11.1 More on the Hattori-Stallings Dennis trace

Recall from Lemma 8.5 that the cocenter R/[R,R] = C(R) receives a universal trace map $\tau(P,\varphi) \in C(R)$ where P is a finitely generated projective and $\varphi \in \operatorname{End}(P)$. In fact, if R is Noetherian and of finite homological dimension, you can extend τ to $\tau(M,\varphi)$ where M is any finitely generated module. To do so, choose a finite projective resolution $0 \to P^{-n} \to P^{-n+1} \to \cdots \to P^0 \to M \to 0$ (which exists because R has finite homological dimension). Then we can lift φ to $\tilde{\varphi} \in \operatorname{End}(P_M^{\bullet})$ and this will be unique up to homotopy. Define

$$\tau(M,\varphi) = \sum_{i} (-1)^{i} \tau(P^{-i}, \tilde{\varphi}^{-i})$$

which is well-defined because $M \mapsto P_M^{\bullet}$ is a fully faithful functor to the homotopy category of complexes. Moreover, τ is additive on short exact sequences of modules.

Corollary 11.1: If R is a finite-dimensional algebra of finite homological dimension over an algebraically closed field k, then $J(R) \subset [R, R]$.

Proof.

Lemma 11.2: For $M \in R$ -Mod and $\varphi \in \operatorname{End}_R(M)$, we can find a φ -invariant Jordan-Holder series of M.

Proof. Consider $\varphi|_{Soc(M)}$: $Soc(M) \to Soc(M)$, where $Soc(M) = \bigoplus_i L_i^{d_i}$ is the socle of M. Then φ induces an R-linear map $L_i^{d_i} \to L_i^{d_i}$ i.e. an element of $End_R(L_i^{d_i}) = Mat_{d_i}(k)$ (use Schur's lemma) and this matrix has an eigenvector, which generates a φ -invariant irreducible submodule in M. Then by inducting on the length of M, we get a φ -invariant Jordan-Holder series.

Thus, $\tau(M, \varphi) = \sum_i \tau(L_i, \lambda_i) = \sum_i \lambda_i \tau(L_i, 1)$ where $\lambda_i \in k$. It follows that the elements $\tau(L_i, 1) \in C(R)$ generate C(R) as a vector space over k (use Lemma 8.5 or Example 8.6). We conclude that C(R) has dimension (over k) at most the number of irreducibles L_i . On the other hand, let $\bar{R} := R/J(R)$ and note that $C(R) \twoheadrightarrow C(\bar{R})$. It's easy to see that $C(\bar{R}) = k^{\#L_i}$, so $C(R) \cong C(\bar{R})$ and $J(R) \subset [R, R]$.

Question: Is there a way to prove this without using the trace map?

11.2 Minimal resolutions and Koszul rings

Given a module *M*, how can we find its minimal resolution? For certain algebras called Koszul algebras, their minimal resolutions are called Koszul complexes. One great reference is [5, Section 2].

Let *A* be a nonnegatively graded algebra over an algebraically closed field *k* with A_0 semisimple. We will be interested in the case $A_0 = k$ so we can write $A = k \oplus A_{>0}$.

Remark 11.3: An elementary property of minimal resolutions for graded modules is that if $M = \bigoplus_{i \ge 0} M_i$, then P^{-i} must be concentrated in degrees i and higher, since the projective cover $P \twoheadrightarrow M$ is an isomorphism in the bottom degree (use that $A_0 = k$ is semisimple).

We will need the following technical lemma.

Lemma 11.4: Let M be a finitely generated graded module over A. Then the following properties are equivalent: (i) M is generated by degree i elements,

- (ii) $M \otimes_A k$ is concentrated in degree i,
- (iii) $\operatorname{Hom}_A(M, k)$ is concentrated in degree -i.

Proof. Lemma follows from the Nakayama lemma together with the fact that

$$\operatorname{Hom}_{A}(M, k) = \operatorname{Hom}_{A_{0}}(M/A_{>0}M, k) = (M/A_{>0}M)^{*}.$$

Definition 11.5: We say that A is **Koszul** if P^{-i} is generated by degree i elements. Equivalently, $\operatorname{Tor}_i^A(k,k)$ (where each of the k are in degree 0) is concentrated in degree i, which is equivalent to $\operatorname{Ext}_A^i(k,k)$ is concentrated in degree -i (use Lemma 11.2 above).

Theorem 11.6:

- a) Koszul rings are **quadratic**, i.e. $A = T(V)/\langle I \rangle$, where T(V) is the tensor algebra for a vector space V and I is a subspace of $V \otimes V$.
- b) If A is Koszul, then $\operatorname{Ext}_A^{\bullet}(k,k) = A^!$, where $A^!$ is the **dual quadratic algebra** $T(V^*)/\langle I^{\perp}\rangle$.

