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18.704 Fall 2004 Homework 4 Solutions 

All references are to the textbook “Rational Points on Elliptic Curves” by 
Silverman and Tate, Springer Verlag, 1992. Problems marked (*) are more 
challenging exercises that are optional but not required. 

1. In class we discovered an error in the textbook near the top of page 52. 
Recall the situation: we started with a curve in Weierstrass form in the (x, y) 
plane, then changed coordinates to (t, s) via t = x/y, s = 1/y, so the curve 
became 

3 2 3 s = t + at s + bts2 + cs 

with new additive identity point O = (0, 0) (the origin). Let R be the set of all 
rational numbers with no p in the denominator (when written in lowest terms), 
and for each � � 1 set 

C(p � ) = {(t, s)|t ∗ p R, s ∗ p 3� R}. 

Now if P1 = (t1, s1) and P2 = (t2, s2) are two different points on C such that 
t1 = t2 and P1, P2 ∗ C(p� ), prove that P1 + P2 ∗ C(p� ). (The book claims that 
this is true because P1 = −P2, which is a false statement.) 

Solution. (with thanks to Emmanuel Stoica.) Notice that as in the book 
we use (t, s)-coordinates, i.e. we let the t-axis be horizontal and the s-axis be 
vertical (I’m not sure why this is the convention.) Also, we assume that a, b, c 
are integers, since all of Section II.4 is under this assumption. 

Fix a prime p and define ord(r) for each rational number r as in the book. 
Note that another way of describing C(p� ) is as the ordered pairs (t, s) on the 
curve for which ord(t) � � and ord(s) � 3�. 

First suppose that P1 � P2 = Q is a point at infinity. Since the line � through 
P1 � P2 is vertical, we would have to have Q = [0, 1, 0] in projective T, S, U ­
coordinates. From the homogeneous equation 

U 2S = T 3 + aT 2S + bT S2 + cS3 , 

this happens if and only if c = 0. 
We claim the case above never occurs, as follows. Under our change of 

coordinates, the point Q corresponds to the point (0, 0) in (x, y)-coordinates. 
In the (x, y)-plane, the point (0, 0) is a point of order two, and the tangent line 
to the curve at the point (0, 0) is x = 0. Then in the (t, s)-plane, the point Q 
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also has order 2 and since the change of coordinates is t = x/y, s = 1/y, the 
tangent line to the curve at Q must be the line t = 0. This is a vertical line, 
so it must be the line � itself. But � hits the curve at least twice at Q (since 
it is tangent at Q) and so � cannot also contain two other points P1, P2 on the 
curve. This contradiction eliminates this case. 

From now on we can assume that c ≤= 0, and that P1 � P2 = (t3, s3) is 
not a point at infinity. Since the line through P1 and P2 is vertical, clearly 
t3 = t1 = t2. Now since the equation of C in (t, s)-coordinates has only odd 
powers of t and s, the curve is symmetric about the origin, i.e. if (t, s) ∗ C 
then (−t, −s) ∗ C. Since we take O = (0, 0), then from the symmetry it 
is clear that (t, s) � O = (−t, −s). So P1 + P2 = (−t3, −s3), and obviously 
ord(−t3) = ord(−t1) = ord(t1) � �. It remains to prove that ord(s3) � 3�. 

Now, the 3 s-coordinates s1, s2, s3 are the three roots of the equation 

3 2 cs + bt1s 2 + (at − 1)s + t3 = 0.1 1 

Thus (−b/c)t1 = s1 + s2 + s3. Since ord(s1) � 3� and ord(s2) � 3�, we just 
need to prove that ord(−b/c)t1 � 3�. 

3Now write t = t1 for convenience. Since si = t3 + at2si + bts2 + cs
i for each 

i 
i, we can subtract and factor some terms to get 

2 2 s1 − s2 = at2(s1 − s2) + bt(s1 − s2)(s1 + s2) + c(s1 − s2)(s + s1s2 + s
2
).
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Cancelling the factor s1 − s2 (OK since we assumed P1 ≤= P2) and solving for c, 
we have 

2 2 2 c = (1 − at2 − bt)/(s + s1s2 + s
2
), so bt/c = bt(s 2 + s1s2 + s

2
)/(1 − at2 − bt).

