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Noncommutative algebra studies algebraic phenomena that arise in a variety of contexts in mathematics and physics,
wherever one encounters a multiplication rule where the commutativity law 𝑎𝑏 = 𝑏𝑎 fails. An example familiar from
linear algebra is multiplication of matrices. Noncommutative groups and Lie algebras also come with such a mul-
tiplication; we will also require an addition law compatible with multiplication via the distributive law, groups and
Lie algebras can be fit into that framework by passing to the group ring and enveloping algebra respectively.

Some approaches to noncommutative algebras are inspired by known results about commutative ones, where we
have familiar concepts of radical, localization etc. We will see noncommutative analogues of these concepts later in
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the course. Another way to relate the noncommutative and the commutative settings is by deforming a commutative
multiplication to obtain a noncommutative one; due to its relation to quantum physics this procedure is sometimes
called quantization.

Just as in the case of groups or commutative algebras, much of the work with the abstract composition rule com-
prising the structure of a group or a ring involves realizing it as composition of actual symmetries of a specific set
or abelian group, this leads to the concept of an action of a group on a set, and an action of a ring on a module.
A noncommutative ring will be the main protagonist of our story, the plot develops as the protagonist acts (on a
module)!

The language of categories and functors is ubiquitous in modern algebra, including study of noncommutative rings
and modules over them. Its general concepts and their application to rings and modules will be discussed in the
lectures.

Powerful tools for study of rings and modules come from homological algebra, we will introduce its basic concepts
in the course.

We will look into core topics in noncommutative ring theory such as polynomial identities and rate of growth of
algebras, and also touch upon connections of noncommutative algebra to other areas such as number theory (Brauer
groups), Lie theory (Amitsur-Levitzki Theorem, Goldie rank) etc.

The course ends with a brief discussion of noncommutative geometry, an area that grew out of an attempt to con-
nect noncommutative algebra to geometry inspired by the success of algebraic geometry which provides such a
connection for commutative algebra.

1.1 Rings, Modules, Ideals
Passing to formal math, the main object of study for us will be associative, possibly noncommutative rings.

Definition 1.1: A ring (𝑅, +) is an abelian group with a multiplication that is associative and distributes over
addition. Unless stated otherwise, rings will be unital (have a multiplicative identity). Homomorphisms of rings are
required to send 1 to 1.

Remark 1.2: Associativity is equivalent to the fact that left multiplication commutes with right multiplication.

Definition 1.3: Let 𝑅 be a ring. The opposite ring 𝑅op has the same underlying abelian group as 𝑅, but left
multiplication by 𝑎 in 𝑅op is defined as right multiplication by 𝑎 in 𝑅, i.e.

𝑎 ·op 𝑏 = 𝑏𝑎.

It is clear that (𝑅op)op = 𝑅.

Example 1.4: Fields and skew fields are rings. Recall that a skew field (also known as a division ring) is a ring
where every nonzero element is invertible.

Example 1.5: Let 𝑅 be a ring. Then the set of 𝑛 × 𝑛 matrices with entries in 𝑅, with matrix addition and
multiplication, is also a ring, denoted Mat𝑛 (𝑅).

Definition 1.6: A (left) module 𝑀 over a ring 𝑅 is an abelian group equipped with a ring homomorphism 𝑅 →
End(𝑀). Equivalently, we have a bilinear map 𝑅 ×𝑀 → 𝑀 satisfying 𝑟1 (𝑟2 (𝑚)) = (𝑟1𝑟2) (𝑚).
A submodule 𝑁 of𝑀 is a subgroup of𝑀 closed under the action of 𝑅. Given such 𝑁 ⊂ 𝑀 , we can also equip𝑀/𝑁
with the structure of an 𝑅-module.

Example 1.7: If 𝑅 is a field, then 𝑅-modules are vector spaces.
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Definition 1.8: A bimodule over 𝑅 is a module with compatible 𝑅-module and 𝑅op-module structures, i.e. the
actions of 𝑅 and 𝑅op commute.

Example 1.9: 𝑅 is an 𝑅-bimodule; the 𝑅-module structure is left multiplication and the 𝑅op-module structure is
right multiplication, and the associativity of multiplication in 𝑅 implies that these are compatible.

