Lecture 6: Artinian Rings are Noetherian, Projective Covers

6 February 28-Artinian rings are Noetherian, projective covers

6.1 The Akizuki-Hopkins-Levitzki Theorem (Artinian rings are Noetherian)

Lemma 6.1: If R is Artinian, then $J=J(R)$ is a nilpotent ideal, i.e. there exists some $n>0$ such that $J^{n}=0$.
Proof. Saying that $J^{n}=0$ is equivalent to saying that $x_{1} x_{2} \cdots x_{n}=0$ for all $x_{i} \in J$. Consider the decreasing chain $J \supset J^{2} \supset \cdots \supset$, which stabilizes because R is Artinian. So let $I=J^{n}=J^{n+1}$; then $I=I^{2}$ also. If $I \neq 0$, there exists a minimal left ideal M such that $I M \neq 0$ (use that R is Artinian). Pick $a \in M$ such that $I a \neq 0$; then $I(I a) \neq 0$ and $I a \subset M$, so $I a=M$ by minimality of M. Thus, there exists $x \in I$ such that $a=x a$, so $1-x$ is a zero divisor. But since $x \in J, 1-x$ is invertible, contradiction.

Theorem 6.2 (Akizuki-Hopkins-Levitzki): IfR is (left, right) Artinian, then R has finite length as a (left, right) module over R. In particular, R is Noetherian.

Proof. We'll show that $M_{d}:=J^{d} / J^{d+1}$ is a finite length R-module. This module is annihilated by J, so it's semisimple. Recall that semisimple modules are Artinian iff they are Noetherian iff they are a finite sum of irreducibles. But J^{d} / J^{d+1} is Artinian, so it has a finite length. Then

$$
\operatorname{length}(R)=\sum_{i=0}^{n-1} \operatorname{length}\left(M_{n}\right)
$$

where the sum is finite because $J^{n}=0$, so R has finite length.

6.2 Projective covers

Definition 6.3: A module P is projective if $\operatorname{Hom}(P,-)$ is exact (takes short exact sequences to short exact sequences). Equivalently, given a surjection $N \rightarrow M$, we can lift any map $P \rightarrow M$ (non-uniquely) to a map $P \rightarrow N$.

Example 6.4: Free modules are projective. Direct summands of projective modules are also projective, so direct summands of free modules are projective. In fact, the converse is also true, since every projective P has a surjection $R^{I} \rightarrow P$, so we can lift $P \cong P$ to $P \rightarrow R^{I}$, which gives us a splitting of $R^{I}=P \oplus Q$.

Corollary 6.5: Every module is the quotient of a projective module.

Definition 6.6: A surjection $\varphi: M \rightarrow N$ is an essential surjection if for all $M^{\prime} \subsetneq M,\left.\varphi\right|_{M^{\prime}}$ is not onto. That is, no proper submodule of M surjects onto N.

Definition 6.7: A projective cover of a module M is an essential surjection $P \rightarrow M$ from a projective module P.

Example 6.8: Let M be a finite length module and M^{1} be the first term of the cosocle filtration, so $S:=M / M^{1}=$ $M / J M$ is the maximal semisimple quotient (see Corollary 5.7). Then $M \rightarrow S$ is an essential surjection. One way to see this: if $N \subset M$ and $N \rightarrow S=M / J M$, then $(M / N) / J(M / N)=0$. So by Nakayama $M / N=0$. In fact, any essential surjection $M \rightarrow S$ with S semisimple and M finite length has this form.

Lemma 6.9:

a) Suppose $p: P \rightarrow M$ is a projective cover and $q: Q \rightarrow M$ is another surjection from a projective Q to M. Then we can write $Q \cong P \oplus Q^{\prime}$ with $\left.q\right|_{Q^{\prime}}=0$ and $\left.q\right|_{P}=p$.
b) A projective cover (if it exists) is unique up to isomorphism.