1 1 

The presence of the 1 in the denominator implies (since we know ord(t) � 1) 
that ord(1 − at2 − bt) = 0. On the other hand, we have b ∗ Z, ord t � �, and 

2ord(s2 + s1s2 + s2) � 6�. So certainly ord(bt/c) � 3� as we wished. 1 

2. Do Exercise 2.10 from the textbook. 

Solution. Let C be the curve y2 = x3 + px where p is a prime number. 
First we find the points of order 2. These are the points (x, 0) on the curve, so 
that x(x2 + p) = 0. Since p is prime, x2 + p = 0 has complex roots, so (0, 0) is 
the only point of order 2. Of course O = [0, 1, 0] is always point of order 1. 

Now if (x, y) is a point of finite order > 2, then the strong form of the N-L 
Theorem, which you proved in Homework 3, says that x and y are integers, and 
y2|D, where here D = −4p3 . hence y = ±1, ±2, ±p, or ±2p. 

Since y2 > 0 and p > 0, we have x > 0. Since x � 1 and p � 2, x3 + px � 3, 
so y ≤= ±1. 

Suppose y = ±2. Then if x � 2 then since p � 2, x3 + px � 12, a contra­
diction. So x = 1 is the only possible case here, which forces p = 3. So we have 
identified some possible candidates for points of finite order: 

p = 3 : (1, 2), (1, −2). 
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2 =We are left with the cases y = ±p or y = ±2p. In either case p2|y
x(x2 + p). So necessarily either p|x or p|(x2 + p). But in the latter case, p|x2 , 
so p|x in any case. But then x(x2 + p) � p(p2 + p) > p2, so y ≤= ±p. 

We are left with the case y = ±2p, so 4p2 = x3 + px � p3 + p2, which forces 
3p2 � p3, and so p � 3 and p = 2 or 3. If p = 2, then 16 = x3 + 2x is readily 
seen to have no integer solutions. If p = 3, then we check that 36 = x3 + 3x has 
only the integer solution x = 3. So we have a few more possible candidates for 
points of finite order: 

p = 3 : (3, 6), (3, −6). 

So we now assume that p = 3; we need to check if any of the points 

P = (1, 2), Q = (3, 6), −P, −Q 

has finite order on the curve y2 = x3 + 3x. The tangent line at P has slope 
6/4 ≤∗ Z, so it follows that 2P will not have integer coordinates. The tangent 
line at Q has slope 30/12 ≤∗ Z, so 2Q will also not have integer coordinates. By 
the N-L theorem, neither P nor Q has finite order. But then −P and −Q also 
do not have finite order. 

So overall, we have proven that regardless of p, the group of rational points 
of finite order on C is precisely 

{O, (0, 0)}. 

3.(*) Consider the curve 

3C : y 2 = x + dx 

where d ∗ Z is any integer. 

(a) Exercise 3.7(c) on page 105 of the text gives a table showing what the 
group of rational points of finite order on C is, for each possible d. Show that 
this table is incorrect. 

(b) After some experimentation, make some conjecture about what the cor­
rect table should be. 

(c) Can you prove your conjecture? (The result of Exercise 3.7(a) might be 
helpful.) 

Partial Solution. This problem is potentially very difficult, but I thought 
it might be fun for you to play with. Once we develop some more techniques, 
we will be able to solve this in full more easily. So I will not give the entire 
solution here at this point. 

For part (a), we note that Exercise 3.7(c) claims that the group of points of 
finite order on C : y2 = x3 + dx is isomorphic to Z/4Z if d = e4 for some integer 
e. 
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But if e = 1, then we have the curve y2 = x3 + x. This has 2 points of order 
dividing 2, namely {O, (0, 0)}. But the discriminant D in this case is −4, so if 
(x, y) has finite order, then y = ±1, ±2 by the strong form of Nagell-Lutz. But 
1 = x3 + x and 4 = x3 + x are readily seen to have no integer solutions. It 
follows that C has no points of finite order except those of order dividing two, 
and that the full group of points of finite order is isomorphic to Z/2Z. so the 
table in Exercise 3.7(c) cannot possibly be correct. 

For part (b), it turns out that the other parts of the table are correct, but 
that the first line of the table should say the the group of points of finite order 
on C : y2 = x3 + dx is isomorphic to Z/4Z if d = 4e4 for some integer e. In 
fact, Exercise 4.9 has the correct statement (although it phrases it differently, 
by assuming that d is not divisible by any fourth power. Actually, it is possible 
to reduce to this case.) 

As for (c), we’ll hopefully see how to do this at a later date. 
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