Lecture 6: Artinian Rings are Noetherian, Projective Covers

6.1 The Akizuki-Hopkins-Levitzki Theorem (Artinian rings are Noetherian)

Lemma 6.1: If R is Artinian, then $J = J(R)$ is a nilpotent ideal, i.e. there exists some $n > 0$ such that $J^n = 0$.

Proof. Saying that $J^n = 0$ is equivalent to saying that $x_1 x_2 \cdots x_n = 0$ for all $x_i \in J$. Consider the decreasing chain $J \supset J^2 \supset \cdots$, which stabilizes because R is Artinian. So let $I = J^n = J^{n+1}$; then $I = I^2$ also. If $I \neq 0$, there exists a minimal left ideal M such that $IM \neq 0$ (use that R is Artinian). Pick $a \in M$ such that $Ia \neq 0$; then $I(Ia) \neq 0$ and $Ia \subseteq M$, so $Ia = M$ by minimality of M. Thus, there exists $x \in I$ such that $a = xa$, so $1 - x$ is a zero divisor. But since $x \in J$, $1 - x$ is invertible, contradiction. □

Theorem 6.2 (Akizuki-Hopkins-Levitzki): If R is (left, right) Artinian, then R has finite length as a (left, right) module over R. In particular, R is Noetherian.

Proof. We’ll show that $M_d := J^d/J^{d+1}$ is a finite length R-module. This module is annihilated by J, so it’s semisimple. Recall that semisimple modules are Artinian iff they are Noetherian iff they are a finite sum of irreducibles. But J^d/J^{d+1} is Artinian, so it has a finite length. Then

$$\text{length}(R) = \sum_{i=0}^{n-1} \text{length}(M_i)$$

where the sum is finite because $J^n = 0$, so R has finite length. □

6.2 Projective covers

Definition 6.3: A module P is projective if $\text{Hom}(P, -)$ is exact (takes short exact sequences to short exact sequences). Equivalently, given a surjection $N \twoheadrightarrow M$, we can lift any map $P \rightarrow M$ (non-uniquely) to a map $P \rightarrow N$.
Example 6.4: Free modules are projective. Direct summands of projective modules are also projective, so direct summands of free modules are projective. In fact, the converse is also true, since every projective P has a surjection $R^i \to P$, so we can lift $P \cong P$ to $P \to R^i$, which gives us a splitting of $R^i = P \oplus Q$.

Corollary 6.5: Every module is the quotient of a projective module.

Definition 6.6: A surjection $\varphi : M \to N$ is an essential surjection if for all $M' \subseteq M$, $\varphi|_{M'}$ is not onto. That is, no proper submodule of M surjects onto N.

Definition 6.7: A projective cover of a module M is an essential surjection $P \to M$ from a projective module P.

Example 6.8: Let M be a finite length module and M^1 be the first term of the cosocle filtration, so $S := M/M^1 = M/JM$ is the maximal semisimple quotient (see Corollary 5.7). Then $M \to S$ is an essential surjection. One way to see this: if $N \subset M$ and $N \to S = M/JM$, then $(M/N)/(M/N) = 0$. So by Nakayama $M/N = 0$. In fact, any essential surjection $M \to S$ with S semisimple and M finite length has this form.

Lemma 6.9:

a) Suppose $p : P \to M$ is a projective cover and $q : Q \to M$ is another surjection from a projective Q to M. Then we can write $Q \cong P \oplus Q'$ with $q|_{Q'} = 0$ and $q|_P = p$.

b) A projective cover (if it exists) is unique up to isomorphism.

Proof. b) follows from a), so it suffices to prove a). We can lift q to a map $\hat{q} : Q \to P$ with $q : Q \cong P \to M$. Since p is an essential surjection, Q must be onto (as $\text{Im}(\hat{q}) \to M$). But surjective maps between projective modules split, so we get the desired splitting of Q.

Proposition 6.10: Suppose R is Artinian.

a) Every irreducible module has a projective cover.

b) The isomorphism classes of irreducible modules are in bijection with isomorphism classes of indecomposable projectives. This bijection sends L to its projective cover and a projective module to its cosocle (its maximal semisimple quotient).

Proof. b) follows from a): let P be an indecomposable projective. Since P is a summand of a free, there is a nonzero map from P to R, hence $P \to L$ for some irreducible L. But P_L, the projective cover of L, is a direct summand of P by Lemma 6.9 so $P \cong P_L$.

To prove a), it suffices to find a projective P_L such that $P_L/JP_L \cong L$, where $J = J(R)$, since then $P_L \to L$ is an essential surjection (see Example 6.8). We will induct on n such that $J^n = 0$. If $n = 1$, R is semi-primitive, and thus $R \cong \bigoplus \text{Mat}_{n_i}(D_i)$. Here everything is projective, so $L = P_L$. In general, we will use the lifting of idempotents; the below lemma will show that we can lift idempotents from R/I to R when $I^2 = 0$.

Suppose $n > 1$, then R/J is semi-primitive, so there exists an idempotent $\tilde{e} \in R/J$ such that $(R/J)\tilde{e} \cong L$. Then we can lift idempotents repeatedly along surjections $R/J^d \to R/J^d$ until we get some e in R (use Lemma 6.11 below). Then consider $P_L = Re$. This satisfies $P_L/JP_L = (R/J)\tilde{e} \cong L$, and P_L is a summand of R, so we are done.

