| Lecture 12: Koszul Rings Continued, Bar Complex                                                                                                                                                                                                        |                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                        |                                                                           |
|                                                                                                                                                                                                                                                        |                                                                           |
|                                                                                                                                                                                                                                                        |                                                                           |
|                                                                                                                                                                                                                                                        |                                                                           |
|                                                                                                                                                                                                                                                        |                                                                           |
|                                                                                                                                                                                                                                                        |                                                                           |
|                                                                                                                                                                                                                                                        |                                                                           |
|                                                                                                                                                                                                                                                        |                                                                           |
|                                                                                                                                                                                                                                                        |                                                                           |
|                                                                                                                                                                                                                                                        |                                                                           |
|                                                                                                                                                                                                                                                        |                                                                           |
|                                                                                                                                                                                                                                                        |                                                                           |
|                                                                                                                                                                                                                                                        |                                                                           |
|                                                                                                                                                                                                                                                        |                                                                           |
|                                                                                                                                                                                                                                                        |                                                                           |
|                                                                                                                                                                                                                                                        | 12 March 21 - Koszul rings cont., bar complex                             |
| <b>2.1 Finishing up Koszul rings</b> Proof (of Theorem 11.15, cont.) Subspaces $V^{\otimes i} \otimes I \otimes V^{\otimes n-i-2}$ iff $\mathbb{K}_n^{\bullet}$ is exact: to see that it is enough to note that $\mathbb{K}_n^{\bullet} = K^{\bullet}$ | $\subset V^{\otimes n}, i = 0, 1,, n - 2$ generate a distributive lattice |
| If $\mathbb{R}_n$ is exact: to see that it is enough to note that $\mathbb{R}_n = K$ $W = (V^{\otimes n}; V^{\otimes n-2} \otimes I, V^{\otimes n-3} \otimes I \otimes V, \dots,$                                                                      |                                                                           |

Now the claim follows from Lemma 11.18 (using induction on n).

It's easy to see that  $\mathbb{K}_n$  acyclic implies that  $\mathbb{K}$  is a resolution for the trivial module, and  $\operatorname{Tor}_i^A(k,k)$  is concentrated in degree i, so A is Koszul. In the other direction, suppose A is Koszul. We will inductively check acyclicity in the first d terms of the complex, which looks like  $\cdots \to A \otimes I \to A \otimes V \to A$ . If this complex is exact up to degree d, then the minimal space of generators for  $\ker(A \otimes R_d \to A \otimes R_{d-1})$  is (some lift of)  $\operatorname{Tor}_{d+1}^A(k,k)$ . Because A is Koszul, this is in degree d+1, so it's a subspace in  $A_1 \otimes R_d = V \otimes R_d$ . It is the kernel of the multiplication map, so it must be  $R_{d+1}$ , so we're done.

**Remark 12.1:** In commutative algebra, a "Koszul complex" often refers to a complex formed given a commutative ring R and n elements  $x_1, \ldots, x_n \in R$ . The last arrow in the complex is  $R^{\oplus n} \to R$ , sending  $r_1, \ldots, r_n \mapsto \sum_{i=1}^n x_i r_i$ . The Koszul complex for  $\operatorname{Sym}(V)$  is an example of this.

**Remark 12.2:** We are now ready to give a sketch of the proof of the fact that for every  $m \in \mathbb{Z}_{\geq 0}$ , and large enough d, the algebra  $A^{(d)}$  has the following property:  $P^{-i}$  is generated by degree i elements for  $i \leq m$  (see Remark 11.11 above). So, our goal is to check that for every  $n \in \mathbb{Z}_{\geq 0}$  the degree nth term of the Koszul complex for  $A^{(d)}$  is exact for large enough d.