Example 11.7: Let A = T(V), so I = 0. Then the dual quadratic algebra is $A^! = T(V^*)/\langle V^* \otimes V^* \rangle = k \oplus V^*$. Hence $\operatorname{Ext}_A(k,k)$ is only nonzero in degrees 0 and 1. $k = T(V)/\langle V \rangle$ then has a free resolution in degrees 0 and 1.

Example 11.8: Let $A = \text{Sym}(V) = T(V)/\langle \wedge^2 V \rangle$. Then $A^! = T(V^*)/\langle \text{Sym}^2(V^*) \rangle = \bigwedge^{\bullet} V^*$.

Definition 11.9: The dth Veronese subalgebra $A^{(d)}$ is $\bigoplus_{n=0}^{\infty} A_{nd}$.

Let us mention the following theorem without a proof (see [3] for details).

Theorem 11.10: If A is a finitely generated commutative algebra, $A^{(d)}$ is Koszul for large d.

Remark 11.11: Using the approach of [6, Section 2] or [10] (see also Remark 12.2 below) one can easily prove (using Serre's vanishing theorem) that for every $m \in \mathbb{Z}_{\geq 0}$ and large enough d (depending on m) the algebra $A^{(d)}$ has the following property: P^{-i} is generated by degree i elements for $i \leq m$. The statement of Theorem 11.10 is stronger, and the proof is more involved.

11.3 Koszul complexes

Remark 11.12: Assume $A = T(V)/\langle I \rangle$ is quadratic. Then

$$A_n = T^n(V)/\langle I \rangle_n = V^{\otimes n} / \left(\sum_{i=0}^{n-2} V^{\otimes i} \otimes I \otimes V^{\otimes n-i-2} \right).$$

Define

$$R_n := \bigcap_{i=0}^{n-2} V^{\otimes i} \otimes I \otimes V^{\otimes n-i-2}$$

to be the intersection rather than the sum. Then $R_n = (A_n^!)^*$,

$$R_n^* = V^{*\otimes n} / \left(\sum_{i=0}^{n-2} (V^*)^{\otimes i} \otimes I^{\perp} \otimes (V^*)^{\otimes n-i-2} \right) = A_n^!.$$
 (1)

Definition 11.13: The **Koszul complex**, denoted \mathbb{K}^{\bullet} , is a complex of free A-modules $\cdots \to A \otimes_k R_2 \to A \otimes_k R_1 \to A$. As (graded) vector spaces, $\mathbb{K}^{\bullet} = \bigoplus_{n=0}^{\infty} \mathbb{K}_{n}^{\bullet}$. The differential of \mathbb{K}_{n}^{\bullet} is given by:

$$\mathbb{K}_n^{i-n} = A_i \otimes R_{n-i} \hookrightarrow A_i \otimes V \otimes R_{n-i-1} \longrightarrow A_{i+1} \otimes R_{n-i-1} = \mathbb{K}_n^{i+1-n}$$

where the left map is induced by the natural embedding $R_{n-i} \subset V \otimes R_{n-i-1}$ and the right map is induced by the multiplication $A_i \otimes V \to A_{i+1}$.

Definition 11.14: Let V be a vector space. A **distributive lattice** of subspaces of V is a collection of subspaces satisfying

- For Y in the lattice, $X \subset Y$ is also in the lattice
- For X, Y in the lattice, X + Y is also in the lattice
- For X, Y, Z in the lattice, $X \cap (Y + Z) = (X \cap Y) + (X \cap Z)$ (distributivity).

Theorem 11.15 (Theorem 11.6 cont.):

- a) Koszul rings are **quadratic**, i.e. $A = T(V)/\langle I \rangle$, where T(V) is the tensor algebra for a vector space V and I is a subspace of $V \otimes V$.
- b) If A is Koszul, then $\operatorname{Ext}_A^{\bullet}(k,k) = A^!$, where $A^!$ is the **dual quadratic algebra** $T(V^*)/\langle I^{\perp}\rangle$.
- c) Say A is a quadratic algebra. It is Koszul iff \mathbb{K} is exact, i.e. $H^i(\mathbb{K}) = 0$ for all $i \neq 0$, iff \mathbb{K} is the minimal resolution of the left module k.
- d) Say A is a quadratic algebra. It is Koszul iff for all n, the n-1 vector spaces $V^{\otimes i} \otimes I \otimes V^{\otimes n-i-2}$, $i=0,\ldots,n-2$, generate a distributive lattice of subspaces of $V^{\otimes n}$.

