Lecture 12: Koszul Rings Continued, Bar Complex

12.1 Finishing up Koszul rings

Proof (of Theorem 11.15, cont.) Subspaces $V^{\otimes i} \otimes I \otimes V^{\otimes n-i-2} \subset V^{\otimes n}, i=0,1, \ldots, n-2$ generate a distributive lattice iff \mathbb{K}_{n}^{\bullet} is exact: to see that it is enough to note that $\mathbb{K}_{n}^{\bullet}=K^{\bullet}(\mathcal{W})$ for

$$
\mathcal{W}=\left(V^{\otimes n} ; V^{\otimes n-2} \otimes I, V^{\otimes n-3} \otimes I \otimes V, \ldots, V^{\otimes n-i-1} \otimes I \otimes V^{\otimes i-1}, \ldots, I \otimes V^{\otimes n-2}\right)
$$

Now the claim follows from Lemma 11.18 (using induction on n).

It's easy to see that \mathbb{K}_{n} acyclic implies that \mathbb{K} is a resolution for the trivial module, and $\operatorname{Tor}_{i}^{A}(k, k)$ is concentrated in degree i, so A is Koszul. In the other direction, suppose A is Koszul. We will inductively check acyclicity in the first d terms of the complex, which looks like $\cdots \rightarrow A \otimes I \rightarrow A \otimes V \rightarrow A$. If this complex is exact up to degree d, then the minimal space of generators for $\operatorname{ker}\left(A \otimes R_{d} \rightarrow A \otimes R_{d-1}\right)$ is (some lift of) $\operatorname{Tor}_{d+1}^{A}(k, k)$. Because A is Koszul, this is in degree $d+1$, so it's a subspace in $A_{1} \otimes R_{d}=V \otimes R_{d}$. It is the kernel of the multiplication map, so it must be R_{d+1}, so we're done.

Remark 12.1: In commutative algebra, a "Koszul complex" often refers to a complex formed given a commutative ring R and n elements $x_{1}, \ldots, x_{n} \in R$. The last arrow in the complex is $R^{\oplus n} \rightarrow R$, sending $r_{1}, \ldots, r_{n} \mapsto \sum_{i=1}^{n} x_{i} r_{i}$. The Koszul complex for $\operatorname{Sym}(V)$ is an example of this.

Remark 12.2: We are now ready to give a sketch of the proof of the fact that for every $m \in \mathbb{Z}_{\geqslant 0}$, and large enough d, the algebra $A^{(d)}$ has the following property: P^{-i} is generated by degree i elements for $i \leqslant m$ (see Remark 11.11 above). So, our goal is to check that for every $n \in \mathbb{Z}_{\geqslant 0}$ the degree nth term of the Koszul complex for $A^{(d)}$ is exact for large enough d.
First of all, we can assume that A is generated by $A_{1}=V$. Set $X:=\operatorname{Proj} A$. We can assume that the natural morphism $X \hookrightarrow \mathbb{P}^{N}$ is a closed embedding. We have a natural (very ample) line bundle $O_{X}(1)$ on X with $\Gamma\left(X, O_{X}(1)\right)=A_{1}=V$. Set $Y:=X^{n}, \mathcal{L}:=O_{X}(1)^{\boxtimes n}$. For a closed $Z \subset Y$ we have $H^{0}(Y, \mathcal{L})=V^{\otimes n}$ and denote by $Q_{Z} \subset V^{\otimes n}$ the kernel of $H^{0}(Y, \mathcal{L}) \rightarrow H^{0}(Z, \mathcal{L})$. Let $\Delta_{i} \subset X^{n}$ be the diagonal given by $x_{i}=x_{i+1}$. We have $Q_{\Delta_{i+1}}=V^{\otimes i} \otimes I \otimes V^{\otimes n-i-2}$.
Let S^{n} be the (finite) set of closed subschemes of Y generated by $\left\{\Delta_{i} \mid i=1, \ldots, n-1\right\}$ and X^{n}, \varnothing via unions and (scheme-theoretic) intersections. Using Serre's vanishing theorem, we can assume that the statements of [6, Corollary 1.7] are satisfied for S^{n}. It then follows from [6, Lemma 2.1] that subspaces $V^{\otimes i} \otimes I \otimes V^{\otimes n-i-2}$ generate a distributive lattice of subspaces of $V^{\otimes n}$ so we are done by (the proof of) Theorem 11.15 (d).