First of all, we can assume that A is generated by  $A_1 = V$ . Set  $X := \operatorname{Proj} A$ . We can assume that the natural morphism  $X \hookrightarrow \mathbb{P}^N$  is a closed embedding. We have a natural (very ample) line bundle  $O_X(1)$  on X with  $\Gamma(X, O_X(1)) = A_1 = V$ . Set  $Y := X^n$ ,  $\mathcal{L} := O_X(1)^{\boxtimes n}$ . For a closed  $Z \subset Y$  we have  $H^0(Y, \mathcal{L}) = V^{\otimes n}$  and denote by  $Q_Z \subset V^{\otimes n}$  the kernel of  $H^0(Y, \mathcal{L}) \to H^0(Z, \mathcal{L})$ . Let  $\Delta_i \subset X^n$  be the diagonal given by  $x_i = x_{i+1}$ . We have  $Q_{\Delta_{i+1}} = V^{\otimes i} \otimes I \otimes V^{\otimes n-i-2}$ .

Let  $S^n$  be the (finite) set of closed subschemes of Y generated by  $\{\Delta_i \mid i=1,\ldots,n-1\}$  and  $X^n, \emptyset$  via unions and (scheme-theoretic) intersections. Using Serre's vanishing theorem, we can assume that the statements of [6, Corollary 1.7] are satisfied for  $S^n$ . It then follows from [6, Lemma 2.1] that subspaces  $V^{\otimes i} \otimes I \otimes V^{\otimes n-i-2}$  generate a distributive lattice of subspaces of  $V^{\otimes n}$  so we are done by (the proof of) Theorem 11.15 (d).

## **Corollary 12.3:** The **Poincare series** of a graded algebra is

$$P_A(t) = \sum d_n t^n, d_n = \dim A_n.$$

If A is Koszul, then  $P_A(t)P_{A!}(-t) = 1$ .

*Proof.* This follows from the (graded) Euler characteristic of  $\mathbb{K}$ . If you look degree by degree, you can find that the Euler characteristic of  $\mathbb{K}_n$  is the nth coefficient of  $P_A(t)P_{A^!}(-t)$  (see (1)) so the total Euler characteristic of  $\mathbb{K}$  is equal to  $P_A(t)P_{A^!}(-t)$ . Recall now that the Euler characteristic of  $\mathbb{K}_n$  can also be computed as the alternating sum of dimensions of the cohomology of  $\mathbb{K}_n$ . It remains to note that  $\mathbb{K}_n$  is exact for n > 0 and  $\mathbb{K}_0 = k$  (sitting in degree 0). It follows that the total graded Euler characteristic of  $\mathbb{K}$  is equal to 1.

**Example 12.4:** Let 
$$A = \bigwedge^n V$$
. Then  $P_A(t) = (1 + t)^n$ . Likewise,  $P_{\text{Sym}(V)} = \frac{1}{(1 - t)^n}$ .

*Proof (of Theorem 11.15, cont. again).* Finally, we need to check that  $A^! \simeq \operatorname{Ext}_A^{\bullet}(k,k)$  is an algebra isomorphism. First, we explain how to make  $\operatorname{Ext}^{\bullet}$  into an algebra:  $\operatorname{Ext}_A^{\bullet}(k,k) = H^*(\operatorname{\underline{Hom}}(P^{\bullet},P^{\bullet}))$  for a projective resolution  $P^{\bullet}$ ; Hom is a DGA.

Here is how  $A^!$  acts on  $\mathbb{K}$ : start with the action of  $T(V^*)$  on T(V) by contracting tensors  $V^{*\otimes i} \times V^{\otimes n} \to V^{\otimes n-i}$ . Restrict this to  $V^{*\otimes i} \times R_n \to R_{n-i}$ , which factors through  $A^!_i \times R_n$ . Recall that  $\mathbb{K}^{-n} = A \otimes R_n$ . Consider the map

$$(A \otimes R_n) \otimes A_i^! \to A \otimes R_{n-i} = \mathbb{K}^{-(n-i)}.$$

This is the  $A^!$ -action, and it commutes with the differential. Moreover, for  $a \in A^!$ , the composition  $\mathbb{K} \xrightarrow{a} \mathbb{K} \to k$  represents the class of a. Hence, this is an algebra isomorphism.

