Lecture 11: Koszul Complexes

11 March 16 - Koszul complexes

11.1 More on the Hattori-Stallings Dennis trace

Recall from Lemma 8.5 that the cocenter R/[R, R] = C(R) receives a universal trace map (P, ¢) € C(R) where P is
a finitely generated projective and ¢ € End(P). In fact, if R is Noetherian and of finite homological dimension, you
can extend 7 to 7(M, ¢) where M is any finitely generated module. To do so, choose a finite projective resolution
0—>P"—pm™ ... P’ M— 0 (which exists because R has finite homological dimension). Then we can
lift ¢ to ¢ € End(P},) and this will be unique up to homotopy. Define

(M, ¢) = Z(—l)"r(P-", 577

which is well-defined because M +— P}, is a fully faithful functor to the homotopy category of complexes. Moreover,
7 is additive on short exact sequences of modules.

Corollary 11.1: If R is a finite-dimensional algebra of finite homological dimension over an algebraically closed
field k, then J(R) C [R,R].

Proof.

Lemma 11.2: For M € R-Mod and ¢ € Endgr(M), we can find a ¢-invariant Jordan-Holder series of M.

Proof. Consider ¢|soc(m): Soc(M) — Soc(M), where Soc(M) = @iLfli is the socle of M. Then ¢ induces an
R-linear map L;i" - L;i" i.e. an element of Endg (L?i) = Maty, (k) (use Schur’s lemma) and this matrix has an
eigenvector, which generates a ¢-invariant irreducible submodule in M. Then by inducting on the length of M,
we get a p-invariant Jordan-Holder series. O

Thus, (M, @) = X; (L, A;) = X; Ait(L;, 1) where A; € k. It follows that the elements 7(L;, 1) € C(R) generate
C(R) as a vector space over k (use Lemma 8.5 or Example 8.6). We conclude that C(R) has dimension (over k) at
most the number of irreducibles L;. On the other hand, let R := R/J(R) and note that C(R) - C(R). It’s easy to
see that C(R) = k*1¢, so C(R) = C(R) and J(R) C [R,R]. O

Question : Is there a way to prove this without using the trace map?

11.2 Minimal resolutions and Koszul rings

Given a module M, how can we find its minimal resolution? For certain algebras called Koszul algebras, their minimal
resolutions are called Koszul complexes. One great reference is [5, Section 2].

Let A be anonnegatively graded algebra over an algebraically closed field k with Ay semisimple. We will be interested
in the case Ay = k so we can write A = k & A..

Remark 11.3: An elementary property of minimal resolutions for graded modules is that if M = €, M;, then
P~! must be concentrated in degrees i and higher, since the projective cover P - M is an isomorphism in the
bottom degree (use that Ay = k is semisimple).

We will need the following technical lemma.

Lemma 11.4: Let M be a finitely generated graded module over A. Then the following properties are equivalent:
(i) M is generated by degree i elements,

(ii) M ®4 k is concentrated in degree i,

(iii) Homy4 (M, k) is concentrated in degree —i.

Proof. Lemma follows from the Nakayama lemma together with the fact that

Homy (M, k) = Homu, (M/AsoM, k) = (M/AsoM)™.
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Definition 11.5: We say that A is Koszul if P~" is generated by degree i elements. Equivalently, Tor?(k, k) (where
each of the k are in degree 0) is concentrated in degree i, which is equivalent to Extil(k, k) is concentrated in degree

—i (use Lemmal(11.2 above).
Theorem 11.6:
a) Koszul rings are quadratic, i.e. A = T(V)/(I), where T(V) is the tensor algebra for a vector space V and I

is a subspace of V® V.
b) If A is Koszul, then Ext’, (k, k) = A', where A' is the dual quadratic algebra T(V*) /(I*).

Example 11.7: Let A = T(V), so I = 0. Then the dual quadratic algebra is A' = T(V*)/(V* @ V*) = k ® V*.
Hence Exty (k, k) is only nonzero in degrees 0 and 1. k = T(V)/(V) then has a free resolution in degrees 0 and
1.

Example 11.8: Let A = Sym(V) = T(V)/{A?V). Then A' = T(V*)/(Sym?(V*)) = \* V*.
Definition 11.9: The dth Veronese subalgebra A g @:;O Ang.

Let us mention the following theorem without a proof (see [3] for details).

Theorem 11.10: If A is a finitely generated commutative algebra, A9 is Koszul for large d.