Lemma 11.16: A collection of vector subspaces in a vector space W generate a distributive lattice iff there exists a basis of W such that every subspace is spanned by a subset of the basis.

Proof. Clear.

Remark 11.17: The distributive property for the subspaces of $V^{\otimes n}$ described above is what implies the exactness of \mathbb{K}_n . Moreover, the exactness of \mathbb{K}_m , $m \leq n$, implies the distributive property for the subspaces of $V^{\otimes n}$.

For a collection $\mathcal{W} = (W; W_1, \dots, W_n)$, where W is a vector space and $W_1, \dots, W_n \subset W$ are its subspaces let $K^{-l} = K^{-l}(\mathcal{W}) := \bigcap_{i=1}^{l-1} W_i / \left((W_{l+1} + \dots + W_n) \cap \left(\bigcap_{i=1}^{l-1} W_i \right) \right)$, where $l = 0, 1, \dots, n+1$.

For example, we have

$$K^{-n-1} = \bigcap_{i=1}^{n} W_i, K^{-n} = \bigcap_{i=1}^{n-1} W_i, K^{-n+1} = \bigcap_{i=1}^{n-2} W_i / \left(W_n \cap \left(\bigcap_{i=3}^{n} W_i \right) \right), \dots, K^{-1} = W / \sum_{i=2}^{n} W_i, K^0 = W / \sum_{i=1}^{n} W_i.$$

We have the natural maps $K^l \to K^{l+1}$ that make $K^{\bullet} = K^{\bullet}(W)$ into a complex.

Lemma 11.18: If $W_1, ..., W_n \subset W$ are proper subspaces and every proper subset of $\{W_1, ..., W_n\}$ generate a distributive lattice then $W_1, ..., W_n$ do the same iff $K^{\bullet}(W)$ is exact.

Proof. It is clear that if $\{W_1, \ldots, W_n\}$ generate a distributive lattice then $K^{\bullet}(W)$ is exact (for example, use Lemma 11.16).

Assume now that $K^{\bullet}(W)$ is exact. We prove the claim by the induction on n. We follow [4, Section 4.5]. We will use the following notations. Given a collection $U_1, \ldots, U_n \subset U$, say that a subspace $B \subset U$ is a splitting for $(U; U_1, \ldots, U_n)$ if there exists $C \subset U$ such that $B \oplus C = U$ and $(B \cap U_i) + (C \cap U_i) = U_i$. We will say that $(U; U_1, \ldots, U_n)$ is indecomposable if U has no proper nonzero subspaces that split $(U; U_1, \ldots, U_n)$. The following easy facts will be extremely useful.

Fact (1): The subspace $U_1 \cap ... \cap U_i$ or $U_1 + ... + U_i$ is a splitting for $(U; U_1, ..., U_n)$ iff it is a splitting for $(U; U_{i+1}, ..., U_n)$.

₽roof. Clear.

Fact (2): Assume that $(U_1 + \ldots + U_i) \cap (U_{i+1} \cap \ldots \cap U_j) = 0$ and $U_{i+1} \cap \ldots \cap U_j$ is a splitting for $(U; U_1 + \ldots + U_i, U_{j+1}, \ldots, U_n)$. Then $U_{i+1} \cap \ldots \cap U_j$ is a splitting for $(U; U_1, \ldots, U_n)$.

Proof. Let $(U_{i+1} \cap \ldots \cap U_j) \oplus B$ be a splitting for $(U; U_1 + \ldots + U_i, U_{j+1}, \ldots, U_n)$. Our goal is to check that it also gives a splitting for $(U; U_1, \ldots, U_n)$. From $(U_1 + \ldots + U_i) \cap (U_{i+1} \cap \ldots \cap U_j) = 0$ we conclude that $U_1 + \ldots + U_i \subset B$ so $U_1, \ldots, U_i \subset B$. It remains to check that $U_k = (U_k \cap (U_{i+1} \cap \ldots \cap U_j)) + (U_k \cap B)$ for $k = i+1, \ldots, j$. This is clear since $U_{i+1} \cap \ldots \cap U_j \subset U_k$. □

Fact (2'): Assume that $(U_1 \cap \ldots \cap U_i) \cap (U_{i+1} + \ldots + U_j) = 0$ and $U_1 \cap \ldots \cap U_i$ is a splitting for $(U; U_{i+1} + \ldots + U_j, U_{j+1}, \ldots, U_n)$. Then $U_1 \cap \ldots \cap U_i$ is a splitting for $(U; U_1, \ldots, U_n)$.

Proof. Same proof as the one of Fact 2.

