [p(x | θ)]

I (θ) = E [(u(X ; θ))2 | θ] = −E | θ
∂θ2 . 

= Var [u(X ; θ) | θ] 
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Proposition 3.4.1 Suppose Pθ is a one-parameter exponential 
family with density/pmf function: 

p(x | θ) = h(x)exp{η(θ)T (x) − B(θ)}
which has non-vanishing continuous derivative on Θ. Then the 
statistical inference problem for θ given X is a regular problem. 
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Theorem 3.4.1. Information Inequality 
For a regular problem, let T (X ) be any statistic such that 

E [T (X ) | θ] = ψ(θ). 
Var [T (X ) | θ] < ∞, for all θ. 

Then for all θ: 

[ψ/(θ)]2 

Var [T (X ) | θ] ≥ ,
I (θ) 

(ψ(θ) is differentiable and I (θ) = Fisher Information of Pθ). 

Proof: By the conditions of a regular problem: X 
ψ/(θ) = 

∂ 
∂θ 

T (x)p(x | θ)dx 

∂ 
= T (x)

∂θ 
[p(x | θ)] dx 

∂ 
= T (x)

∂θ 
[log p(x | θ)]p(x | θ) dx 

= E [T (X )U(X ; θ) | θ] = Cov [T (X ), U(X ; θ) | θ] 

MIT 18.655 Unbiased Estimation and Risk Inequalities 

(the last equation follows since E [U(X ; θ) | θ] = 0.) 

10

)
∫ ( )
∫ ( )

(



Unbiased Estimation and Risk Inequalities Unbiased Estimation 
The Information Inequality 

The theorem follows from the Cauchy-Schwarz Inequality for two
 
random variables:
 
(Cov [T (X ), U(X ; θ) | θ])2 ≤ Var [T (X ) | θ] × Var [U(X ; θ) | θ]
 
i.e.,
 

[ψ/(θ)]2 ≤ Var [T (X ) | θ] × I (θ) 

Corollary 3.4.1 Suppose T (X ) is unbiased estimate of θ in a 
regular problem, then 

1 
Var(T (X ) | θ) ≥ (Cramer-Rao Lower Bound) 

I (θ) 
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Proposition 3.4.2 For a random sample X = (X1, . . . , Xn) from a 
distribution Pθ with density p x | θ) satisfying the conditions of a((	 n 
regular problem. If I1(θ) = E ( ∂ [log p(x1 | θ)]

 2 | θ then∂θ 

I (θ) = nI1(θ)	 and
 
[ψ/(θ)]2
 

Var [T (X) | θ] ≥ 
nI1(θ) 

Proof: This follows directlly from the results above upon noting 
that 

∂ 
U(X; θ) =	 [log p(x | θ)]

∂θ 
nn∂ 

= [ log p(xi | θ)]
∂θ 

1  ∂n = [log p(xi | θ)] 1 ∂θ 
n = 1 U(Xi ; θ) 

By the independence of the terms, nVar [U(X; θ) | θ] = Var [U(Xi ; θ)] = nI1(θ) = I (θ).1 
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Theorem 3.4.2 Consider a regular problem with X ∼ Pθ, θ ∈ Θ, 
and T ∗(X ) is an estimator of ψ(θ) which is 

Unbiased: E [T ∗(X ) | θ] = ψ(θ), for all θ ∈ Θ. 
Achieves the Cramer-Rao Lower Bound:
 

|ψ/(θ)|2
 

Var(T ∗(X ) | θ) = , for all θ ∈ Θ. 
I (θ) 

Then {Pθ} is a one-parameter exponential family with density/pmf: 
p(x | θ) = h(x)exp{η(θ)T ∗(x) − B(θ)}

Proof: From the proof of Theorem 3.4.1 for any unbiased 
estimator of ψ(θ), 

ψ(θ) = E [T (x) | θ] = T (x)p(x | θ)dx 
=⇒ ψ/(θ) = T (x)U(x ; θ)p(x | θ)dx 

where U(x ; θ) = ∂ log p(x | θ)/∂θ 
= Cov(T (X ), U(X ; θ) | θ)C 

=⇒ |ψ/(θ)| ≤ Var(T (X ) | θ) × Var(U(X ; θ) | θ) 
with equality if and only if U(X ; θ) = a1(θ) + a2(θ)T (X ) for some 
functions a1(θ) and a2(θ). 
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Technical Details of Proof: 

For each θ0 ∈ Θ, define 
Aθ0 = {x : U(x ; θ0) = a1(θ0)T ∗(x) + a2(θ0)}

Note: Pθ0 (Aθ0 ) = 1 
(otherwise the absolute correlation would be less than 1) 

Define {θi , i = 1, 2, . . .} to be a denumerable dense subset of 
Θ. 

Define A∗∗ = ∩i Aθi . Then 
Pθi (A

∗∗) = 1, for all θi . 

Fix any two values x1, x2 ∈ A∗∗, for which T ∗(x1)  = T ∗(x2). 
Solve the equations:
 

U(x1; θ) = a1(θ)T ∗(x1) + a2(θ)
 
U(x2; θ) = a1(θ)T ∗(x2) + a2(θ)
 

to obtain equations for a1(θ), a2(θ) as linear combinations of 
U(x1; θ) and U(x2; θ). 

Since U(x ; θ) is continuous in θ, so are a1(θ) and a2(θ). 
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Technical Details of Proof (continued): 

Since 
U(x ; θ) = a1(θ)T ∗(x) + a2(θ), for all θi ∈ {θi }

and both U(x ; θ) and a1(θ) and a2(θ) are continuous, 
this equation must hold for all θ. 

