11.1 More on the Hattori-Stallings Dennis trace

Recall from Lemma 8.5 that the cocenter $R /[R, R]=C(R)$ receives a universal trace map $\tau(P, \varphi) \in C(R)$ where P is a finitely generated projective and $\varphi \in \operatorname{End}(P)$. In fact, if R is Noetherian and of finite homological dimension, you can extend τ to $\tau(M, \varphi)$ where M is any finitely generated module. To do so, choose a finite projective resolution $0 \rightarrow P^{-n} \rightarrow P^{-n+1} \rightarrow \cdots \rightarrow P^{0} \rightarrow M \rightarrow 0$ (which exists because R has finite homological dimension). Then we can lift φ to $\tilde{\varphi} \in \operatorname{End}\left(P_{M}^{\bullet}\right)$ and this will be unique up to homotopy. Define

$$
\tau(M, \varphi)=\sum_{i}(-1)^{i} \tau\left(P^{-i}, \tilde{\varphi}^{-i}\right)
$$

which is well-defined because $M \mapsto P_{M}^{\bullet}$ is a fully faithful functor to the homotopy category of complexes. Moreover, τ is additive on short exact sequences of modules.

Corollary 11.1: If R is a finite-dimensional algebra of finite homological dimension over an algebraically closed field k, then $J(R) \subset[R, R]$.

Proof.

Lemma 11.2: For $M \in R-M o d$ and $\varphi \in \operatorname{End}_{R}(M)$, we can find a φ-invariant fordan-Holder series of M.

Proof. Consider $\left.\varphi\right|_{\operatorname{Soc}(M)}: \operatorname{Soc}(M) \rightarrow \operatorname{Soc}(M)$, where $\operatorname{Soc}(M)=\bigoplus_{i} L_{i}^{d_{i}}$ is the socle of M. Then φ induces an R-linear map $L_{i}^{d_{i}} \rightarrow L_{i}^{d_{i}}$ i.e. an element of $\operatorname{End}_{R}\left(L_{i}^{d_{i}}\right)=\operatorname{Mat}_{d_{i}}(k)$ (use Schur's lemma) and this matrix has an eigenvector, which generates a φ-invariant irreducible submodule in M. Then by inducting on the length of M, we get a φ-invariant Jordan-Holder series.

Thus, $\tau(M, \varphi)=\sum_{i} \tau\left(L_{i}, \lambda_{i}\right)=\sum_{i} \lambda_{i} \tau\left(L_{i}, 1\right)$ where $\lambda_{i} \in k$. It follows that the elements $\tau\left(L_{i}, 1\right) \in C(R)$ generate $C(R)$ as a vector space over k (use Lemma 8.5 or Example 8.6). We conclude that $C(R)$ has dimension (over k) at most the number of irreducibles L_{i}. On the other hand, let $\bar{R}:=R / J(R)$ and note that $C(R) \rightarrow C(\bar{R})$. It's easy to see that $C(\bar{R})=k^{\# L_{i}}$, so $C(R) \cong C(\bar{R})$ and $J(R) \subset[R, R]$.

Question : Is there a way to prove this without using the trace map?

11.2 Minimal resolutions and Koszul rings

Given a module M, how can we find its minimal resolution? For certain algebras called Koszul algebras, their minimal resolutions are called Koszul complexes. One great reference is [5, Section 2].
Let A be a nonnegatively graded algebra over an algebraically closed field k with A_{0} semisimple. We will be interested in the case $A_{0}=k$ so we can write $A=k \oplus A_{>0}$.

Remark 11.3: An elementary property of minimal resolutions for graded modules is that if $M=\bigoplus_{i \geqslant 0} M_{i}$, then P^{-i} must be concentrated in degrees i and higher, since the projective cover $P \rightarrow M$ is an isomorphism in the bottom degree (use that $A_{0}=k$ is semisimple).

We will need the following technical lemma.
Lemma 11.4: Let M be a finitely generated graded module over A. Then the following properties are equivalent:
(i) M is generated by degree i elements,
(ii) $M \otimes_{A} k$ is concentrated in degree i,
(iii) $\operatorname{Hom}_{A}(M, k)$ is concentrated in degree -i.