Corollary 12.3: The Poincare series of a graded algebra is

$$
P_{A}(t)=\sum d_{n} t^{n}, d_{n}=\operatorname{dim} A_{n}
$$

If A is Koszul, then $P_{A}(t) P_{A^{!}}(-t)=1$.
Proof. This follows from the (graded) Euler characteristic of \mathbb{K}. If you look degree by degree, you can find that the Euler characteristic of \mathbb{K}_{n} is the nth coefficient of $P_{A}(t) P_{A^{!}}(-t)$ (see (1)) so the total Euler characteristic of \mathbb{K} is equal to $P_{A}(t) P_{A^{!}}(-t)$. Recall now that the Euler characteristic of \mathbb{K}_{n} can also be computed as the alternating sum of dimensions of the cohomology of \mathbb{K}_{n}. It remains to note that \mathbb{K}_{n} is exact for $n>0$ and $\mathbb{K}_{0}=k$ (sitting in degree 0). It follows that the total graded Euler characteristic of \mathbb{K} is equal to 1 .

Example 12.4: Let $A=\Lambda^{n} V$. Then $P_{A}(t)=(1+t)^{n}$. Likewise, $P_{\operatorname{Sym}(V)}=\frac{1}{(1-t)^{n}}$.
Proof (of Theorem 11.15, cont. again). Finally, we need to check that $A^{!} \simeq \operatorname{Ext}_{A}^{\bullet}(k, k)$ is an algebra isomorphism. First, we explain how to make Ext ${ }^{\bullet}$ into an algebra: $\operatorname{Ext}_{A}^{\bullet}(k, k)=H^{*}\left(\underline{\operatorname{Hom}}\left(P^{\bullet}, P^{\bullet}\right)\right)$ for a projective resolution P^{\bullet}; Hom is a DGA.
Here is how $A^{!}$acts on \mathbb{K} : start with the action of $T\left(V^{*}\right)$ on $T(V)$ by contracting tensors $V^{* \otimes i} \times V^{\otimes n} \rightarrow V^{\otimes n-i}$. Restrict this to $V^{* \otimes i} \times R_{n} \rightarrow R_{n-i}$, which factors through $A_{i}^{!} \times R_{n}$. Recall that $\mathbb{K}^{-n}=A \otimes R_{n}$. Consider the map

$$
\left(A \otimes R_{n}\right) \otimes A_{i}^{!} \rightarrow A \otimes R_{n-i}=\mathbb{K}^{-(n-i)}
$$

This is the $A^{!}$-action, and it commutes with the differential. Moreover, for $a \in A^{!}$, the composition $\mathbb{K} \xrightarrow{a} \mathbb{K} \rightarrow k$ represents the class of a. Hence, this is an algebra isomorphism.

Remark 12.5: Let Proj_{A} be the projective graded A-modules. Then $A^{!}$gives us an equivalence of derived categories

$$
\mathcal{H} \imath\left(\operatorname{Proj}_{A}^{f . g .}\right) \simeq \mathcal{H} \imath\left(\operatorname{Proj}_{A^{!}}^{f . g .}\right)
$$

sending $M(1) \mapsto M[1](-1)$ where $M(1)_{i}=M_{i+1}$ and [•] is some homological stuff we won't discuss here. The idea is to use k as a generator for the derived category and consider the functor $F_{k}: M \rightarrow \mathrm{RHom}(k, M)$ which generalizes $F_{P}(M)=\operatorname{Hom}(P, M)$.

