
Lecture 3: Isotypic Decomposition, Density Theorem, 
Noetherian and Artinian Properties, Jacobson Radical 

3.1 𝑘 [𝐺 ]-modules 

Example 3.1: Let 𝐺 be a finite group and 𝑘 a field of characteristic not dividing |𝐺 | (for simplicity, let’s say
char 𝑘 = 0, but the result holds in general). Then all 𝑘 [𝐺 ]-modules are semisimple. 
We will show that every short exact sequence 0 → 𝑁 → 𝑀 → 𝐿 → 0 splits. WLOG, we can assume that 𝐿 
is finite-dimensional. Tensoring with 𝐿∗ and using the fact that Hom𝐺 (𝑉 , 𝑊 ) = (𝑉 ∗ ⊗ 𝑊 )𝐺 when 𝑉 is finite-
dimensional, it suffices to show that for 𝑀 ↠ 𝐿, the restriction to 𝑀𝐺 → 𝐿𝐺 is also onto. But this is true because
given 𝑣 ∈ 𝐿𝐺 , choose any preimage of 𝑣 in 𝑀 , say 𝑣 , and consider 1 

|𝐺 | 
 
𝑔 ( ̃𝑣), which lies in 𝑀𝐺 and maps to 𝑣 .

Corollary 3.2: Suppose that 𝑘 is algebraically closed and |𝐺 | does not divide char 𝑘 . Then |𝐺 | =  (dim 𝜌𝑖 )2 where
the 𝜌𝑖 are the isomorphism classes of simple 𝑘 [𝐺 ]-modules. 

Proof. The only finite skew field extensions of 𝑘 are trivial if 𝑘 is algebraically closed. Hence, by Theorem 2.10
𝑘 [𝐺 ] semisimple means it can be written as 

𝑛 
𝑖=1 Mat𝑑𝑖 (𝑘 ), and the simple 𝑘 [𝐺 ]-modules are exactly 𝑘𝑑𝑖 , while

the dimension of 𝑘 [𝐺 ] over 𝑘 is 
 
𝑑2 
𝑖 . □

3.2 Density Theorem 

Theorem 3.3 (Density Theorem): Let 𝐿 be a simple 𝑅-module and 𝐷 = End𝑅 (𝐿). Then given any finite set
𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛 ∈ 𝐿 with the 𝑥𝑖 linearly independent over 𝐷 , there exists 𝑟 ∈ 𝑅 such that 𝑟 (𝑥𝑖 ) = 𝑦𝑖 . 

Proof. Let 𝒙 = (𝑥1, . . . , 𝑥𝑛 ). We want to show that the map 𝑅 → 𝐿𝑛 taking 𝑟 ↦→ 𝑟 𝒙 is onto. Suppose that 𝑅𝒙 ⊂ 𝐿𝑛 

is a proper submodule, say 𝑁 . Since 𝐿𝑛 is semisimple, we can then decompose 𝐿𝑛 = 𝑁 ⊕ 𝑆 , 𝑆 ≠ 0. Therefore, 
𝐷𝑛 = Hom𝑅 (𝐿, 𝐿𝑛 ) = Hom𝑅 (𝐿, 𝑁 ) ⊕ Hom𝑅 (𝐿, 𝑆 ). Therefore, there exists some (𝑑1, . . . , 𝑑𝑛 ) ∈ 𝐷𝑛 annihilating the
proper subspace Hom(𝐿, 𝑁 ) (acting via the dot product), so the 𝑥𝑖 are linearly dependent, a contradiction. □

Remark 3.4: The submodules in an isotypic component 𝐿𝑛 ⊂ 𝑀 are in bijection with vector subspaces in
𝐷𝑛 , 𝐷 = End(𝐿). The correspondence sends 𝑁 ⊂ 𝐿𝑛 to Hom(𝐿, 𝑁 ) ⊂ Hom(𝐿, 𝐿𝑛 ) = 𝐷𝑛 (exercise). 

Corollary 3.5: If 𝐿 is finite-dimensional simple over 𝐷 := End𝑅 (𝐿), then there is a surjection 𝑅 ↠ End𝐷 (𝐿) 
Mat𝑛 (𝐷 ), 𝑛 = dim𝐷 (𝐿).

Example 3.6: This is not true if 𝑀 is infinite-dimensional over 𝐷 . For example, let 𝑅 = End(C∞) and 𝑀 = C∞ .
Then 𝐷 = End𝑅 (𝑀 ) = C but there is no surjection 𝑅 → End𝐷 (𝑀 ) (see Corollary 1.22).

3.3 Noetherian and Artinian modules 

Definition 3.7: A module is Noetherian (resp. Artinian) if every ascending (resp. descending) chain of submod-
ules stabilizes. 