Lemma 6.11: Let S be a ring and $I \subset S$ a 2-sided ideal such that $I^2 = 0$. Then any idempotent $e \in R := S/I$ can be lifted to an idempotent $\tilde{e} \in S$.

Proof. Let e' be any lift of e, not necessarily an idempotent. We can decompose I into the direct sum

$$I = e'1e' \oplus e'I(1-e') \oplus (1-e')le' \oplus (1-e')(1-e').$$

Note that the decomposition above does not depend on the choice of e' (use that $I^2 = 0$). Notice that $\varepsilon := e'(1-e')$ lies in I (as it’s 0 mod I). Moreover, it satisfies $e'\varepsilon(1-e') = (1-e')e'e' = e'^2 = 0$ (use that $I^2 = 0$), so in the direct sum decomposition ε has only nonzero first and last components. That is, we can write $\varepsilon = \varepsilon_+ + \varepsilon_-$, where $\varepsilon_+ \in e'1e'$ and $\varepsilon_- \in e'I(1-e')$. Then $\varepsilon_+ + \varepsilon_- \in I$, so we are done.
and \(\varepsilon_- \in (1 - e')(1 - e') \). Now we claim that

\[
\tilde{e} := e' + e_+ - \varepsilon_-
\]

is an idempotent lifting of \(e \). Indeed we have

\[
\tilde{e}(1 - \tilde{e}) = (e' + e_+ - \varepsilon_-)(1 - e' - e_+ + \varepsilon_-) = \varepsilon - e'e_+ - \varepsilon_-(1 - e') = \varepsilon - e'e - \varepsilon(1 - e') = 0.
\]

Remark 6.12: An alternative approach to the proof of Lemma 6.11 let \(e' \) be a lift of \(e \) and set \(f' := 1 - e' \). We have \(1 - e'^2 - f'^2 \in \mathfrak{I} \) is nilpotent so \(e'^2 + f'^2 \) is invertible and it is easy to see that \(e'' = e' f'^{-1} e' \) is the desired lift of \(e \) (use that \(e'^2 f'^2 = 0 \)).

Remark 6.13: Let \(P_L \) be the projective cover of \(L \). Then \(\text{Hom}_R(P_L, L') = 0 \) if \(L' \neq L \), and \(\text{Hom}_R(P_L, L) \) is a free module over \(D_L^{\text{op}} \), where \(D_L := \text{End}_R(L) \).

Corollary 6.14: Let \(R \) be an Artinian ring and write \(R/J = \prod \text{Mat}_{n_i}(D_i) \), \(D_i = \text{End}(L_i)^{\text{op}} \) where the \(L_i \) are the isomorphism classes of simple \(R \)-modules and \(n_i = \dim_{D_i}(L_i) \). Let \(P_i \) be the projective cover of \(L_i \). Then

\[
R \cong \bigoplus_i p_i^{d_i}
\]

as a left \(R \)-module.

Proof. By Theorem 4.17, \(R \cong \bigoplus_i p_i^{m_i} \) for some multiplicities \(m_i \). Then \(\text{Hom}_R(R, L_i) \cong \text{Hom}_R(P_i^{m_i}, L_i) \), so \(L_i \cong D_i^{m_i} \) and \(m_i = d_i \). □

Remark 6.15: Suppose \(A \) is a finite-dimensional algebra over an algebraically closed field \(k \). Then \(\text{End}_A(L) \cong k \) for all irreducible \(L \). Then we get another proof of Theorem 3.15, as in this case, the multiplicity of \(L_i \) in \(M \) will be \(\dim_k \text{Hom}_A(P_L, M) \).

Corollary 6.16: Let \(R \) be an Artinian ring. Then any finitely generated \(R \)-module has a projective cover.

Proof. Induct on length. Consider \(0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0 \) where \(L \) is simple and suppose we know \(N \) has projective cover \(P_N \) with \(\varphi: P_N \rightarrow N \). If \(P_N \rightarrow M \), then \(P_N \) is also the projective cover of \(M \). Otherwise, \(M \) must split as \(L \oplus \text{Im}(\varphi) = L \oplus N \), so \(P_L \oplus P_N \) is a projective cover of \(M \). □

6.3 Preview of Morita theory

If the \(P_i \) are the indecomposable projectives of a ring \(R \), how is \(S := \text{End}_R \left(\bigoplus_i p_i^{m_i} \right)^{\text{op}} \) related to \(R \)? It turns out that when \(m_i \geq 1 \), \(S \) is Morita equivalent to \(R \), meaning that their module categories are equivalent.

Theorem 6.17: \(S \) is Morita equivalent to \(R \) iff \(S^{\text{op}} = \text{End}_R(P) \), where \(P \) is a finitely generated “projective generator” of \(R \)-Mod.

We will precisely define the projective generator next time, but when \(R \) is Artinian, it will be when \(m_i \geq 1 \) as mentioned above.
18.706 Noncommutative Algebra
Spring 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.