Proof. Lemma follows from the Nakayama lemma together with the fact that

$$
\operatorname{Hom}_{A}(M, k)=\operatorname{Hom}_{A_{0}}\left(M / A_{>0} M, k\right)=\left(M / A_{>0} M\right)^{*}
$$

Definition 11.5: We say that A is Koszul if P^{-i} is generated by degree i elements. Equivalently, $\operatorname{Tor}_{i}^{A}(k, k)$ (where each of the k are in degree 0) is concentrated in degree i, which is equivalent to $\operatorname{Ext}_{A}^{i}(k, k)$ is concentrated in degree -i (use Lemma 11.2 above).

Theorem 11.6:
a) Koszul rings are quadratic, i.e. $A=T(V) /\langle I\rangle$, where $T(V)$ is the tensor algebra for a vector space V and I is a subspace of $V \otimes V$.
b) If A is Koszul, then $\operatorname{Ext}_{A}^{\bullet}(k, k)=A^{!}$, where $A^{!}$is the dual quadratic algebra $T\left(V^{*}\right) /\left\langle I^{\perp}\right\rangle$.

Example 11.7: Let $A=T(V)$, so $I=0$. Then the dual quadratic algebra is $A^{!}=T\left(V^{*}\right) /\left\langle V^{*} \otimes V^{*}\right\rangle=k \oplus V^{*}$. Hence $\operatorname{Ext}_{A}(k, k)$ is only nonzero in degrees 0 and 1. $k=T(V) /\langle V\rangle$ then has a free resolution in degrees 0 and 1.

Example 11.8: Let $A=\operatorname{Sym}(V)=T(V) /\left\langle\wedge^{2} V\right\rangle$. Then $A^{!}=T\left(V^{*}\right) /\left\langle\operatorname{Sym}^{2}\left(V^{*}\right)\right\rangle=\Lambda^{\bullet} V^{*}$.

Definition 11.9: The dth Veronese subalgebra $A^{(d)}$ is $\bigoplus_{n=0}^{\infty} A_{n d}$.
Let us mention the following theorem without a proof (see [3] for details).
Theorem 11.10: If A is a finitely generated commutative algebra, $A^{(d)}$ is Koszul for large d.

Remark 11.11: Using the approach of [6, Section 2] or [10] (see also Remark 12.2 below) one can easily prove (using Serre's vanishing theorem) that for every $m \in \mathbb{Z}_{\geqslant 0}$ and large enough d (depending on m) the algebra $A^{(d)}$ has the following property: P^{-i} is generated by degree i elements for $i \leqslant m$. The statement of Theorem 11.10 is stronger, and the proof is more involved.

11.3 Koszul complexes

Remark 11.12: Assume $A=T(V) /\langle I\rangle$ is quadratic. Then

$$
A_{n}=T^{n}(V) /\langle I\rangle_{n}=V^{\otimes n} /\left(\sum_{i=0}^{n-2} V^{\otimes i} \otimes I \otimes V^{\otimes n-i-2}\right)
$$

Define

$$
R_{n}:=\bigcap_{i=0}^{n-2} V^{\otimes i} \otimes I \otimes V^{\otimes n-i-2}
$$

to be the intersection rather than the sum. Then $R_{n}=\left(A_{n}^{!}\right)^{*}$,

$$
\begin{equation*}
R_{n}^{*}=V^{* \otimes n} /\left(\sum_{i=0}^{n-2}\left(V^{*}\right)^{\otimes i} \otimes I^{\perp} \otimes\left(V^{*}\right)^{\otimes n-i-2}\right)=A_{n}^{!} \tag{1}
\end{equation*}
$$

Definition 11.13: The Koszul complex, denoted \mathbb{K}^{\bullet}, is a complex of free A-modules $\cdots \rightarrow A \otimes_{k} R_{2} \rightarrow A \otimes_{k} R_{1} \rightarrow$ A. As (graded) vector spaces, $\mathbb{K}^{\bullet}=\bigoplus_{n=0}^{\infty} \mathbb{K}_{n}^{\bullet}$. The differential of \mathbb{K}_{n}^{\bullet} is given by:

$$
\mathbb{K}_{n}^{i-n}=A_{i} \otimes R_{n-i} \hookrightarrow A_{i} \otimes V \otimes R_{n-i-1} \rightarrow A_{i+1} \otimes R_{n-i-1}=\mathbb{K}_{n}^{i+1-n}
$$

where the left map is induced by the natural embedding $R_{n-i} \subset V \otimes R_{n-i-1}$ and the right map is induced by the multiplication $A_{i} \otimes V \rightarrow A_{i+1}$.