Definition 1.10: A left ideal of 𝑅 is an 𝑅-submodule of 𝑅. A right ideal of 𝑅 is an 𝑅op-submodule of 𝑅 (treated
as an 𝑅op-module). A two-sided ideal of 𝑅 is a subbimodule of 𝑅.

Remark 1.11: If 𝐼 is a left ideal, as described in Definition 1.6, 𝑅/𝐼 is an 𝑅-module, and likewise, if 𝐼 is a right
ideal, 𝑅/𝐼 is an 𝑅op-module. If 𝐼 is a two-sided ideal, then the multiplication of elements in 𝑅/𝐼 is well-defined,
and 𝑅/𝐼 is a ring.

Definition 1.12: An 𝑅-module𝑀 is free if it is isomorphic to
⊕

𝑖∈𝐼 𝑅, where 𝐼 is some (possibly infinite) index set.
If 𝑀 � 𝑅𝑛 , we say that 𝑀 has rank 𝑛. Note that rank is not well-defined in general!

Example 1.13: Every module over a skew field is free. (See linear algebra.)

Remark 1.14: Remember that in the finite case, direct products and direct sums are the same, but in the infinite
case, they are not. In an infinite direct sum, all but finitely many elements must be 0.

1.2 Invariant Basis Number Property

Definition 1.15: A ring 𝑅 has the invariant basis number (IBN) property if free modules of different ranks are
not isomorphic. That is, rank is well-defined.

Example 1.16: Linear algebra tells us that modules over a skew field satisfy the IBN.

Lemma 1.17: If 𝜑 : 𝑅 → 𝑆 is a ring homomorphism and 𝑆 satisfies IBN, then so does 𝑅.

Proof. To simplify the discussion, let’s focus on finite rank modules. Then Hom𝑅 (𝑅𝑛, 𝑅𝑚) = Mat𝑛,𝑚 (𝑅op)
(End𝑅 (𝑅) = 𝑅op because any map 𝑅 → 𝑅 commutes with left multiplication, hence is defined by its value at
1, and this can be extended to 𝑅𝑛). If 𝑅 doesn’t satisfy IBN, there exist non-square matrices 𝐴 ∈ Mat𝑛,𝑚 (𝑅op),
𝐵 ∈ Mat𝑚,𝑛 (𝑅op) so that 𝐴𝐵 = 1𝑚, 𝐵𝐴 = 1𝑛 . But applying 𝜑 , we then see that 𝜑 (𝐴), 𝜑 (𝐵) give an isomorphism
between 𝑆𝑛 and 𝑆𝑚 , contradiction. □

Corollary 1.18: Any ring admitting a homomorphism into a skew field satisfies IBN.

Example 1.19: By Zorn’s lemma, every commutative ring 𝑅 has a maximal ideal 𝔪. Then 𝑅 ↠ 𝑅/𝔪, which is
a field, so 𝑅 has the IBN.

Example 1.20: We will see later that every left Noetherian ring maps to Mat𝑛 (𝐷) for some 𝑛, 𝐷 a skew field,
so it satisfies IBN.

Example 1.21: Let 𝑉 = C∞ =
⊕∞

𝑖=1 C. Then 𝑅 := End(𝑉 ) doesn’t satisfy IBN. Choose subspaces 𝑉1,𝑉2 such
that 𝑉 = 𝑉1 ⊕ 𝑉2 and 𝑉 � 𝑉1,𝑉2. Then consider the ideals 𝐼𝑖 := {𝑟 | 𝑟 |𝑉𝑖 = 0}. 𝑅 = 𝐼1 ⊕ 𝐼2, but also 𝑅 � 𝐼1, 𝐼2.

Corollary 1.22: 𝑅 = End(C∞) does not admit a homomorphism into a skew field.
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1.3 Simple modules, Schur Lemma

Theorem 1.23: Suppose that every 𝑅-module is free. Then 𝑅 is a skew field.

To prove this, we will use the Schur Lemma about simple modules.

Definition 1.24: A module 𝑀 is simple or irreducible if 𝑀 ≠ 0 and it has no nontrivial proper submodules.

Example 1.25: 𝑅 is simple over itself iff 𝑅 is a skew field. (If 𝑅 is simple over itself, then 𝑅 has no nontrivial
ideals, so every nonzero element must be invertible.)