Remark 11.11: Using the approach of [6, Section 2] or [10] (see also Remark 12.2 below) one can easily prove
(using Serre’s vanishing theorem) that for every m € Zs, and large enough d (depending on m) the algebra A(®
has the following property: P~ is generated by degree i elements for i < m. The statement of 'Iheoremis
stronger, and the proof is more involved.

11.3 Koszul complexes

Remark 11.12: Assume A = T(V)/(I) is quadratic. Then

n—2
Ap=T"(V)/{D)n = V®"/(Z Ve QI® v®’”‘2) )

i=0

Define

n-—2
R, =[ |V @lg Ve
i=0

to be the intersection rather than the sum. Then R, = (A})*,
n-2

Z(V*)®i ®IJ_ ® (V*)®n—i—2
i=0

!

R =V*®n) =A,. (1)

Definition 11.13: The Koszul complex, denoted K*, is a complex of free A-modules - - - — AQr Ry, —» A®x Ry —
A. As (graded) vector spaces, K* = (D)., K3, The differential of K}, is given by:

Ki"=A;®Ry_i > A ®V®Ry_j_1 = A1 ® Ryjoq = K517

where the left map is induced by the natural embedding R,_; C V ® R,_;_1 and the right map is induced by the
multiplication A; @ V — Ajyq.
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Definition 11.14: Let V' be a vector space. A distributive lattice of subspaces of V is a collection of subspaces
satisfying
« ForY in the lattice, X C Y is also in the lattice

o For X,Y in the lattice, X + Y is also in the lattice
o ForX,Y,Z in the lattice, X N (Y +Z) = (X NY) + (X N Z) (distributivity).

Theorem 11.15 (Theorem [11.6|cont.):

a) Koszul rings are quadratic, i.e. A = T(V)/{I), where T(V) is the tensor algebra for a vector space V and I
is a subspace of V@ V.

b) If A is Koszul, then Ext}, (k, k) = A', where A' is the dual quadratic algebra T(V*) /({I*).

c) Say A is a quadratic algebra. It is Koszul iff K is exact, i.e. H/(K) = 0 for alli # 0, iff K is the minimal
resolution of the left module k.

d) Say A is a quadratic algebra. It is Koszul iff for all n, the n—1 vector spaces V'@ [Q VE"~I=2 i =0,...,n-2,
generate a distributive lattice of subspaces of V®".

Lemma 11.16: A collection of vector subspaces in a vector space W generate a distributive lattice iff there exists a
basis of W such that every subspace is spanned by a subset of the basis.

| Proof. Clear. O

Remark 11.17: The distributive property for the subspaces of V®" described above is what implies the exactness
of K,,. Moreover, the exactness of K,,, m < n, implies the distributive property for the subspaces of V®".

For a collection W = (W; W, ..., W,), where W is a vector space and Wy,...,W,, C W are its subspaces let K=
KH(W) = 5;11 W,~/((Wl+1 +...+ W, N ( 5;11 Wl)), where [ =0,1,...,n+ 1.

For example, we have

n n-1 n-2
K—n—l - ﬂm’ K" = Qm’ K—n+1 — vil/

i=1

W, N (ﬁm)) LKl = W/Zn: W, K = W/Zn:w,-.
i=3 i=2 i=1

We have the natural maps K/ — K™*! that make K* = K*(‘W) into a complex.

Lemma 11.18: If Wy,...,W,, C W are proper subspaces and every proper subset of {Wi,..., W, } generate a
distributive lattice then W1, . .., W,, do the same iff K* (‘W) is exact.

Proof. 1t is clear that if {Wj, ..., W, } generate a distributive lattice then K* (W) is exact (for example, use Lemma
IL19)

Assume now that K* (‘W) is exact. We prove the claim by the induction on n. We follow [4, Section 4.5].

We will use the following notations. Given a collection Uy, ..., U, C U, say that a subspace B C U is a splitting
for (U;Uy,...,U,) if there exists C € U such that B&® C = U and (BN U;) + (C N U;) = U;. We will say that
(U; Uy, ...,U,) is indecomposable if U has no proper nonzero subspaces that split (U; Uy, . .., U,). The following
easy facts will be extremely useful.

Fact (1): The subspace Uy N ... N U; or Uy + ... + U is a splitting for (U; Uy, ..., U,) iff it is a splitting for
(U; Uis, - ., Un).