**Remark 12.5:** Let  $\operatorname{Proj}_A$  be the projective graded A-modules. Then  $A^!$  gives us an equivalence of derived categories

$$\mathcal{H}\wr(\operatorname{Proj}_{A}^{f.g.})\simeq\mathcal{H}\wr(\operatorname{Proj}_{A!}^{f.g.})$$

sending  $M(1) \mapsto M[1](-1)$  where  $M(1)_i = M_{i+1}$  and  $[\cdot]$  is some homological stuff we won't discuss here. The idea is to use k as a generator for the derived category and consider the functor  $F_k \colon M \to \mathrm{RHom}(k,M)$  which generalizes  $F_P(M) = \mathrm{Hom}(P,M)$ .

**Remark 12.6:** Let  $A_1, A_2$  quadratic,  $A_i = T(V_i)/I_i$ . Then

$$A_1 \otimes A_2 = T(V_1 \oplus V_2)/I_1 \oplus I_2 \oplus \langle v_1 \otimes v_2 - v_2 \otimes v_1 \rangle$$

and

$$(A_1 \otimes A_2)^! = T(V_1^* \oplus V_2^*)/I_1^{\perp} \oplus I_2^{\perp} + \langle v_1 \otimes v_2 + v_2 \otimes v_1 \rangle,$$

the "super" (signed) tensor product.

**Remark 12.7:** If *A* is commutative and  $I \supset \wedge^2(V)$ , then  $I^{\perp} \subset S^2V^*$ . Then all the relations of  $A^!$  will be relations between anticommutators and  $A^!$  will be the enveloping algebra of a Lie superalgebra.

For more on Koszul rings, see [4] and [5].

## 12.2 Bar complex and Hochschild (co)homology

**Definition 12.8:** Let A be any algebra over a field k. Then the **bar complex** of A is

$$\cdots \to A \otimes_k A \otimes_k A \to A \otimes_k A \to A \to 0$$

where the last map is  $a \otimes b \mapsto ab$  and in general

$$d: a_0 \otimes \cdots \otimes a_n \mapsto a_0 a_1 \otimes a_2 \otimes \cdots \otimes a_n - a_0 \otimes a_1 a_2 \otimes \cdots \otimes a_n + \cdots$$

The RHS is also written as  $a_0|a_1|\cdots|a_n$ . Then  $d^2=0$ .

**Lemma 12.9:** The bar complex is exact for any associative algebra.

**Proof.** The map  $h: a_0 \otimes \cdots \otimes a_n \mapsto 1 \otimes a_0 \otimes \cdots \otimes a_n$  satisfies dh + hd = id, so it is a chain homotopy.

The bar complex is also a complex of A-bimodules. The left action is on  $a_0$ , and the right action is on  $a_n$ . A is the regular A-bimodule (i.e.,  $A \otimes_k A^{\operatorname{op}}$ -module), and all the other terms are free, so the bar complex is a free resolution for A. This allows us to compute  $\operatorname{Ext}_{A\otimes A^{\operatorname{op}}}^i(A,A)$  and  $\operatorname{Tor}_i^{A\otimes A^{\operatorname{op}}}(A,A)$ .

The bar complex also gives us a free resolution of every *A*-module by tensoring with *M*. The cohomology of the bar complex is  $\operatorname{Tor}_i^A(A, M) = 0$  for i > 0.

**Definition 12.10:** The **Hochschild homology** of A is the homology of the bar resolution. The **Hochschild cohomology** of A is the cohomology of Hom(Bar, A), so the nth term is  $A \otimes (A^{\otimes n-1})^*$ . If A is graded, you can likewise define graded Hochschild cohomology.

**Remark 12.11:** If A is augmented, you can use the reduced bar complex; let  $A_+$  be the augmentation ideal, the reduced bar complex has terms  $A \otimes_k A_+ \otimes_k \dots \otimes_k A_+ \otimes_k A$ . This allows you to compute  $\operatorname{Ext}_A^i(k,k)$  and  $\operatorname{Tor}_i^A(k,k)$ , and indeed  $A^!$  is in the bottom degree.

MIT OpenCourseWare <a href="https://ocw.mit.edu">https://ocw.mit.edu</a>

18.706 Noncommutative Algebra Spring 2023

For information about citing these materials or our Terms of Use, visit: <a href="https://ocw.mit.edu/terms">https://ocw.mit.edu/terms</a>.