Lecture 12: Koszul Rings Continued, Bar Complex

12 March 21 - Koszul rings cont., bar complex

12.1 Finishing up Koszul rings

Proof (of Theorem 11.15, cont.) Subspaces V! ® [@ VE"~I72 ¢ V®" j=0(,1,...,n— 2 generate a distributive lattice
iff K3 is exact: to see that it is enough to note that K} = K*(‘W) for

W=V V2R LV P RIQV,... Ve lgIe Ve [ I1eVe?).

Now the claim follows from Lemma 11.18 (using induction on n).
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It’s easy to see that K, acyclic implies that K is a resolution for the trivial module, and Tor? (k, k) is concentrated
in degree i, so A is Koszul. In the other direction, suppose A is Koszul. We will inductively check acyclicity in the
first d terms of the complex, which looks like -+ = A® I — A® V — A. If this complex is exact up to degree
d, then the minimal space of generators for ker(A ® Ry — A ® R;_) is (some lift of) Torﬁﬂ(k, k). Because A is
Koszul, this is in degree d + 1, so it’s a subspace in A; ® Ry = V ® Ry. It is the kernel of the multiplication map, so
it must be Ry,;, so we're done. ]

Remark 12.1: In commutative algebra, a “Koszul complex” often refers to a complex formed given a com-
mutative ring R and n elements xi,...,x, € R. The last arrow in the complex is R®" — R, sending
1, ..., rq > 2 g x;ri. The Koszul complex for Sym(V) is an example of this.

Remark 12.2: We are now ready to give a sketch of the proof of the fact that for every m € Z,, and large
enough d, the algebra A has the following property: P~ is generated by degree i elements for i < m (see
Remark 11.11 above). So, our goal is to check that for every n € Zs, the degree nth term of the Koszul complex
for A4 is exact for large enough d.

First of all, we can assume that A is generated by A; = V. Set X := Proj A. We can assume that the natural
morphism X < PV is a closed embedding. We have a natural (very ample) line bundle Ox (1) on X with
I['(X,0x(1)) = A; = V. Set Y := X", L := Ox(1)®. For a closed Z C Y we have H*(Y, £) = V®" and denote
by Qz C V®" the kernel of H*(Y, £) — H°(Z, £). Let A; C X" be the diagonal given by x; = x;;1. We have
QAM = y®i QI Ven-i-z

Let S™ be the (finite) set of closed subschemes of Y generated by {A;|i = 1,...,n — 1} and X", @ via unions
and (scheme-theoretic) intersections. Using Serre’s vanishing theorem, we can assume that the statements of
[6, Corollary 1.7] are satisfied for S™. It then follows from [6, Lemma 2.1] that subspaces V& ® [ ® V®"i~2
generate a distributive lattice of subspaces of V®" so we are done by (the proof of) Theorem 11.15 (d).

Corollary 12.3: The Poincare series of a graded algebra is
Pa(t) = Zdnt", dy = dim A,,.
If A is Koszul, then Pa(t)Py (—t) = 1.

Proof. This follows from the (graded) Euler characteristic of K. If you look degree by degree, you can find that the
Euler characteristic of K,, is the nth coefficient of P4 (t)P4:(—t) (see (1)) so the total Euler characteristic of K is
equal to P4 (t)P4: (—t). Recall now that the Euler characteristic of K, can also be computed as the alternating sum
of dimensions of the cohomology of K,,. It remains to note that K, is exact for n > 0 and K = k (sitting in degree
0). It follows that the total graded Euler characteristic of K is equal to 1. O

Example 12.4: Let A= A" V. Then P4(t) = (1 +t)". Likewise, Psym(v) = ﬁ

Proof (of Theorem 11.15, cont. again). Finally, we need to check that A ~ Ext’ (k, k) is an algebra isomorphism.
First, we explain how to make Ext* into an algebra: Ext’, (k, k) = H*(Hom(P®, P*)) for a projective resolution P°;
Hom is a DGA.

Here is how A' acts on K: start with the action of T(V*) on T(V) by contracting tensors V*® x V& — y®n-i,
Restrict this to V*®i x R,, — R,_;, which factors through A!l. X R,. Recall that K™ = A ® R,,. Consider the map

(A®R,) ® A - A®R, ; =K ("),

This is the A'-action, and it commutes with the differential. Moreover, for a € A', the composition K LK Sk
represents the class of a. Hence, this is an algebra isomorphism. O
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Remark 12.5: Let Proj , be the projective graded A-modules. Then A' gives us an equivalence of derived cate-
gories
H(Proj; ) = Ha(Proj )

sending M(1) — M[1](—1) where M(1); = M;;1 and [-] is some homological stuff we won’t discuss here. The
idea is to use k as a generator for the derived category and consider the functor Fy.: M — RHom(k, M) which
generalizes Fp(M) = Hom(P, M).

Remark 12.6: Let A;, A; quadratic, A; = T(V;)/I;. Then
A1 ®A2 = T(Vl @Vg)/[] @IZ (&) <Z)1 ®Z)2 — 0 ®01>

and
(A ®Ay) =T(V; @ V;) /I ® I + (01 ® v + v, ® v1),

the “super” (signed) tensor product.

Remark 12.7: If A is commutative and I > A%(V), then I* ¢ S?V*. Then all the relations of A' will be relations
between anticommutators and A' will be the enveloping algebra of a Lie superalgebra.

For more on Koszul rings, see [4] and [5].

12.2 Bar complex and Hochschild (co)homology
Definition 12.8: Let A be any algebra over a field k. Then the bar complex of A is
s o AQRARLA S ARQKA - A0
where the last map is a ® b — ab and in general
d:ay® - ®a, a1 ®a; @ - ®ap—a@aa; ®---Qap+--- .

The RHS is also written as ag|ai| - - - |an. Then d?* = 0.

Lemma 12.9: The bar complex is exact for any associative algebra.

I Proof Themaph: ay®---®a, — 1®ay® --- ® a, satisfies dh + hd = id, so it is a chain homotopy. ]

The bar complex is also a complex of A-bimodules. The left action is on ag, and the right action is on a,. A is the
regular A-bimodule (i.e., A ®; A°?-module), and all the other terms are free, so the bar complex is a free resolution
for A. This allows us to compute Extfm op (A, A) and Tor‘i“@"\0p (AA).

The bar complex also gives us a free resolution of every A-module by tensoring with M. The cohomology of the bar
complex is Tor‘l.“(A, M) =0fori> 0.

Definition 12.10: The Hochschild homology of A is the homology of the bar resolution. The Hochschild coho-
mology of A is the cohomology of Hom(Bar, A), so the nth term is A ® (A®""1)*. If A is graded, you can likewise
define graded Hochschild cohomology.

Remark 12.11: If A is augmented, you can use the reduced bar complex; let A, be the augmentation ideal, the
reduced bar complex has terms A® A} ® . . . O Ay ® A. This allows you to compute Extﬁi (k, k) and Torfx (k, k),
and indeed A' is in the bottom degree.
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