So A∗∗ = ∩i Aθi must equal
 
A∗
 = {x : U(x ; θ) = a1(θ)T ∗(x) + a2(θ), for all θ ∈ Θ}. 

and P(A∗) = 1. 

With 
∂ log p(x |θ)U(x ; θ) = = a1(θ)T ∗(x) + a2(θ)∂θ 

θ θ
Define: η(θ) = a1(t)dt and B(θ) = − a2(t)dt,θ0 θ0 

Then 
θ ∂ log p(x |θ)log [ p(x |θ) ] = [ ]dθ = T ∗(x)η(θ) − B(θ),p(x |θ0) θ0 ∂θ 

and we have: 
p(x | θ) = h(x)exp{η(θ)T ∗(x) − B(θ)}, x ∈ A∗ 

where h(x) = p(x | θ0) (for a fixed value θ0). 
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Multiparameter Case 

Definition: Regular Problem A statistical inference problem with 
X ∼ Pθ, θ ∈ Θ which satisfies the following regularity conditions: 

X = {x : p(x | θ) > 0} does not depend on θ.
 
∂logp(x | θ)
 

exists and is finite for all x ∈ X and θ ∈ Θ. 
∂θ 

For any statistic T such that E [|T (X )| | θ] < ∞iX [ X 
∂ ∂ 

T (x)p(x | θ)dx = T (x) [p(x | θ)]dx . 
∂θ ∂θ 

Definition: Efficient Score Function. For a fixed θ0 ∈ Θ, the 
efficient score for X is 

∂ log p(x | θ) 
u(X ; θ0) = |θ=θ0∂θ 

Note: The magnitude of u(X ; θ0) scales how far θ0 is from θ̂MLE . 
The definitions extend to vector-valued θ immediately 
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Proposition (I). The Efficient Score Function has the following 
properties: 

E [u(X ; θ0) | θ = θ0] = 0. 
Cov [u(X ; θ0) | θ = θ0] = E ([u(X ; θ0)][u(X ; θ0)]T | θ = θ0) 

= I (θ0). 

(II). I (θ) is the (d × d) Fisher information matrix whose elements 
satisfy the following identities 

[I (θ0)]i ,j = [Cov [u(X ; θ0) | θ0]]i ,j 
= E [[u(X ; θ)]i [u(X ; θ)]j | θ = θ0] 

∂ log p(X | θ) ∂ log p(X | θ) 
= E [ | θ = θ0]

∂θi ∂θj 
∂2 log p(X | θ) 

= −E [ | θ = θ0]
∂θi ∂θj 

(III). If X = (X1, . . . , Xn) is an iid sample from X ∼ Pθ with 
Information I1(θ), then 

I (X) = nI1(θ). 
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Theorem 3.4.3 For a regular problem with non-singular 
information matrix I (θ), consider a scalar-valued statistic T (X ) 
estimating the scalar ψ(θ), and suppose 

E [T (X ) | θ] = ψ(θ) 
∂ψ(θ) ∂ψ(θ) T • 

ψ(θ) = vψ(θ) =
 
∂θ1 

, . . . ,
 
∂θ1 

Then
 
•• 

Var [T (X ) | θ] ≥ [ψ(θ)]T [I (θ)]−1[ψ(θ)] 
Proof. For a random variable Y , and a random d-vector Z , recall 
the minimum MSPE linear predictor µL(Z ) of Y is given by: 

µL(Z ) = µY + (Z − µz )
T Σ−1 

Z ,Z ΣZ ,Y 

where µY = E [Y ], µZ = E [Z ], 
ΣZ ,Z = Cov(Z ) (d × d), and ΣZ ,Y = Cov(Z , Y ) (d × 1). 

The variance of µL(Z ) satisfies 
Var(µL(Z )) = [ΣZ ,Y ]

T Σ−1 ≤ Var(Y ),Z ,Z ΣZ ,Y 

with equality only if Y = µL(Z ).
 
The Theorem follows setting Y = T (X ) and Z = u(X ; θ).
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Theorem 3.4.4 For a regular problem as in Theorem 3.4.3 suppose: 
T (X ) = (T1(X ), . . . , Td (X ))T ∈ Rd 

E [T (X ) | θ] = ψ(θ) (d × 1) vector i [
∂ψ(θ) ∂ψ(θ)| · · · |
∂θ1 ∂θd 

• 

ψ(θ) = vψ(θ) =
 (d × d) matrix
 

Then
 
•• 

Var [T (X ) | θ] ≥ [ψ(θ)][I (θ)]−1[ψ(θ)]T 

where A ≥ B means (A − B) is postive semi-definite: 
aT (A − B)a ≥ 0, for all a ∈ Rd . 

Proof. Problem 3.4.21 

Note: For θ̂ : E [θ̂ | θ] = θ, 

ψ(θ) = θ, and ψ(θ) = Id , the (d × d) identity matrix. 
• 

and 
Var(θ̂ | θ) ≥ [I (θ)]−1 
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Preview: 

When X = (X1, . . . , Xn) corresponds to a random sample 
from a population whose distribution has information I1(θ) for 
a single observation, the information in a sample of size n is 

I (X) = nI1(θ) 

As the sample size grows large such samples, optimal 
estimators of parameters q(θ) are sought. 

The Cramer-Rao Lower Bound defines the golden standard of 
performance for estimators which are unbiased asymptotically. 

Such estimators will be called asymptotically efficient. 
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