Lecture 3: Isotypic Decomposition, Density Theorem, Noetherian and Artinian Properties, Jacobson Radical

3.1 *k*[*G*]**-modules**

Example 3.1: Let *G* be a finite group and *k* a field of characteristic not dividing |G| (for simplicity, let's say char k = 0, but the result holds in general). Then all k[G]-modules are semisimple.

We will show that every short exact sequence $0 \to N \to M \to L \to 0$ splits. WLOG, we can assume that L is finite-dimensional. Tensoring with L^* and using the fact that $\operatorname{Hom}_G(V, W) = (V^* \otimes W)^G$ when V is finite-dimensional, it suffices to show that for $M \to L$, the restriction to $M^G \to L^G$ is also onto. But this is true because given $v \in L^G$, choose any preimage of v in M, say \tilde{v} , and consider $\frac{1}{|G|} \sum g(\tilde{v})$, which lies in M^G and maps to v.

Corollary 3.2: Suppose that k is algebraically closed and |G| does not divide char k. Then $|G| = \sum (\dim \rho_i)^2$ where the ρ_i are the isomorphism classes of simple k[G]-modules.

Proof. The only finite skew field extensions of k are trivial if k is algebraically closed. Hence, by Theorem 2.10 k[G] semisimple means it can be written as $\prod_{i=1}^{n} \text{Mat}_{d_i}(k)$, and the simple k[G]-modules are exactly k^{d_i} , while the dimension of k[G] over k is $\sum d_i^2$.

3.2 Density Theorem

Theorem 3.3 (Density Theorem): Let *L* be a simple *R*-module and $D = \text{End}_R(L)$. Then given any finite set $x_1, \ldots, x_n, y_1, \ldots, y_n \in L$ with the x_i linearly independent over *D*, there exists $r \in R$ such that $r(x_i) = y_i$.

Proof. Let $\mathbf{x} = (x_1, \ldots, x_n)$. We want to show that the map $R \to L^n$ taking $r \mapsto r\mathbf{x}$ is onto. Suppose that $R\mathbf{x} \subset L^n$ is a proper submodule, say N. Since L^n is semisimple, we can then decompose $L^n = N \oplus S$, $S \neq 0$. Therefore, $D^n = \text{Hom}_R(L, L^n) = \text{Hom}_R(L, N) \oplus \text{Hom}_R(L, S)$. Therefore, there exists some $(d_1, \ldots, d_n) \in D^n$ annihilating the proper subspace Hom(L, N) (acting via the dot product), so the x_i are linearly dependent, a contradiction. \Box

Remark 3.4: The submodules in an isotypic component $L^n \subset M$ are in bijection with vector subspaces in $D^n, D = \text{End}(L)$. The correspondence sends $N \subset L^n$ to $\text{Hom}(L, N) \subset \text{Hom}(L, L^n) = D^n$ (exercise).

Corollary 3.5: If *L* is finite-dimensional simple over $D := \text{End}_R(L)$, then there is a surjection $R \twoheadrightarrow \text{End}_D(L) \cong \text{Mat}_n(D)$, $n = \dim_D(L)$.

Example 3.6: This is not true if *M* is infinite-dimensional over *D*. For example, let $R = \text{End}(\mathbb{C}^{\infty})$ and $M = \mathbb{C}^{\infty}$. Then $D = \text{End}_R(M) = \mathbb{C}$ but there is no surjection $R \to \text{End}_D(M)$ (see Corollary 1.22).

3.3 Noetherian and Artinian modules

Definition 3.7: A module is **Noetherian (resp. Artinian)** if every ascending (resp. descending) chain of submodules stabilizes.

Remark 3.8: We'll see that every Artinian ring is also Noetherian, but this is not true for modules.

Example 3.9: Let $R = \mathbb{Z}$. Then $M = \mathbb{Z}$ is a Noetherian module, but it is not Artinian because $(p) \supset (p^2) \supset (p^3) \supset \cdots$ is an infinite descending chain of submodules. Meanwhile, $N = \mathbb{Q}/\mathbb{Z}$ is Artinian, but it is not Noetherian, because $\frac{1}{p}N \subset \frac{1}{p^2}N \subset \cdots$.

Proposition 3.10: A module is Noetherian iff every submodule is finitely generated.

Proof. Let *M* be an *R*-module. If every $N \subset M$ is finitely generated, suppose we had an ascending chain of submodules $M_1 \subset M_2 \subset \cdots \subset$ and consider $N = \bigcup M_i$. Because *N* is finitely generated, say with generators x_1, \ldots, x_d , there exists some *i* with $M_i \supset \{x_1, \ldots, x_d\}$, and the ascending chain stabilizes at M_i .

Now suppose that *M* is Noetherian and $N \subset M$ is a submodule. Obtain a list of generators $x_i \in N$ by taking $x_1 \neq 0$ and x_i any element not in $N_{i-1} := \langle x_1, \ldots, x_{i-1} \rangle$. The ascending chain $N_1 \subset N_2 \subset \cdots$ must stabilize eventually, say at N_d , and x_1, \ldots, x_d then generate *N*.

Proposition 3.11: If $0 \rightarrow M_1 \rightarrow M \rightarrow M_2 \rightarrow 0$ is a short exact sequence and M_1, M_2 are Noetherian (resp. Artinian), then M is also Noetherian (resp. Artinian).

Proof. Clear.