Remark 12.6: Let A_{1}, A_{2} quadratic, $A_{i}=T\left(V_{i}\right) / I_{i}$. Then

$$
A_{1} \otimes A_{2}=T\left(V_{1} \oplus V_{2}\right) / I_{1} \oplus I_{2} \oplus\left\langle v_{1} \otimes v_{2}-v_{2} \otimes v_{1}\right\rangle
$$

and

$$
\left(A_{1} \otimes A_{2}\right)^{!}=T\left(V_{1}^{*} \oplus V_{2}^{*}\right) / I_{1}^{\perp} \oplus I_{2}^{\perp}+\left\langle v_{1} \otimes v_{2}+v_{2} \otimes v_{1}\right\rangle
$$

the "super" (signed) tensor product.

Remark 12.7: If A is commutative and $I \supset \wedge^{2}(V)$, then $I^{\perp} \subset S^{2} V^{*}$. Then all the relations of $A^{!}$will be relations between anticommutators and $A^{!}$will be the enveloping algebra of a Lie superalgebra.

For more on Koszul rings, see [4] and [5].

12.2 Bar complex and Hochschild (co)homology

Definition 12.8: Let A be any algebra over a field k. Then the bar complex of A is

$$
\cdots \rightarrow A \otimes_{k} A \otimes_{k} A \rightarrow A \otimes_{k} A \rightarrow A \rightarrow 0
$$

where the last map is $a \otimes b \mapsto a b$ and in general

$$
d: a_{0} \otimes \cdots \otimes a_{n} \mapsto a_{0} a_{1} \otimes a_{2} \otimes \cdots \otimes a_{n}-a_{0} \otimes a_{1} a_{2} \otimes \cdots \otimes a_{n}+\cdots
$$

The RHS is also written as $a_{0}\left|a_{1}\right| \cdots \mid a_{n}$. Then $d^{2}=0$.

Lemma 12.9: The bar complex is exact for any associative algebra.
Proof. The map $h: a_{0} \otimes \cdots \otimes a_{n} \mapsto 1 \otimes a_{0} \otimes \cdots \otimes a_{n}$ satisfies $d h+h d=\mathrm{id}$, so it is a chain homotopy.
The bar complex is also a complex of A-bimodules. The left action is on a_{0}, and the right action is on a_{n}. A is the regular A-bimodule (i.e., $A \otimes_{k} A^{\text {op }}$-module), and all the other terms are free, so the bar complex is a free resolution for A. This allows us to compute $\operatorname{Ext}_{A \otimes A^{\mathrm{op}}}^{i}(A, A)$ and $\operatorname{Tor}_{i}^{A \otimes A^{\mathrm{op}}}(A, A)$.

The bar complex also gives us a free resolution of every A-module by tensoring with M. The cohomology of the bar complex is $\operatorname{Tor}_{i}^{A}(A, M)=0$ for $i>0$.

Definition 12.10: The Hochschild homology of A is the homology of the bar resolution. The Hochschild cohomology of A is the cohomology of $\operatorname{Hom}(\mathrm{Bar}, A)$, so the nth term is $A \otimes\left(A^{\otimes n-1}\right)^{*}$. If A is graded, you can likewise define graded Hochschild cohomology.

Remark 12.11: If A is augmented, you can use the reduced bar complex; let A_{+}be the augmentation ideal, the reduced bar complex has terms $A \otimes_{k} A_{+} \otimes_{k} \ldots \otimes_{k} A_{+} \otimes_{k} A$. This allows you to compute $\operatorname{Ext}_{A}^{i}(k, k)$ and $\operatorname{Tor}_{i}^{A}(k, k)$, and indeed $A^{!}$is in the bottom degree.

MIT OpenCourseWare
https://ocw.mit.edu

18.706 Noncommutative Algebra

Spring 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