Lemma 1.26 (Schur): If 𝑀 is simple, then End𝑅 (𝑀) is a division ring.

Proof. Suppose 𝜑 : 𝑀 → 𝑀 is nonzero. Then ker𝜑 ≠ 𝑀 , but 𝑀 is simple, so ker𝜑 = 0. Hence 𝜑 is injective.
Likewise, im𝜑 ≠ 0, so im𝜑 = 𝑀 and 𝜑 is surjective. Thus 𝜑 is invertible. □

Corollary 1.27: Any nonzero map of simple modules is an isomorphism. In particular, if𝑀, 𝑁 are non-isomorphic
simple modules, Hom(𝑀, 𝑁 ) = 0.

Lemma 1.28:
a) Every nonzero ring has a simple module.
b) Every proper left ideal in a nonzero ring is contained in a maximal ideal.
c) A proper submodule 𝑁 in a module 𝑀 is maximal iff 𝑀/𝑁 is simple.

Proof. a) will follow from b) and c) because maximal left ideals of 𝑅 are maximal 𝑅-submodules of 𝑅. c) is true
because the submodules of 𝑀/𝑁 are in bijection with the submodules of 𝑀 containing 𝑁 .
b) follows from Zorn’s Lemma. Its conditions are satisfied because for a nested collection 𝑀0 ⊂ 𝑀1 ⊂ · · · ⊂ of
proper submodules in a finitely generated 𝑀 ,

⋃
𝑀𝑖 = 𝑀 iff some 𝑀𝑖 = 𝑀 . □

Remark 1.29: Part b) is also true for finitely generated modules. If 𝑀 is not finitely generated, b) may not be
true. For example, let 𝑅 = Z, 𝑀 = Q. Then 𝑀 has no maximal proper submodule because you can find a nested
collection of submodules of 𝑀 whose union is also 𝑀 .

Corollary 1.30: Every finitely generated module has an irreducible quotient.

Proof (of Theorem 1.23). Let 𝐿 be a simple 𝑅-module (that exists by Lemma 1.28 𝑎)). It doesn’t contain any submod-
ule isomorphic to 𝑅2 because every nonzero element of 𝐿 generates 𝐿. So if 𝐿 is free, it must be isomorphic to 𝑅.
But then End𝑅 (𝐿) � End𝑅 (𝑅) = 𝑅op, and End𝑅 (𝐿) is a skew field by Lemma 1.26. □

1.4 Semisimple modules

Definition 1.31: A module is semisimple if it’s isomorphic to a direct sum of simple modules.

Example 1.32: C[𝑡]/(𝑡2) is not semisimple as a module over itself. However, we do have an exact sequence of
C[𝑡]/(𝑡2)-modules:

0→ C[𝑡]/(𝑡) → C[𝑡]/(𝑡2) → C[𝑡]/(𝑡) → 0.

Lemma 1.33: Let 𝑀 =
⊕

𝑖∈𝐼 𝑀𝑖 be a semisimple module, 𝑀𝑖 are simple modules. Then any submodule 𝑁 ⊂ 𝑀
has a direct complement of the form

⊕
𝑖∈ 𝐽 𝑀𝑖 for some 𝐽 ⊂ 𝐼 .

Proof. Define 𝑆 𝐽 :=
⊕

𝑖∈ 𝐽 𝑀𝑖 for 𝐽 ⊂ 𝐼 . Consider 𝐽 ⊂ 𝐼 such that 𝑆 𝐽 ∩ 𝑁 = 0; check that the union of a nested
collection of these 𝐽 is a subset 𝐽 ′ with 𝑆 𝐽 ′ ∩𝑁 = 0. Then there exists a maximal such 𝐽 . 𝑆 𝐽 ∩𝑁 = 0 by construction,
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and 𝑆 𝐽 + 𝑁 = 𝑀 . If not, there exists 𝑀𝑖 ⊄ 𝑆 𝐽 + 𝑁 , and we could then replace 𝐽 with 𝐽 ∪ {𝑖}, contradiction. □

Theorem 1.34: Every 𝑅-module is semisimple iff 𝑅 =
∏𝑛
𝑖=1 Mat𝑛𝑖 (𝐷𝑖 ) where the 𝐷𝑖 are skew fields.
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