I Proof. Clear. O

Fact (2): Assume that (Ui +...+U;) N (Ui N...NU;) =0 and Uy N ... N U; is a splitting for (U; U +... +
Ui,Ujs1, ..., Un). Then Uipy N ... N U;j is a splitting for (U; Uy, ..., Uyp).
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Proof. Let (Uiz1 N...NU;) @ B be a splitting for (U; Uy + ...+ U;,Ujiq, ..., Uyp). Our goal is to check that it also
gives a splitting for (U; Uy, ..., Uy). From (U +...+U;) N (Upr N...NU;) = 0 we conclude that Uy +...+U; C B
so Uy,...,U; C B. It remains to check that Uy = (Uy N (Uip1 N...NU;)) + (Ux N B) fork =i+1,...,j. This is
clear since Uy N ... NU; C Ug. m]

Fact (2’): Assume that (UyN...NU) N (U +...+U;) =0 and Uy N...NU; is a splitting for (U; Ui +... +
Uj,Ujs,...,Up). Then Uy N ... N Uj is a splitting for (U; Uy, ..., Uy).

I Proof. Same proof as the one of Fact 2. O

Let us now return to the proof. Without losing the generality, we can assume that W = (W; W, ..., W,) is
indecomposable and all W; are nonzero (and proper).
It then follows (use that by the inductive assumption, W; N W, Ws,..., W,, C W, Wy, ... . W3, W1 + W, C W
form distributive lattices and then apply Fact 1) that:

WiNnW, =0, Wn,1+Wn=W. (2)

We can assume that n > 4 (for n = 3 the statement is clear, use exactness of K*(“W)).
Assume that n = 4. We have W; N W5 N W, = 0 = W, N W3 N W, (use Fact 1). We also have

(Wi + W) N W3 N Wy = (W1 + W) N W3) N (W1 +Wo) N W) = (Wi NW3) + (Wo N W3)) N ((WE NWG) + (W2 N WG)).

We claim that the intersection ((W; N W) + (W, N W3)) N ((Wy N W) + (Wo N Wy)) is zero. Indeed, if a+b =c+d
forsomea e WiNWs, b e WoNWs,c e WWNW,,d e WoNW,thena—c¢=d—bmustliein WyNW, =0 ie.
a=ceWNW3NW,; =0,d=be WoNW3NW; =0soa=>b=c=d = 0. We conclude that (W; +W,)NW;NW, = 0.
It then follows from Fact 2 that W5 N W, splits (W; W, Wy, W3, W) so we must have Wa N Wy = 0ie. W = W5 @ W;.
It remains to note that W = Ws & W, is splitting for (W; Wi, Wa, W3, W), and a contradiction finishes the argument.
If n > 4. The propperty implies that (W;W;,...,W,) remains acyclic after arbitrary transpositions of
Wi, ..., W,_2 (by acyclic, we mean that the corresponding complex K* is exact, it will be equal to zero in this
case). So we may assume that for certain 1 < i < n—3onehas A =W, N...NW; # 0 and each i + 1-tuple
from W, ..., W,_, intersects by zero. Put B = Uj4q +. ..+ Uy,—;. Then (W; A; B; W,,_1, W,,) satisfies the assumptions
of Lemma [11.18] (acyclicity follows from the fact that AN B = 0 and Wy,—1 + W,, = W) so (from n = 4 case) we
conclude that A; B; W,,_1, W,, C W generate a distributive lattice so A is a splitting for (W; Wy, ..., W,) by Fact 2’.
Since A # 0, we get a contradiction.

[m}

Proof (of Theorem|[11.18)). If Tor; (k, k) is concentrated in degree 1, then A is generated by degree 1 elements as an
A-module (use the exact sequence 0 — Ay — A — k — 0 together with Nakayama). Hence, A is generated by
degree 1 elements as aring. Let V = A; and write A = T(V)/I. We have amap A® V' — A. Using that Tor,(k, k) is
concentrated in degree 2, we see that ker(A® V' — A) is generated by elementsin A; ® V = V® V. These elements
considered as elements of V ® V c T(V) generated the ideal ker(T(V) - A), so A is quadratic.

Exactness of Koszul complex implies Koszul: If K, is exact for n > 1, then K is a free resolution of k as an

A-module. So now we can use it to compute Ext’, (k, k). Since R;, 2 R;_, and R} = A}, Ext"t (k, k) = A},. You also
have to check that this is compatible with multiplication, but after showing that, we can deduce that A is Koszul.
To be continued next lecture. m]
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