3.4 Composition Series

Definition 3.12: A composition series of a module M is a filtration $M_0 = 0 \subseteq M_1 \subseteq M_2 \subseteq \cdots \subseteq M_n = M$ where M_i/M_{i-1} is simple for all i. That is, the filtration has simple associated graded subquotients. If M has a composition series, we say that it is of **finite length** and say that M has **length** n.

Lemma 3.13: A module M has finite length iff M is both Noetherian and Artinian.

Proof. First, suppose *M* has a composition series. Then induct on the length of *M*. If *M* has length 1, it's simple, and therefore both Noetherian and Artinian. If *M* has length *n*, then $0 \rightarrow M_{n-1} \rightarrow M \rightarrow L \rightarrow 0$ and M_{n-1}, L are Noetherian and Artinian by induction, so *M* also is.

Now suppose M is both Noetherian and Artinian. Because M is Artinian, by Zorn's Lemma any nonempty collection of submodules has a minimal element. So let $M_1 \subset M$ be a minimal nonzero submodule; it must be a simple submodule. Now inductively define M_{i+1} to be the minimal submodule properly containing M_i ; this will exist unless $M_i = M$, and M_{i+1}/M_i will be simple. This chain of submodules will terminate because M is Noetherian, so $M_n = M$ for some n and we have constructed a composition series for M.

Definition 3.14: Let $M_1 \subset \cdots \subset M_n = M$ be a composition series for M. The **associated graded** of the composition series is

$$\operatorname{gr}(M) := \bigoplus_{i=1}^n M_i / M_{i-1}.$$

Theorem 3.15 (Jordan-Hölder): Given two composition series M_i , M'_i of M, gr(M) = gr'(M). Equivalently, the number of irreducible subquotients isomorphic to a given simple module L is independent of the choice of filtration.

Proof. Induct on the length of M_i . If M_i has length 1, M is simple and both filtrations contain only M with multiplicity 1. If not, consider the smallest j such that $L = M_1 \subset M'_j$. Since $L \not\subset M'_{j-1}$, there is a nonzero map $L \to M'_j/M'_{j-1} = \operatorname{gr}'_j(M)$, and a nonzero map between simples is an isomorphism. Hence $\operatorname{gr}'_j(M) \cong L$. Therefore, M/M_1 has two filtrations: one given by $\overline{M}_i = M_{i+1}/M_1$ and one defined by \overline{M}'_i is the image of M'_i when i < j and M'_{i+1}/M_1 when $i \ge j$. We know that we get $\overline{\operatorname{gr}}(M) = \overline{\operatorname{gr}}'(M)$ from removing one copy of L from $\operatorname{gr}(M)$ and $\operatorname{gr}'(M)$, so by induction, $\operatorname{gr}(M) = \operatorname{gr}'(M)$.

Remark 3.16: Inspecting the proof of Theorem 3.15, we see that a stronger version of it holds. This stronger version claims that for two composition series $0 \subset M_1 \subset ... \subset M_a = M$, $0 \subset M'_1 \subset ... \subset M'_b = M$ of M there exists a *canonical* bijection $\sigma: \{1, ..., a\} \xrightarrow{\sim} \{1, ..., b\}$ and a *canonical* isomorphism $M_i/M_{i-1} \xrightarrow{\sim} M'_{\sigma(i)}/M'_{\sigma(i)-1}$. This version of the theorem is interesting already for R = k (so M is a finite-dimensional vector space): in this case, composition series of M are flags of subspaces in M, and σ describes a "relative position" of these two flags with respect to each other.

Definition 3.17: Let \mathcal{M} be a collection of R-modules closed under subquotients. The **Grothendieck group** $K(\mathcal{M})$ is the free abelian group generated by [M], $M \in \mathcal{M}$, subject to the relations $[M] = [M_1] + [M_2]$ when there is a SES $0 \to M_1 \to M \to M_2 \to 0$.

Remark 3.18: For *A* an abelian group, any function $\mathcal{M} \to A$ additive on subquotients then induces a map $K(\mathcal{M}) \to A$. For example, if R = D and \mathcal{M} consists of the finite-dimensional vector spaces, dimension is such a function.

Corollary 3.19: Let \mathcal{M} be the modules of finite length over R. Then $K(\mathcal{M})$ is freely generated by [L] for (isomorphism classes of) irreducible modules L.

Proof. The existence of a composition series for each $M \in \mathcal{M}$ means that the [L] generate $K(\mathcal{M})$. To see that the [L] have no relations, notice that Jordan-Hölder implies that there's a well-defined homomorphism $K(\mathcal{M}) \to \mathbb{Z}$ sending [M] to the multiplicity of L in the Jordan-Hölder series of M. Thus every [M] has a unique decomposition into the [L].

3.5 Jacobson Radical

Definition 3.20: The **Jacobson radical** J = J(R) of a ring R is the intersection of the annihilators of all simple *R*-modules.

The Jacobson radical has many characterizations.

Lemma 3.21: For $a \in R$ TFAE: a) $a \in Ann(L)$ for all simple R-modules L (i.e., $a \in J(R)$), b) $a \in I$ for all maximal left ideals I, c) 1 - xa has a left inverse for all x, d) 1 - xay has an inverse for all x, y, e) 1 - ax has a right inverse for all x, f) $a \in I$ for all maximal right ideals I, g) $a \in Ann(L)$ for all simple R^{op} -modules L (i.e., $a \in J(R^{op})$). 18.706 Noncommutative Algebra Spring 2023

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.