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The Multiplicative Group of Integers modulo p 

Theorem. Let p be a prime integer. The multiplicative group F× 
p of nonzero congruence classes modulo p 

is a cyclic group. 

A generator for this cyclic group is called a primitive element modulo p. The order of F× 
p is p − 1, so a 

primitive element is a nonzero congruence class whose order in F× 
p is p − 1. 

Examples. (i) p = 7: We represent the six nonzero congruence classes by 1, 2, 3, 4, 5, 6. Let � = 3. Then 

�0  1, �1     = = 3, �2 = 2, �3 = 6, �4 = 4, �5 = 5, �6 = 1. 

So � is a primitive element,  and F×

7 is a cyclic group of order 6. 

(ii) p = 11: There are ten nonzero congruence classes. Let � = 2. Then 

�0 = 1, �1 = 2, �2         = 4, �3 = 8, �4 = 5, �6 = 10, �7 = 9, �8 = 7, �9 = 3, �10 = 6, �11 = 1. 

Again, � is a primitive element, and F× 
11 is a cyclic group of order 10. 

We sketch a proof that the group F× 
p contains an element � of order p − 1. You will be able to fill in most 

of the details. 

A mod-p polynomial is a polynomial f(x) whose coefficients are elements of the finite field Fp, or, one 
might say, whose coefficients are integers that are to be read modulo p. All polynomials in this note are 
mod-p polynomials. 

One can add and multiply mod-p polynomials as usual, and if one substitutes an element � of Fp into 
such a polynomial, one obtains another element of Fp. For example, if p = 7 and f(x) = x2 − x + 1, then 
(computing modulo 7) f(3) = 9 − 3 + 1 = 0. The class of 3 is a root of the mod-7 polynomial x2 − x + 1 in 
F7. 

Lemma 1. A mod-p polynomial f(x) of degree d has at most d roots in Fp. 

proof. The proof is the same as for real roots of real polynomials. For any element � of Fp, we use division 
with remainder to write 

f(x) = (x − �)q(x) + r, 

where q(x) is a mod-p polynomial of degree d − 1 and r is a constant – an element of Fp. You will be able 
to convince yourself that we can do this. We substitute x = �: f(�) = (� − �)q(�) + r = r. So f(�) = r. 
When � is a root of f(x), x − � divides f : f(x) = (x − �)q(x). Let � be a root of f(x) different from the 
root �, then 

0 = f(�) = (� − �)q(�), 

and � − � = 0. Since Fp is a field, the product of nonzero elements is nonzero, so we must have q(�) = 0. 
The roots of f(x) that are different from � are the roots of q(x). 

By induction on the degree of a polynomial, we may assume that q(x) has at most d − 1 roots. Then 
there are at most d − 1 roots of f(x) that are different from �, and at most d roots of f(x) altogether. � 

There is a simple observation that makes this lemma useful: If � is an element of F× 
p and if �k = 1, then 

� is a root of the mod-p polynomial xk − 1. (Though this is an obvious fact, it requires a brilliant mind to 
think of stating it.) The lemma tells us that there are at most k such elements. 

�
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Examples. (i) p = 17. The group F× 
17 has order 16, so the order of an element can be 1, 2, 4, 8, or 16. If �

is an element of order 1, 2, 4, or 8, then �8 = 1, so � is a root of the polynomial x8 − 1. This polynomial has 
at most 8 roots. This leaves at least 8 elements unaccounted for. They must have order 16. 

(ii) p = 31. The group F× 
31 has order 30, so the order of an element can be 1, 2, 3, 5, 6, 10, 15 or 30. The

elements of orders 1, 2, 3, or 6 are roots of x6 − 1. The elements of orders 5 or 10 are roots of x10 − 1, 
and the elements of order 15 are roots of x15 − 1. Unfortunately, 6 + 10 + 15 = 31. This is too large to 
draw a conclusion about elements of order 30. The problem is caused by double counting. For example, the 
elements of order 3 are roots, both of x6 − 1 and of x15 − 1. When one eliminates the double counting, one 
sees that there must be elements of order 30. � 

It is fussy arithmetic to make a proof based on the method illustrated by these examples. We use a lemma 
about the orders of elements of an abelian group. 

Lemma 2. (a) Let u and v be elements of an abelian group G, of finite orders a and b, respectively, and let 
m be the least common multiple of a and b. Then G contains an element of order m. 
(b) Let G be a finite abelian group, and let m be the least common multiple of the orders of elements of G. 
Then G contains an element of order m. 

Note: The hypothesis that G be abelian is essential here. The symmetric group S3, which is not abelian, 
contains elements of orders 2 and 3 but no element of order 6. 

proof of the theorem. We’ll prove the theorem, assuming that Lemma 2 has been proved. Let m be the least 
common multiple of the orders of the elements of F× 

p . The lemma tells us that F× 
p contains an element � of 

order m. Therefore m divides the order of the group, which is p − 1, and m � p − 1. Also, since m is the 
least common multiple of the orders of the elements of F× 

p , the order of every element divides m. So every 
element of F× 

p is a  root of the polynomial xm − 1. Since this polynomial has at most m roots, p − 1 � m. 
Therefore p − 1 = m, and  

F
×

p contains an element of order p − 1. It is a cyclic group. � 

Note: This proof doesn’t provide a simple way to decide which elements of F× 
p are primitive elements. For 

a general prime p, that is a difficult question. 

proof of Lemma 2. We prove (a). Part (b) follows by induction. So we assume given elements u and v of G 
of orders a and b, respectively. We denote the greatest common divisor and least common multiple of a and 
b by gcd(a, b) = d and lcm(a, b) = m, respectively. Then ab = dm. 

Case 1: gcd(a, b) = 1 (a and b are relatively prime). So m = ab. We will prove that the product uv has 
order ab. 

For  any integer r, uv)r    ( = urvr (G is abelian). Since a and b divide m, um = 1 and vm = 1, so (uv)m = 1. 
The order of uv divides m. To show that the order is equal to m, we suppose that (uv)r = 1, and we show 
that m divides r. Let z = ur . Then z = v−r too. The order of any power of u divides a, so the order of z 
divides a. Similarly, the order of z divides b. Since gcd(a, b) = 1, z has order 1, and z = 1. Therefore ur = 1 
and vr = 1. This tells us that both a and b divide r, and therefore that m divides r. The order of uv is m, 
as claimed. 

Case 2: gcd(a, b) = d > 1. Let � be a prime integer that divides d, and let a� = a/�, b� = b/�, and d� = d/�. 
Then d� = gcd(a�, b�), so d cannot divide both of the integers a� and b� . Let’s say that d doesn’t divide a� . 
Then gcd(a�, b) is not d, so it must be d�, and lcm(a�, b) = a�b/d� = ab/d = m. 

Since u has order a, u� has order a/� = a� . We replace the pair of elements u, v by the pair u�, v. This 
has the effect of replacing a, b, d, and m by a�, b, d� , and m, respectively. The greatest common divisor has 
been decreased while keeping the least common multiple constant. Induction on d completes the proof. � 
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