Lecture 7: Categories and Morita Equivalence

7 March 2 - Categories and Morita equivalence

Remark 7.1: We can also discuss projective covers of graded modules over graded rings. Let R = @D, Rx
with Ry Artinian and let L be an irreducible graded module over R that is concentrated in one degree. WLOG
we can assume L is concentrated in degree 0. Then P = Rey is a graded projective cover of L; ey € Ry is the
idempotent corresponding to the projective cover of L as an Ry-module.

7.1 Morita equivalence

Definition 7.2: We say that two rings are Morita equivalent if their categories of modules are equivalent.
(Below, we will recall some facts about categories.)

Theorem 7.3: A ring S is Morita equivalent to a ring R iff S = Endg (P)°P where P is a finitely generated projective
generator of the category of R-modules.

Definition 7.4: A projective module P over a ring R is a projective generator if Hom(P, M) # 0 for every nonzero
R-module M.

Lemma 7.5: M is a generator iff R is a direct summand in M™ for some n.

Proof. If M is a generator, then for every module N, the images of all possible homomorphisms M — N generate N.
This is because if S is the sum of all the images of such maps, then Hom(M, S) — Hom(M, N) is an isomorphism,
and since M is a generator, this implies that S = N.

Now if N is finitely generated, say with generators n;, and n; = ) f;;(m;) where f;; € Hom(M, N), then only
images for those finitely many f;; are needed to generate N. Hence there is a surjection M" —» N. In particular, if
we take N = R, R is projective, so the surjection splits and R is a summand of M".

In the other direction, if R is a summand of M", this implies M" is a generator, and hence M is a generator also. O

Example 7.6: R is Morita equivalent to itself. In this case, take P = R (the rank 1 free module), and R =
Endg (R)°P. More generally, if we take P = R", then S = Endg(R")°? = Mat, (R) is Morita equivalent to R also.

Using the lemma, we see that if R is Artinian with indecomposable projectives Py,...,P,, P = D P is a
projective generator iff m; > 1 for all i. In particular, if we take m; = 1 for all i, then S = Endg(P)°? is what’s
known as a based ring, meaning that each irreducible L; is a one-dimensional vector space over D; = Endg(L;).

Proposition 7.7: Let P = Re for an idempotent e € R. Then P is a generator iff R = ReR.

Proof. Suppose R = ReR. Then we can write 1 = ) a;eb; for a;, b; € R, so the map P* — R given by (x1,...,x,) —
Y. x;b; is onto. So by the lemmal(7.5] P is a generator.
In the other direction, M = R/ReR satisfies Hom(P, M) = eM = 0, so if M # 0, P can’t be a generator. O

7.2 Categories and the Yoneda Lemma

Quick review: a (small) category C consists of a set of objects Ob(C), a set of morphisms Hom¢ (X, Y) forall X, Y €
Ob(C), an identity morphism idx € Hom(X, X), and an associative composition operation.

Remark 7.8: Small categories are those where Ob(C) is actually a set. Since there is no such thing as the “set
of all sets”, categories like Set or R-Mod are not small. We could get around this by fixing a universe and only
considering sets from this universe. We could also consider “large” categories, whose objects form a collection
more general than a set, called a class. We will ignore all these set-theoretic issues.

Given two categories Cy, C,, we can talk about the category of functors Fun(Cj, C;) whose objects are functors and
whose morphisms are natural transformations.
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Definition 7.9: A functor F is faithful if the map Hom(X,Y) — Hom(F(X), F(Y)) is injective for all X, Y.
Definition 7.10: A functor F is fully faithful if the map Hom(X,Y) — Hom(F(X), F(Y)) is an isomorphism.
Definition 7.11: A functor F is essentially surjective if it is surjective on isomorphism classes of objects.

Definition 7.12: A functor F: C; — C, is an equivalence of categories if there exists G: C; — C; such that
F o G,G o F are isomorphic to the respective identity functors (that is, they are naturally equivalent to the identity
functors).

Lemma 7.13: A functor F is an equivalence of categories iff it is fully faithful and essentially surjective.

Proof. Since we are ignoring set-theoretic considerations, we get to use the axiom of choice. It’s clear that if F is
an equivalence, then it’s fully faithful and essentially surjective. In the other direction, if F is essentially surjective,
the axiom of choice allows us to choose X € Ob(C;) and G(X) € Ob(C)) such that ix: X = F(G(X)). Then we
can define G(f: X — Y) as follows: first iy! o f o ix gives a map F(G(X)) — F(G(Y)), and because F is fully
faithful, this corresponds to a unique G(f): G(X) — G(Y). Then one can verify that G is indeed a functor and
that F o G and G o F are equivalent to id,. O

Lemma 7.14 (Yoneda Lemma): For a category C, consider the functors R: C°® — Fun(C, Set) and C: C —
Fun(C°P, Set) where R(X): T — Hom(X,T) and C(X): T — Hom(T, X). Then R, C are fully faithful. Here R is
for “represent” and C for “corepresent”.

Proof (Sketch). For X,Y € Ob(C), there’s a natural map Hom(X,Y) — Hom(R(X),R(Y)) given by composing
with the map X — Y. In the other direction, given ¢: R(X) — R(Y), send it to the element ¢(idx) € Hom(X, Y).
It’s easy to see these are inverse bijections. The argument for C is similar. O

That is, an object in C is uniquely defined up to unique isomorphism up to the functor it (co)represents.