Proof. b) follows from a), so it suffices to prove a). We can lift q to a map $\tilde{q}: Q \rightarrow P$ with $q: Q \xrightarrow{\tilde{q}} P \xrightarrow{p} M$. Since p is an essential surjection, Q must be onto $(\operatorname{as} \operatorname{Im}(\tilde{q}) \rightarrow M)$. But surjective maps between projective modules split, so we get the desired splitting of Q.

Proposition 6.10: Suppose R is Artinian.
a) Every irreducible module has a projective cover.
b) The isomorphism classes of irreducible modules are in bijection with isomorphism classes of indecomposable projectives. This bijection sends L to its projective cover and a projective module to its cosocle (its maximal semisimple quotient).

Proof. b) follows from a): let P be an indecomposable projective. Since P is a summand of a free, there is a nonzero map from P to R, hence $P \rightarrow L$ for some irreducible L. But P_{L}, the projective cover of L, is a direct summand of P by Lemma 6.9 so $P \cong P_{L}$.
To prove a), it suffices to find a projective P_{L} such that $P_{L} / J P_{L} \cong L$, where $J=J(R)$, since then $P_{L} \rightarrow L$ is an essential surjection (see Example 6.8). We will induct on n such that $J^{n}=0$. If $n=1, R$ is semi-primitive, and thus $R \cong \prod \operatorname{Mat}_{n_{i}}\left(D_{i}\right)$. Here everything is projective, so $L=P_{L}$. In general, we will use the lifting of idempotents; the below lemma will show that we can lift idempotents from R / I to R when $I^{2}=0$.
Suppose $n>1$, then R / J is semi-primitive, so there exists an idempotent $\bar{e} \in R / J$ such that $(R / J) \bar{e} \cong L$. Then we can lift idempotents repeatedly along surjections $R / J^{d+1} \rightarrow R / J^{d}$ until we get some e in R (use Lemma 6.11below). Then consider $P_{L}=R e$. This satisfies $P_{L} / J P_{L}=(R / J) \bar{e} \cong L$, and P_{L} is a summand of R, so we are done.

Lemma 6.11: Let S be a ring and $I \subset S$ a 2-sided ideal such that $I^{2}=0$. Then any idempotent $e \in R:=S / I$ can be lifted to an idempotent $\bar{e} \in S$.

Proof. Let e^{\prime} be any lift of e, not necessarily an idempotent. We can decompose I into the direct sum

$$
I=e^{\prime} I e^{\prime} \oplus e^{\prime} I\left(1-e^{\prime}\right) \oplus\left(1-e^{\prime}\right) I e^{\prime} \oplus\left(1-e^{\prime}\right) I\left(1-e^{\prime}\right)
$$

Note that the decomposition above does not depend on the choice of e^{\prime} (use that $\left.I^{2}=0\right)$. Notice that $\varepsilon:=e^{\prime}\left(1-e^{\prime}\right)$ lies in I (as it's $0 \bmod I$). Moreover, it satisfies $e^{\prime} \varepsilon\left(1-e^{\prime}\right)=\left(1-e^{\prime}\right) \varepsilon e^{\prime}=\varepsilon^{2}=0$ (use that $I^{2}=0$), so in the direct sum decomposition ε has only nonzero first and last components. That is, we can write $\varepsilon=\varepsilon_{+}+\varepsilon_{-}$, where $\varepsilon_{+} \in e^{\prime} I e^{\prime}$
and $\varepsilon_{-} \in\left(1-e^{\prime}\right) I\left(1-e^{\prime}\right)$. Now we claim that

$$
\bar{e}:=e^{\prime}+\varepsilon_{+}-\varepsilon_{-}
$$

is an idempotent lifting of e. Indeed we have

$$
\bar{e}(1-\bar{e})=\left(e^{\prime}+\varepsilon_{+}-\varepsilon_{-}\right)\left(1-e^{\prime}-\varepsilon_{+}+\varepsilon_{-}\right)=\varepsilon-e^{\prime} \varepsilon_{+}-\varepsilon_{-}\left(1-e^{\prime}\right)=\varepsilon-e^{\prime} \varepsilon-\varepsilon\left(1-e^{\prime}\right)=0
$$

