18.700 Problem Set 9

Due in class Wednesday December 4 (changed from syllabus); late work will not be accepted. Your work on graded problem sets should be written entirely on your own, although you may consult others before writing.

1. (8 points) Suppose V is a real or complex inner product space. A linear map $S \in \mathcal{L}(V)$ is called skew-adjoint if $S^{*}=-S$. Suppose V is complex and finitedimensional, and S is skew-adjoint. Show that the eigenvalues of S are all purely imaginary (that is, real multiples of i) and that there is an orthogonal direct sum decomposition

$$
V=\bigoplus_{\lambda \in \mathbb{R}} V_{i \lambda}
$$

2. (16 points) Suppose V is an n-dimensional real inner product space, and S is a skew-adjoint linear transformation of V.
a) Show that $S v$ is orthogonal to v for every $v \in V$.
b) Show that every eigenvalue of S^{2} is a real number less than or equal to zero.
c) Suppose (still assuming S is skew-adjoint) that $S^{2}=-I$ (the negative of the identity operator on V). Show that we can make V into a complex inner product space, by defining scalar multiplication as

$$
(a+b i) v=a v+b S v
$$

and the complex inner product as

$$
\langle v, w\rangle_{\mathbb{C}}=\langle v, w\rangle-i\langle S v, w\rangle .
$$

What is the dimension of V as a complex vector space?
d) Now drop the assumption that $S^{2}=-I$, but still assume S is skew-adjoint. Show that there is an orthonormal basis of V in which the matrix of S is

$$
\left(\begin{array}{cccccccc}
0 & -\lambda_{1} & & & & & & \\
\lambda_{1} & 0 & & & & & & \\
& & \ddots & & & & & \\
& & & 0 & -\lambda_{r} & & & \\
& & & \lambda_{r} & 0 & & & \\
& & & & & 0 & & \\
& & & & & & \ddots & \\
& & & & & & & 0
\end{array}\right),
$$

with $\lambda_{1} \geq \cdots \geq \lambda_{r}>0$. That is, the matrix of S in this basis is block diagonal, with $r 2 \times 2$ blocks of the form

$$
\left(\begin{array}{cc}
0 & -\lambda \\
\lambda & 0
\end{array}\right)
$$

with $\lambda>0$, and $n-2 r 1 \times 1$ blocks (0). (Hint: first diagonalize S^{2}.)
3. (6 points) Give an example of a square complex matrix A with the property that A has exactly three distinct eigenvalues, but A is not diagonalizable. (For full credit, you should prove that your matrix has the two required properties.)

MIT OpenCourseWare
http://ocw.mit.edu

18.700 Linear Algebra

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

