Lecture 6: Artinian Rings are Noetherian, Projective Covers
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6.1 The Akizuki-Hopkins-Levitzki Theorem (Artinian rings are Noetherian)
Lemma 6.1: If R is Artinian, then J = J(R) is a nilpotent ideal, i.e. there exists some n > 0 such that J" = 0.

Proof. Saying that J” = 0 is equivalent to saying that x;x; - - - x, = 0 for all x; € J. Consider the decreasing chain
J > J? o --- D, which stabilizes because R is Artinian. So let I = J* = J®1; then I = I? also. If I # 0, there exists
a minimal left ideal M such that IM # 0 (use that R is Artinian). Pick a € M such that Ia # 0; then I(Ia) # 0 and
Ia ¢ M, so Ia = M by minimality of M. Thus, there exists x € I such that a = xa, so 1 — x is a zero divisor. But
since x € J, 1 — x is invertible, contradiction. O

Theorem 6.2 (Akizuki-Hopkins-Levitzki): If R is (left, right) Artinian, then R has finite length as a (left, right)
module over R. In particular, R is Noetherian.

Proof. We’ll show that My := J¢/J%*! is a finite length R-module. This module is annihilated by J, so it’s semisimple.
Recall that semisimple modules are Artinian iff they are Noetherian iff they are a finite sum of irreducibles. But
J4/J4+! is Artinian, so it has a finite length. Then

n—-1

length(R) = Z length(M,)

i=0

where the sum is finite because /" = 0, so R has finite length. m|

6.2 Projective covers

Definition 6.3: A module P is projective if Hom(P, —) is exact (takes short exact sequences to short exact se-
quences). Equivalently, given a surjection N - M, we can lift any map P — M (non-uniquely) to a map P — N.
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Example 6.4: Free modules are projective. Direct summands of projective modules are also projective, so
direct summands of free modules are projective. In fact, the converse is also true, since every projective P has
a surjection R! - P, so we can lift P = P to P — R!, which gives us a splitting of Rl = P & Q.

Corollary 6.5: Every module is the quotient of a projective module.

Definition 6.6: A surjection ¢: M — N is an essential surjection if for all M’ C M, ¢|sv is not onto. That is,
no proper submodule of M surjects onto N.

Definition 6.7: A projective cover of a module M is an essential surjection P = M from a projective module P.

Example 6.8: Let M be a finite length module and M! be the first term of the cosocle filtration, so S := M/M! =
M/JM is the maximal semisimple quotient (see Corollary[5.7). Then M — S is an essential surjection. One way
to see this: if N ¢ M and N » S = M/JM, then (M/N)/J(M/N) = 0. So by Nakayama M/N = 0. In fact, any
essential surjection M — S with S semisimple and M finite length has this form.

Lemma 6.9:
a) Suppose p: P - M is a projective cover and q: Q = M is another surjection from a projective Q to M. Then
we can write Q = P & Q" withqlo: =0 and q|p = p.
b) A projective cover (if it exists) is unique up to isomorphism.

Proof. b) follows from a), so it suffices to prove a). We can lift g to a map §: Q — P withq: Q 4 p % M. Since p
is an essential surjection, Q must be onto (as Im(§) - M). But surjective maps between projective modules split,
so we get the desired splitting of Q. m]

Proposition 6.10: Suppose R is Artinian.
a) Every irreducible module has a projective cover.
b) The isomorphism classes of irreducible modules are in bijection with isomorphism classes of indecomposable
projectives. This bijection sends L to its projective cover and a projective module to its cosocle (its maximal
semisimple quotient).

Proof. b) follows from a): let P be an indecomposable projective. Since P is a summand of a free, there is a nonzero
map from P to R, hence P - L for some irreducible L. But Py, the projective cover of L, is a direct summand of P
by Lemmal[6.9] so P = P;.