Definition 11.14: Let V be a vector space. A distributive lattice of subspaces of V is a collection of subspaces satisfying

- For Y in the lattice, $X \subset Y$ is also in the lattice
- For X, Y in the lattice, $X+Y$ is also in the lattice
- For X, Y, Z in the lattice, $X \cap(Y+Z)=(X \cap Y)+(X \cap Z)$ (distributivity).

Theorem 11.15 (Theorem 11.6 cont.):
a) Koszul rings are quadratic, i.e. $A=T(V) /\langle I\rangle$, where $T(V)$ is the tensor algebra for a vector space V and I is a subspace of $V \otimes V$.
b) If A is Koszul, then $\operatorname{Ext}_{A}^{\bullet}(k, k)=A^{!}$, where $A^{!}$is the dual quadratic algebra $T\left(V^{*}\right) /\left\langle I^{\perp}\right\rangle$.
c) Say A is a quadratic algebra. It is Koszul iff \mathbb{K} is exact, i.e. $H^{i}(\mathbb{K})=0$ for all $i \neq 0$, iff \mathbb{K} is the minimal resolution of the left module k.
d) Say A is a quadratic algebra. It is Koszul iff for all n, the $n-1$ vector spaces $V^{\otimes i} \otimes I \otimes V^{\otimes n-i-2}, i=0, \ldots, n-2$, generate a distributive lattice of subspaces of $V^{\otimes n}$.

Lemma 11.16: A collection of vector subspaces in a vector space W generate a distributive lattice iff there exists a basis of W such that every subspace is spanned by a subset of the basis.

| Proof. Clear.

Remark 11.17: The distributive property for the subspaces of $V^{\otimes n}$ described above is what implies the exactness of \mathbb{K}_{n}. Moreover, the exactness of $\mathbb{K}_{m}, m \leqslant n$, implies the distributive property for the subspaces of $V^{\otimes n}$.

For a collection $\mathcal{W}=\left(W ; W_{1}, \ldots, W_{n}\right)$, where W is a vector space and $W_{1}, \ldots, W_{n} \subset W$ are its subspaces let $K^{-l}=$ $K^{-l}(\mathcal{W}):=\bigcap_{i=1}^{l-1} W_{i} /\left(\left(W_{l+1}+\ldots+W_{n}\right) \cap\left(\bigcap_{i=1}^{l-1} W_{i}\right)\right)$, where $l=0,1, \ldots, n+1$.

For example, we have

$$
K^{-n-1}=\bigcap_{i=1}^{n} W_{i}, K^{-n}=\bigcap_{i=1}^{n-1} W_{i}, K^{-n+1}=\bigcap_{i=1}^{n-2} W_{i} /\left(W_{n} \cap\left(\bigcap_{i=3}^{n} W_{i}\right)\right), \ldots, K^{-1}=W / \sum_{i=2}^{n} W_{i}, K^{0}=W / \sum_{i=1}^{n} W_{i}
$$

We have the natural maps $K^{l} \rightarrow K^{l+1}$ that make $K^{\bullet}=K^{\bullet}(\mathcal{W})$ into a complex.
Lemma 11.18: If $W_{1}, \ldots, W_{n} \subset W$ are proper subspaces and every proper subset of $\left\{W_{1}, \ldots, W_{n}\right\}$ generate a distributive lattice then W_{1}, \ldots, W_{n} do the same iff $K^{\bullet}(\mathcal{W})$ is exact.

Proof. It is clear that if $\left\{W_{1}, \ldots, W_{n}\right\}$ generate a distributive lattice then $K^{\bullet}(\mathcal{W})$ is exact (for example, use Lemma 11.16.