Remark 6.12: An alternative approach to the proof of Lemma 6.11 let e^{\prime} be a lift of e and set $f^{\prime}:=1-e^{\prime}$. We have $1-e^{\prime 2}-f^{\prime 2} \in I$ is nilpotent so $e^{\prime 2}+f^{\prime 2}$ is invertible and it is easy to see that $e^{\prime \prime}=\frac{e^{\prime 2}}{e^{\prime 2}+f^{\prime 2}}$ is the desired lift of e (use that $e^{\prime 2} f^{\prime 2}=0$).

Remark 6.13: Let P_{L} be the projective cover of L. Then $\operatorname{Hom}_{R}\left(P_{L}, L^{\prime}\right)=0$ if $L^{\prime} \neq L$, and $\operatorname{Hom}_{R}\left(P_{L}, L\right)$ is a free module over D_{L}^{op}, where $D_{L}:=\operatorname{End}_{R}(L)$.

Corollary 6.14: Let R be an Artinian ring and write $R / J=\prod \operatorname{Mat}_{n_{i}}\left(D_{i}\right), D_{i}=\operatorname{End}\left(L_{i}\right)^{\text {op }}$ where the L_{i} are the isomorphism classes of simple R-modules and $n_{i}=\operatorname{dim}_{D_{i}}\left(L_{i}\right)$. Let P_{i} be the projective cover of L_{i}. Then

$$
R \cong \bigoplus_{i} P_{i}^{d_{i}}
$$

as a left R-module.
Proof. By Theorem 4.17, $R \cong \bigoplus_{i} P_{i}^{m_{i}}$ for some multiplicities m_{i}. Then $\operatorname{Hom}_{R}\left(R, L_{i}\right) \cong \operatorname{Hom}_{R}\left(P_{i}^{m_{i}}, L_{i}\right)$, so $L_{i} \cong D_{i}^{m_{i}}$ and $m_{i}=d_{i}$.

Remark 6.15: Suppose A is a finite-dimensional algebra over an algebraically closed field k. Then $\operatorname{End}_{A}(L) \cong k$ for all irreducible L. Then we get another proof of Theorem 3.15, as in this case, the multiplicity of L_{i} in M will be $\operatorname{dim}_{k} \operatorname{Hom}_{A}\left(P_{L}, M\right)$.

Corollary 6.16: Let R be an Artinian ring. Then any finitely generated R-module has a projective cover.
Proof. Induct on length. Consider $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ where L is simple and suppose we know N has projective cover P_{N} with $\varphi: P_{N} \rightarrow N$. If $P_{N} \rightarrow M$, then P_{N} is also the projective cover of M. Otherwise, M must split as $L \oplus \operatorname{Im}(\varphi)=L \oplus N$, so $P_{L} \oplus P_{N}$ is a projective cover of M.

6.3 Preview of Morita theory

If the P_{i} are the indecomposable projectives of a ring R, how is $S:=\operatorname{End}_{R}\left(\bigoplus_{i} P_{i}^{m_{i}}\right)^{\text {op }}$ related to R ? It turns out that when $m_{i} \geqslant 1, S$ is Morita equivalent to R, meaning that their module categories are equivalent.

Theorem 6.17: S is Morita equivalent to R iff $S^{\circ p}=\operatorname{End}_{R}(P)$, where P is a finitely generated "projective generator" of R-Mod.

We will precisely define the projective generator next time, but when R is Artinian, it will be when $m_{i} \geqslant 1$ as mentioned above.

MIT OpenCourseWare
https://ocw.mit.edu

18.706 Noncommutative Algebra

Spring 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

