
18.704 Fall 2004 Homework 5 Solutions 

All references are to the textbook “Rational Points on Elliptic Curves” by 
Silverman and Tate, Springer Verlag, 1992. Problems marked (*) are more 
challenging exercises that are optional but not required. 

1. This problem is meant to show that the height function can have subtle 
properties, even though its definition is very simple. 

For any integer � � 1, define 

R(�) = {q ⊂ Q |H(q) � �}. 

Notice that any q ⊂ R(�) has the form q = m/n where 0 � |m| � � and 
0 � |n| � �. Let #R(�) be the number of elements in R(�). Then we trivially 
get the bound #R(�) � (2� + 1)2 for all �, because there are 2� + 1 integers 
m satisfying 0 � |m| � �, and similarly for |n|. Of course this is a severe 
overcounting, since different choices of m, n can lead to the same rational number 
q. 

(a) Give a better bound for #R(�). More specifically, give a bound of the 
following form: 

#R(�) � ��2 + �� + β for all � � 1, 

Where �, �, β are some constants, and with � � 3/2. 

(b) Explain how you would go about finding better and better bounds for 
#R(�) (i.e. with a smaller values of �). You don’t have to calculate these 
bounds exactly; I just want you to describe a some kind of algorithm you could 
use to find them. 

(c) (*) There is a limit to this process: Can you prove Exercise 3.1(b) of the 
text? (I’m not sure how to do it.) 

Solution. (a) Consider the ordered integer pairs (m, n) with |m| � �, 
|n| � �. As we noted above, there are (2� + 1)2 of these. As (m, n) ranges over 
all such pairs, m/n ranges over the rational numbers q with H(q) � �. But 
we are overcounting: First, there is no reason to ever take n = 0, and m = 0 
need only be taken once. Also, we only need to take points in two out of the 
four quadrants, so we might as well assume that n � 1. This brings the number 
down: we have 2�2 points (m, n) with m ≤= 0, n � 1, and H(m/n) � �, and we 
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also need one point with m = 0, say (0, 1), bringing us down to 2�2 + 1 possible 
ordered pairs. 

Of course, we can do better, we should only count ordered pairs where m, n 
are relatively prime. But the number of these seems hard to count, so we go 
one prime at a time. Let us count the number of ordered pairs (m, n) where 
m ≤= 0, n � 1, H(m/n) � �, and both m, n are divisible by 2. This number 
is 2[�/2]2, where [r] means the largest integer less than or equal to r. Since 
2[�/2]2 � 2((� − 1)/2)2, when we throw away these bad ordered pairs, we are 
left with at most 

#R(�) � 2�2 + 1 − (2/4)(� − 1)2 = (3/2)�2 + �� + β 

which is the required bound. 

(b) We can continue in the same way, throwing away next all of the ordered 
pairs where both coordinates are divisible by 3. But then we have to count care­
fully, because some of those ordered pairs also have both coordinates divisible 
by 2. In any case we get from this a bound of the form 

#R(�) � 2�2 + 1 − 2[�/2]2 − 2[�/3]2 + 2[�/6]2 

which gives a bound with smaller �. We could continue by next considering the 
prime 5, etcetera. 

So the general algorithm is: consider the first m primes, p1, p2, . . . , pm. Then 
one can get an upper bound for #R(�) by considering a sum of the form 

1 + 2�2 − 2[�/pi]
2 + 2[�/pipj ]

2 − · · · + (−1)m2[�/p1p2 · · · pm]2 . 
1�i�m 1�i<j�m 

(A formula like this is derived by using the “principle of inclusion/exclusion.” 
I’m happy if you just gave some idea of the process in words instead of writing 
a formula.) 

(c) Most of you successfully solved this problem, which asks you to show that 
lim��� #R(�)/�2 = 12/κ2 . One way is to calculate the limit of the process 
described in part (b). Another is to express #R(�) in terms of Euler’s α-function 
and use known results about this function. If you didn’t get this part and want 
to know the solution, ask a classmate or come talk to me. 

2. Let P be a rational point on the nonsingular curve C in Weierstrass form. 
This exercise concerns a question one of you had in class: if P has infinite order, 
is it possible for all of the points P, 2P, 3P, . . . to have integer coefficients? You 
will answer this question in part (c) below. 

(a) Suppose that there is a number N > 0 such that H(mP ) � N for 
infinitely many m � 1. Prove that the point P has finite order in the group of 
rational points. 
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(b) Write mP = (xm, ym) for all m � 1. Show that there is a constant 
N > 0 such that |xm| � N for infinitely many m � 1. (Suggestion: Consider 
the sequence of points P, 2P, 4P, 8P, . . . and use the formulas for doubling a 
point. Show that given any point Q, if the x coordinate of Q is very large then 
the x-coordinate of 2Q must be much smaller in absolute value.) 

(c) Suppose now that mP has integer coordinates for all m � 1, in other 
words xm, ym ⊂ Z for all m � 1. Show that the point P has finite order in the 
group of rational points. (Even if you don’t succeed in proving part (b), feel 
free to assume part (b) is true in your proof of this part.) 

Solution. (a). If such a N exists, then there is a sequence of integers 
m1, m2, . . . such that {miP | i � 1} � S(N) where 

S(N) = {(x, y) ⊂ C(Q)|H(x, y) � N}. 

As we saw in Section III.1, the set S(N) is a finite set (this is more or less 
Lemma 1 of that section.) Since there are only finitely many possibilites for 
the points miP , this forces miP = mj P for some integers mi < mj . But then 
(mj − mi)P = O, so P has finite order. 

(b) On page 31 of the text a doubling formula for the x-coordinate is given. 
→It shows that if Q = (x, y) ⊂ C(Q), then setting 2Q = (x , y→) we have 

→ g(x) 
x = 

h(x) 

where g(x) = x4 + g→(x) and h(x) = 4x3 + h→(x). Here g→(x) has degree 3 and 
→h (x) has degree 2 but we will only care about the highest degree terms, since 

for large x, the lower degree terms are small by comparison. In fact, we can find 
N > 0 such that for all |x| � N we have |g→(x)| < |x|4 and |h→(x)| < |x|3 . Then 
for |x| � N it follows that |g(x)| � 2|x|4 and |h(x)| � 3|x|3 . Then if |x| � N , 
we have |x→| � (2/3)|x|. 

It follows from this that given any point Q = (x, y) ⊂ C(Q), then if |x| � N , 
→we have 2Q = (x , y→) with |x→| � (2/3)|x|. Then we can find n � 1 such that 

→2nQ = (x , y→) with |x→| � N . 
Now recall that we write mP = (xm, ym). Starting with our given point P , 

we apply the above argument to show that there is some n1 � 1 such that 2n1 P 
has x-coordinate � N . Then we apply the argument to the point 2n1 P , to show 
there is some n2 > n1 such that 2n2 P has x-coordinate � n. Continuing, we 
get an infinite sequence of numbers n1, n2, . . . such that 2ni P has x-coordinate 
of absolute value � N , for all i � 1. 

(c) This is a combination of parts (a) and (b). If the points mP = (xm, ym) 
all have integer coordinates, then this implies that H(mP ) = |xm| for all m � 1. 
Then part (b) implies that there is a number N such that H(mP ) � N for 
infinitely many m. Part (a) now says that P has finite order. 
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