Let us now return to the proof. Without losing the generality, we can assume that $W = (W; W_1, ..., W_n)$ is indecomposable and all W_i are nonzero (and proper).

It then follows (use that by the inductive assumption, $W_1 \cap W_2, W_3, \dots, W_n \subset W$, $W_1, \dots, W_{n-2}, W_{n-1} + W_n \subset W$ form distributive lattices and then apply Fact 1) that:

$$W_1 \cap W_2 = 0, W_{n-1} + W_n = W.$$
 (2)

We can assume that $n \ge 4$ (for n = 3 the statement is clear, use exactness of $K^{\bullet}(W)$). Assume that n = 4. We have $W_1 \cap W_3 \cap W_4 = 0 = W_2 \cap W_3 \cap W_4$ (use Fact 1). We also have

$$(W_1 + W_2) \cap W_3 \cap W_4 = ((W_1 + W_2) \cap W_3) \cap ((W_1 + W_2) \cap W_4) = ((W_1 \cap W_3) + (W_2 \cap W_3)) \cap ((W_1 \cap W_4) + (W_2 \cap W_4)).$$

We claim that the intersection $((W_1 \cap W_3) + (W_2 \cap W_3)) \cap ((W_1 \cap W_4) + (W_2 \cap W_4))$ is zero. Indeed, if a+b=c+d for some $a \in W_1 \cap W_3$, $b \in W_2 \cap W_3$, $c \in W_1 \cap W_4$, $d \in W_2 \cap W_4$ then a-c=d-b must lie in $W_1 \cap W_2 = 0$ i.e. $a=c \in W_1 \cap W_3 \cap W_4 = 0$, $d=b \in W_2 \cap W_3 \cap W_4 = 0$ so a=b=c=d=0. We conclude that $(W_1+W_2) \cap W_3 \cap W_4 = 0$. It then follows from Fact 2 that $W_3 \cap W_4$ splits $(W;W_1,W_2,W_3,W_4)$ so we must have $W_3 \cap W_4 = 0$ i.e. $W=W_3 \oplus W_4$. It remains to note that $W=W_3 \oplus W_4$ is splitting for $(W;W_1,W_2,W_3,W_4)$, and a contradiction finishes the argument. If n>4. The propperty (2) implies that $(W;W_1,\ldots,W_n)$ remains acyclic after arbitrary transpositions of W_1,\ldots,W_{n-2} (by acyclic, we mean that the corresponding complex K^{\bullet} is exact, it will be equal to zero in this case). So we may assume that for certain $1 \leq i \leq n-3$ one has $A=W_1\cap\ldots\cap W_i \neq 0$ and each i+1-tuple from W_1,\ldots,W_{n-2} intersects by zero. Put $B=U_{i+1}+\ldots+U_{n-2}$. Then $(W;A;B;W_{n-1},W_n)$ satisfies the assumptions of Lemma 11.18 (acyclicity follows from the fact that $A\cap B=0$ and $W_{n-1}+W_n=W$) so (from n=4 case) we conclude that $A;B;W_{n-1},W_n\subset W$ generate a distributive lattice so A is a splitting for $(W;W_1,\ldots,W_n)$ by Fact 2'. Since $A\neq 0$, we get a contradiction.

Proof (of Theorem 11.15). If $\operatorname{Tor}_1(k,k)$ is concentrated in degree 1, then $A_{\geqslant 1}$ is generated by degree 1 elements as an A-module (use the exact sequence $0 \to A_{\geqslant 1} \to A \to k \to 0$ together with Nakayama). Hence, A is generated by degree 1 elements as a ring. Let $V = A_1$ and write A = T(V)/I. We have a map $A \otimes V \to A$. Using that $\operatorname{Tor}_2(k,k)$ is concentrated in degree 2, we see that $\ker(A \otimes V \to A)$ is generated by elements in $A_1 \otimes V = V \otimes V$. These elements considered as elements of $V \otimes V \subset T(V)$ generated the ideal $\ker(T(V) \to A)$, so A is quadratic.

Exactness of Koszul complex implies Koszul: If \mathbb{K}_n is exact for $n \ge 1$, then \mathbb{K} is a free resolution of k as an A-module. So now we can use it to compute $\operatorname{Ext}_A^{\bullet}(k,k)$. Since $R_n^* \stackrel{0}{\to} R_{n-1}^*$ and $R_n^* = A_n^!$, $\operatorname{Ext}_A^n(k,k) = A_n^!$. You also have to check that this is compatible with multiplication, but after showing that, we can deduce that A is Koszul. To be continued next lecture.

MIT OpenCourseWare https://ocw.mit.edu

18.706 Noncommutative Algebra Spring 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.