Remark 3.8: We’ll see that every Artinian ring is also Noetherian, but this is not true for modules.

Example 3.9: Let 𝑅 = Z. Then 𝑀 = Z is a Noetherian module, but it is not Artinian because (𝑝 ) ⊃ (𝑝 2) ⊃ (𝑝 3) ⊃
· · · is an infinite descending chain of submodules. Meanwhile, 𝑁 = Q/Z is Artinian, but it is not Noetherian, 
because 1 

𝑝
𝑁 ⊂ 1

𝑝2 𝑁 ⊂ · · · .

Proposition 3.10: A module is Noetherian iff every submodule is finitely generated. 
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Proof. Let 𝑀 be an 𝑅-module. If every 𝑁 ⊂ 𝑀 is finitely generated, suppose we had an ascending chain of sub-
modules 𝑀1 ⊂ 𝑀2 ⊂ · · · ⊂ and consider 𝑁 = 

 
𝑀𝑖 . Because 𝑁 is finitely generated, say with generators 𝑥1, . . . , 𝑥𝑑 , 

there exists some 𝑖 with 𝑀𝑖 ⊃ { 𝑥1, . . . , 𝑥𝑑 } , and the ascending chain stabilizes at 𝑀𝑖 . 
Now suppose that 𝑀 is Noetherian and 𝑁 ⊂ 𝑀 is a submodule. Obtain a list of generators 𝑥𝑖 ∈ 𝑁 by taking 𝑥1 ≠ 0 
and 𝑥𝑖 any element not in 𝑁𝑖 − 1 := ⟨𝑥1, . . . , 𝑥𝑖 − 1⟩ . The ascending chain 𝑁1 ⊂ 𝑁2 ⊂ · · · must stabilize eventually, 
say at 𝑁𝑑 , and 𝑥1, . . . , 𝑥𝑑 then generate 𝑁 . □ 

Proposition 3.11: If 0 → 𝑀1 → 𝑀 → 𝑀2 → 0 is a short exact sequence and 𝑀1, 𝑀2 are Noetherian (resp. 
Artinian), then 𝑀 is also Noetherian (resp. Artinian). 

Proof. Clear. □ 

3.4 Composition Series 

Definition 3.12: A composition series of a module 𝑀 is a filtration 𝑀0 = 0 ⊊ 𝑀1 ⊊ 𝑀2 ⊊ · · · ⊊ 𝑀𝑛 = 𝑀 where 
𝑀𝑖 /𝑀𝑖 − 1 is simple for all 𝑖 . That is, the filtration has simple associated graded subquotients. If 𝑀 has a composition 
series, we say that it is of finite length and say that 𝑀 has length 𝑛. 

Lemma 3.13: A module 𝑀 has finite length iff 𝑀 is both Noetherian and Artinian. 

Proof. First, suppose 𝑀 has a composition series. Then induct on the length of 𝑀 . If 𝑀 has length 1, it’s simple, 
and therefore both Noetherian and Artinian. If 𝑀 has length 𝑛, then 0 → 𝑀𝑛− 1 → 𝑀 → 𝐿 → 0 and 𝑀𝑛 − 1, 𝐿 are 
Noetherian and Artinian by induction, so 𝑀 also is. 
Now suppose 𝑀 is both Noetherian and Artinian. Because 𝑀 is Artinian, by Zorn’s Lemma any nonempty collec-
tion of submodules has a minimal element. So let 𝑀1 ⊂ 𝑀 be a minimal nonzero submodule; it must be a simple 
submodule. Now inductively define 𝑀𝑖+1 to be the minimal submodule properly containing 𝑀𝑖 ; this will exist un-
less 𝑀𝑖 = 𝑀 , and 𝑀𝑖+1/𝑀𝑖 will be simple. This chain of submodules will terminate because 𝑀 is Noetherian, so 
𝑀𝑛 = 𝑀 for some 𝑛 and we have constructed a composition series for 𝑀 . □ 

Definition 3.14: Let 𝑀1 ⊂ · · · ⊂ 𝑀𝑛 = 𝑀 be a composition series for 𝑀 . The associated graded of the composition 
series is 

gr( 𝑀 ) := 
𝑛 

𝑖=1 

𝑀𝑖 / 𝑀𝑖 − 1. 

Theorem 3.15 (Jordan-H¨ older): Given two composition series 𝑀𝑖 , 𝑀 ′ 𝑖 of 𝑀 , gr( 𝑀 ) = gr′ ( 𝑀 ) . Equivalently, the
number of irreducible subquotients isomorphic to a given simple module 𝐿 is independent of the choice of filtration. 