To prove a), it suffices to find a projective Py such that Pr/JP; = L, where J = J(R), since then P, - L is an
essential surjection (see Example [6.8). We will induct on n such that J* = 0. If n = 1, R is semi-primitive, and thus
R = [ Mat,, (D;). Here everything is projective, so L = P. In general, we will use the lifting of idempotents; the
below lemma will show that we can lift idempotents from R/I to R when I% = 0.

Suppose n > 1, then R/] is semi-primitive, so there exists an idempotent € € R/J such that (R/J)é = L. Then we
can lift idempotents repeatedly along surjections R/J**' - R/J? until we get some e in R (use Lemma below).
Then consider P; = Re. This satisfies Py /JP; = (R/]J)é = L, and Py, is a summand of R, so we are done. O

Lemma 6.11: Let S be a ring and I C S a 2-sided ideal such that I* = 0. Then any idempotent e € R := S/I can be
lifted to an idempotent € € S.

Proof. Let ¢’ be any lift of e, not necessarily an idempotent. We can decompose I into the direct sum
I=éle@el(1-¢e)d(1-¢)le' ®(1-¢€)I(1-¢).
Note that the decomposition above does not depend on the choice of e’ (use that I? = 0). Notice that ¢ := e’ (1—¢’)

lies in I (as it’s 0 mod I). Moreover, it satisfies e’e(1—e’) = (1—e’)ee’ = €2 = 0 (use that I> = 0), so in the direct sum
decomposition ¢ has only nonzero first and last components. That is, we can write ¢ = &, + ¢_, where ¢, € e’le’
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and e_ € (1 —¢€’)I(1 —¢’). Now we claim that
e=¢ +e.—e_
is an idempotent lifting of e. Indeed we have

e(1-e)=(e'+e,—e )1 —-¢€ —e,+e )=c—¢e'ep—e (1-€)=c—e'e—e(1-¢)=0.

Remark 6.12: An alternative approach to the proof of Lemmal6.11} let ¢’ be a lift of e and set f” := 1 —¢’. We

have 1 - e’? — f’% € I is nilpotent so e’ + f’? is invertible and it is easy to see that e’ = is the desired lift

of e (use that e’*f'* = 0).

e/Z
2, 12
e’ +f

Remark 6.13: Let P;, be the projective cover of L. Then Homg(Pr, L") = 0if L’ # L, and Homg(Py, L) is a free
module over sz, where Dy := Endg(L).

Corollary 6.14: Let R be an Artinian ring and write R/J = [] Mat,,(D;), D; = End(L;)°® where the L; are the
isomorphism classes of simple R-modules and n; = dimp, (L;). Let P, be the projective cover of L;. Then

R= (PP
i
as a left R-module.

Proof. By Theorem 4.17, R = (P, P;"" for some multiplicities m;. Then Homg (R, L;) = Homg(P;", L;), so L; = D"
and m; = d;. ]

Remark 6.15: Suppose A is a finite-dimensional algebra over an algebraically closed field k. Then End4 (L) = k
for all irreducible L. Then we get another proof of Theorem 3.15, as in this case, the multiplicity of L; in M will
be dimy Homy (Pp, M).

I Corollary 6.16: Let R be an Artinian ring. Then any finitely generated R-module has a projective cover.

Proof. Induct on length. Consider 0 - L — M — N — 0 where L is simple and suppose we know N has
projective cover Py with ¢: Py = N. If Py - M, then Py is also the projective cover of M. Otherwise, M must
splitas L @ Im(¢) = L ® N, so P. @ Py is a projective cover of M. O

6.3 Preview of Morita theory

If the P; are the indecomposable projectives of a ring R, how is S := Endg (6B, P} )P related to R? It turns out that
when m; > 1, S is Morita equivalent to R, meaning that their module categories are equivalent.

Theorem 6.17: S is Morita equivalent to R iff S°P = Endg(P), where P is a finitely generated “projective generator”
of R-Mod.

We will precisely define the projective generator next time, but when R is Artinian, it will be when m; > 1 as
mentioned above.
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