Assume now that $K^{\bullet}(\mathcal{W})$ is exact. We prove the claim by the induction on n. We follow [4, Section 4.5].
We will use the following notations. Given a collection $U_{1}, \ldots, U_{n} \subset U$, say that a subspace $B \subset U$ is a splitting for $\left(U ; U_{1}, \ldots, U_{n}\right)$ if there exists $C \subset U$ such that $B \oplus C=U$ and $\left(B \cap U_{i}\right)+\left(C \cap U_{i}\right)=U_{i}$. We will say that $\left(U ; U_{1}, \ldots, U_{n}\right)$ is indecomposable if U has no proper nonzero subspaces that split $\left(U ; U_{1}, \ldots, U_{n}\right)$. The following easy facts will be extremely useful.

Fact (1): The subspace $U_{1} \cap \ldots \cap U_{i}$ or $U_{1}+\ldots+U_{i}$ is a splitting for $\left(U ; U_{1}, \ldots, U_{n}\right)$ iff it is a splitting for $\left(U ; U_{i+1}, \ldots, U_{n}\right)$.

Proof. Clear.
Fact (2): Assume that $\left(U_{1}+\ldots+U_{i}\right) \cap\left(U_{i+1} \cap \ldots \cap U_{j}\right)=0$ and $U_{i+1} \cap \ldots \cap U_{j}$ is a splitting for $\left(U ; U_{1}+\ldots+\right.$ $\left.U_{i}, U_{j+1}, \ldots, U_{n}\right)$. Then $U_{i+1} \cap \ldots \cap U_{j}$ is a splitting for $\left(U ; U_{1}, \ldots, U_{n}\right)$.

Proof. Let $\left(U_{i+1} \cap \ldots \cap U_{j}\right) \oplus B$ be a splitting for $\left(U ; U_{1}+\ldots+U_{i}, U_{j+1}, \ldots, U_{n}\right)$. Our goal is to check that it also gives a splitting for $\left(U ; U_{1}, \ldots, U_{n}\right)$. From $\left(U_{1}+\ldots+U_{i}\right) \cap\left(U_{i+1} \cap \ldots \cap U_{j}\right)=0$ we conclude that $U_{1}+\ldots+U_{i} \subset B$ so $U_{1}, \ldots, U_{i} \subset B$. It remains to check that $U_{k}=\left(U_{k} \cap\left(U_{i+1} \cap \ldots \cap U_{j}\right)\right)+\left(U_{k} \cap B\right)$ for $k=i+1, \ldots, j$. This is clear since $U_{i+1} \cap \ldots \cap U_{j} \subset U_{k}$.

Fact (2'): Assume that $\left(U_{1} \cap \ldots \cap U_{i}\right) \cap\left(U_{i+1}+\ldots+U_{j}\right)=0$ and $U_{1} \cap \ldots \cap U_{i}$ is a splitting for $\left(U ; U_{i+1}+\ldots+\right.$ $\left.U_{j}, U_{j+1}, \ldots, U_{n}\right)$. Then $U_{1} \cap \ldots \cap U_{i}$ is a splitting for $\left(U ; U_{1}, \ldots, U_{n}\right)$.

Proof. Same proof as the one of Fact 2.
Let us now return to the proof. Without losing the generality, we can assume that $\mathcal{W}=\left(W ; W_{1}, \ldots, W_{n}\right)$ is indecomposable and all W_{i} are nonzero (and proper).
It then follows (use that by the inductive assumption, $W_{1} \cap W_{2}, W_{3}, \ldots, W_{n} \subset W, W_{1}, \ldots, W_{n-2}, W_{n-1}+W_{n} \subset W$ form distributive lattices and then apply Fact 1) that:

$$
\begin{equation*}
W_{1} \cap W_{2}=0, W_{n-1}+W_{n}=W \tag{2}
\end{equation*}
$$