Example 7.15: The initial (resp. final) object of a category C is an object I (resp. F) such that Hom(I, X) (resp.
Hom(X, F)) is a singleton. By the Yoneda lemma, initial and final objects are unique up to unique isomorphism
(if they exist). For example, in the category R-Mod, the zero module is both initial and final.

Definition 7.16: The coproduct (resp. product) is the object representing (resp. corepresenting) the product of
Hom sets: Hom (][ X;, T) = [[Hom(X;, T) and Hom (T, [ X;) = [ Hom(T, X;). These are unique up to unique
isomorphism if they exist.

Example 7.17: In R-Mod, these both exist; coproduct is the direct sum and product is the usual product.

Remark 7.18: We can characterize the statement that a finite direct sum is the same as a finite product in
categorical terms. Using the final object 0, there is a morphism [ [ X; — X;. Hence, thereisamap [[ X; — [] X,
and this is an isomorphism when the X; form a finite collection.

Remark 7.19: This can also be used to show that Hom(M, N) has an abelian group structure. You can define
the sum of two maps f,g: M — N as the composition

id id
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7.3 Proof of Morita equivalence theorem

Proof (of Theorem|7.3). Suppose F: S-Mod — R-Mod is an equivalence. We will show that P := F(S) is a finitely
generated projective generator in R-Mod and that S = Endg(S)°? = Endgr(P)°P. This follows from the following
observations:

« F sends projective S-modules to projective R-modules. M is projective iff Hom(M, —) is exact, i.e. sends
a surjective map of modules to a surjective map of sets. A map of modules T; — T, is surjective iff
Hom(T;, X) — Hom(T3, X) is injective for all X. Using essential surjectivity of F, we find N1, N2, Y € S-Mod
such that F(N;) = T; and F(X) = Y; then the full faithfulness of F implies that Ny —-» N,. Then
Hom(M, N;) - Hom(M, N,) combined with full faithfulness of F translates this into Hom(F(M), T;) -
Hom(F(M), T,).

« F sends a projective generator to a projective generator, since Hom(M, N) = 0 & Hom(F(M),F(N)) =0
by full faithfulness of F.

« F sends finitely generated projective S-modules to finitely generated projective R-modules. Use the following
characterization of finitely generated projectives: a projective P is finitely generated iff Hom (P, —) commutes
with arbitrary coproducts (i.e. [[ Hom(P, X;) = Hom (P, [ ] X;). If P is projective and finitely generated, it’s
a direct summand of S”, which has this property, so P also has this property. In the other direction, suppose
Hom(P, —) commutes with coproducts. We know P is the direct summand of some free module, say EB 1S,
which then splits as P @ Q. Then Hom(P, B, S) = §; Hom(P, S), so the image of P — (P, S must land in
a finite direct sum S" = EB] S, |J| < o0. S™ will also split as P & (Q N S™), so P is in fact finitely generated.
Since F is an equivalence of categories, it preserves the property that Hom(F (P), —) commutes with arbitrary
coproducts, so F(P) is also finitely generated projective.

Combining these three, we get that F(S) is a finitely generated projective generator. Because F is fully faithful,
Homg (S, S) = Hompg(F(S), F(S)) = Endg(P), so S = Endg(P)°P.

In the other direction, we want to show that if S = Endg(P)°P for P a finitely generated projective generator P
of R-Mod, the functor Fp: M — Homg(P, M) is the desired equivalence of categories. Here M € R-Mod and
Hompg (P, M) has an S-action via composition.

Fp induces an isomorphism Homg (P, N) = Homg(Fp(P), Fp(N)) for all N: the RHS will be Homg(S, Fp(N)) =
Fp(N) = Hom(P, N). This isomorphism coincides with the Fp-action on morphisms.

Since P is finitely generated and projective, Fp commutes with coproducts. Moreover, P is a projective generator,
we claim we can find an exact sequence P®/ — P® — M — 0.

Lemma 7.20: A projective module P is a generator iff the free module R is a direct summand in P" for some n iff
every module is a quotient of P®!.

Now we want to show that Hom(M, N) — Hom(Fp(M), Fp(N)) is an isomorphism. Notice that if this is true
for Mj, My, it’s also true for coker(f), f: M; — M, because exactness of Fp implies that both Hom-spaces are the
kernel of the map Hom(M,, N) — Hom(Mj, N). So by the above, it suffices to show that this is true for M = P®,
but that is what we proved above. So Fp is fully faithful.

To see that Fp is essentially surjective, take N € S-Mod, which fits in an exact sequence seJ L s®l . N = o.
Because Fp is fully faithful, f = Fp(g) for g: P®/ — P®!. Hence N = Fp(coker(g)). Thus, Fp is an equivalence of
categories. m]

Example 7.21: Now it’s interesting to consider notions that are invariant under Morita equivalence. We will
see that the center Z(R) and cocenter C(R) of a ring are such notions, i.e. if R, S are Morita equivalent, they
have the same center and the same cocenter.

21



MIT OpenCourseWare
https://ocw.mit.edu

18.706 Noncommutative Algebra
Spring 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.



https://ocw.mit.edu/terms
https://ocw.mit.edu

	March 2 - Categories and Morita equivalence
	Morita equivalence
	Categories and the Yoneda Lemma
	Proof of Morita equivalence theorem

	March 7 - Morita theory continued: (co)centers, functors and bimodules