Proof. Induct on the length of 𝑀𝑖 . If 𝑀𝑖 has length 1, 𝑀 is simple and both filtrations contain only 𝑀 with mul-
tiplicity 1. If not, consider the smallest 𝑗 such that 𝐿 = 𝑀1 ⊂ 𝑀 ′ 𝑗 . Since 𝐿 ⊄ 𝑀 ′ 𝑗− 1, there is a nonzero map 
𝐿 → 𝑀 ′ 𝑗 /𝑀 ′ 𝑗 − 1 = gr′ 𝑗 ( 𝑀 ) , and a nonzero map between simples is an isomorphism. Hence gr′ 𝑗 ( 𝑀 )  𝐿. 
Therefore, 𝑀 /𝑀1 has two filtrations: one given by �̄�𝑖 = 𝑀𝑖+1/𝑀1 and one defined by �̄� ′ 𝑖 is the image of 𝑀 ′ 𝑖 when 
𝑖 < 𝑗 and 𝑀 ′𝑖+1/ 𝑀1 when 𝑖 ⩾ 𝑗 . We know that we get gr( 𝑀 ) = gr ′ ( 𝑀 ) from removing one copy of 𝐿 from gr( 𝑀 ) 
and gr′ ( 𝑀 ) , so by induction, gr( 𝑀 ) = gr′ ( 𝑀 ) . □ 

Remark 3.16: Inspecting the proof of Theorem 3.15, we see that a stronger version of it holds. This stronger 
version claims that for two composition series 0 ⊂ 𝑀1 ⊂ . . . ⊂ 𝑀𝑎 = 𝑀 , 0 ⊂ 𝑀 ′ 1 ⊂ . . . ⊂ 𝑀 ′ 

𝑏
= 𝑀 of 𝑀 there 

exists a canonical bijection 𝜎 : { 1, . . . , 𝑎 } ∼ −→ { 1, . . . , 𝑏 } and a canonical isomorphism 𝑀𝑖 / 𝑀𝑖 − 1 
∼ −→𝑀 ′ 

𝜎 ( 𝑖 ) / 𝑀 ′ 
𝜎 ( 𝑖 )− 1. 

This version of the theorem is interesting already for 𝑅 = 𝑘 (so 𝑀 is a finite-dimensional vector space): in this 
case, composition series of 𝑀 are flags of subspaces in 𝑀 , and 𝜎 describes a “relative position” of these two flags 
with respect to each other. 
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Definition 3.17: Let M be a collection of 𝑅-modules closed under subquotients. The Grothendieck group 𝐾 (M) 
is the free abelian group generated by [𝑀 ], 𝑀 ∈ M, subject to the relations [𝑀 ] = [𝑀1] + [𝑀2] when there is a 
SES 0 → 𝑀1 → 𝑀 → 𝑀2 → 0.

Remark 3.18: For 𝐴 an abelian group, any function M → 𝐴 additive on subquotients then induces a map
𝐾 (M) → 𝐴. For example, if 𝑅 = 𝐷 and M consists of the finite-dimensional vector spaces, dimension is such 
a function. 

Corollary 3.19: Let M be the modules of finite length over 𝑅. Then 𝐾 (M) is freely generated by [𝐿] for (isomor-
phism classes of) irreducible modules 𝐿. 

Proof. The existence of a composition series for each 𝑀 ∈ M means that the [𝐿] generate 𝐾 (M). To see that the
[𝐿] have no relations, notice that Jordan-Hölder implies that there’s a well-defined homomorphism 𝐾 (M) → Z 
sending [𝑀 ] to the multiplicity of 𝐿 in the Jordan-Hölder series of 𝑀 . Thus every [𝑀 ] has a unique decomposition 
into the [𝐿]. □

3.5 Jacobson Radical 

Definition 3.20: The Jacobson radical 𝐽 = 𝐽 (𝑅) of a ring 𝑅 is the intersection of the annihilators of all simple 
𝑅-modules. 

The Jacobson radical has many characterizations. 

Lemma 3.21: For 𝑎 ∈ 𝑅 TFAE: 
a) 𝑎 ∈ Ann(𝐿) for all simple 𝑅-modules 𝐿 (i.e., 𝑎 ∈ 𝐽 (𝑅)),
b) 𝑎 ∈ 𝐼 for all maximal left ideals 𝐼 ,
c) 1 − 𝑥𝑎 has a left inverse for all 𝑥 ,
d) 1 − 𝑥𝑎𝑦 has an inverse for all 𝑥 , 𝑦,
e) 1 − 𝑎𝑥 has a right inverse for all 𝑥 ,
f) 𝑎 ∈ 𝐼 for all maximal right ideals 𝐼 ,
g) 𝑎 ∈ Ann(𝐿) for all simple 𝑅op-modules 𝐿 (i.e., 𝑎 ∈ 𝐽 (𝑅op)).
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