We can assume that $n \geqslant 4$ (for $n=3$ the statement is clear, use exactness of $K^{\bullet}(\mathcal{W})$).
Assume that $n=4$. We have $W_{1} \cap W_{3} \cap W_{4}=0=W_{2} \cap W_{3} \cap W_{4}$ (use Fact 1). We also have
$\left(W_{1}+W_{2}\right) \cap W_{3} \cap W_{4}=\left(\left(W_{1}+W_{2}\right) \cap W_{3}\right) \cap\left(\left(W_{1}+W_{2}\right) \cap W_{4}\right)=\left(\left(W_{1} \cap W_{3}\right)+\left(W_{2} \cap W_{3}\right)\right) \cap\left(\left(W_{1} \cap W_{4}\right)+\left(W_{2} \cap W_{4}\right)\right)$.
We claim that the intersection $\left(\left(W_{1} \cap W_{3}\right)+\left(W_{2} \cap W_{3}\right)\right) \cap\left(\left(W_{1} \cap W_{4}\right)+\left(W_{2} \cap W_{4}\right)\right)$ is zero. Indeed, if $a+b=c+d$ for some $a \in W_{1} \cap W_{3}, b \in W_{2} \cap W_{3}, c \in W_{1} \cap W_{4}, d \in W_{2} \cap W_{4}$ then $a-c=d-b$ must lie in $W_{1} \cap W_{2}=0$ i.e. $a=c \in W_{1} \cap W_{3} \cap W_{4}=0, d=b \in W_{2} \cap W_{3} \cap W_{4}=0$ so $a=b=c=d=0$. We conclude that $\left(W_{1}+W_{2}\right) \cap W_{3} \cap W_{4}=0$. It then follows from Fact 2 that $W_{3} \cap W_{4}$ splits $\left(W ; W_{1}, W_{2}, W_{3}, W_{4}\right)$ so we must have $W_{3} \cap W_{4}=0$ i.e. $W=W_{3} \oplus W_{4}$. It remains to note that $W=W_{3} \oplus W_{4}$ is splitting for $\left(W ; W_{1}, W_{2}, W_{3}, W_{4}\right)$, and a contradiction finishes the argument. If $n>4$. The propperty (2) implies that $\left(W ; W_{1}, \ldots, W_{n}\right)$ remains acyclic after arbitrary transpositions of W_{1}, \ldots, W_{n-2} (by acyclic, we mean that the corresponding complex K^{\bullet} is exact, it will be equal to zero in this case). So we may assume that for certain $1 \leqslant i \leqslant n-3$ one has $A=W_{1} \cap \ldots \cap W_{i} \neq 0$ and each $i+1$-tuple from W_{1}, \ldots, W_{n-2} intersects by zero. Put $B=U_{i+1}+\ldots+U_{n-2}$. Then $\left(W ; A ; B ; W_{n-1}, W_{n}\right)$ satisfies the assumptions of Lemma 11.18 (acyclicity follows from the fact that $A \cap B=0$ and $W_{n-1}+W_{n}=W$) so (from $n=4$ case) we conclude that $A ; B ; W_{n-1}, W_{n} \subset W$ generate a distributive lattice so A is a splitting for $\left(W ; W_{1}, \ldots, W_{n}\right)$ by Fact 2^{\prime}. Since $A \neq 0$, we get a contradiction.

Proof (of Theorem 11.15). If $\operatorname{Tor}_{1}(k, k)$ is concentrated in degree 1 , then $A_{\geqslant 1}$ is generated by degree 1 elements as an A-module (use the exact sequence $0 \rightarrow A \geqslant 1 \rightarrow A \rightarrow k \rightarrow 0$ together with Nakayama). Hence, A is generated by degree 1 elements as a ring. Let $V=A_{1}$ and write $A=T(V) / I$. We have a map $A \otimes V \rightarrow A$. Using that $\operatorname{Tor}_{2}(k, k)$ is concentrated in degree 2 , we see that $\operatorname{ker}(A \otimes V \rightarrow A)$ is generated by elements in $A_{1} \otimes V=V \otimes V$. These elements considered as elements of $V \otimes V \subset T(V)$ generated the ideal $\operatorname{ker}(T(V) \rightarrow A)$, so A is quadratic.

Exactness of Koszul complex implies Koszul: If \mathbb{K}_{n} is exact for $n \geqslant 1$, then \mathbb{K} is a free resolution of k as an A-module. So now we can use it to compute $\operatorname{Ext}_{A}^{\bullet}(k, k)$. Since $R_{n}^{*} \xrightarrow{0} R_{n-1}^{*}$ and $R_{n}^{*}=A_{n}^{!}$, $\operatorname{Ext}_{A}^{n}(k, k)=A_{n}^{!}$. You also have to check that this is compatible with multiplication, but after showing that, we can deduce that A is Koszul. To be continued next lecture.

MIT OpenCourseWare
https://ocw.mit.edu

18.706 Noncommutative Algebra

Spring 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

