
13 March 23 - Hochschild (co)homology cont., central simple algebras 

13.1 Deformations and Hochschild cohomology 

From the definition of Hochschild (co)homology, we see that HH0 = 𝐶 (𝐴) = 𝐴/[𝐴, 𝐴] the cocenter and HH0 =

Hom𝐴 ⊗𝐴op (𝐴, 𝐴 ) = 𝑍 (𝐴) the center.

We also have a nice description for HH1: the kernel of 𝑑 is {𝜑 : 𝐴 → 𝐴 | 𝜑 (𝑎𝑏 ) = 𝜑 (𝑎 )𝑏 + 𝑎𝜑 (𝑏 )} and the image of
𝑑 is {𝜑 | ∃𝑥 s.t. 𝜑 (𝑎 ) = [𝑎, 𝑥 ]}. So HH1 is the derivations modulo the inner derivations, i.e., the outer derivations of
𝐴. 

Lemma 13.1: HH2 (𝐴) is in bijection with isomorphism classes of first order deformations of 𝐴.

Definition 13.2: An 𝑛 th order deformation of 𝐴 is an algebra ˜ 𝐴 free over 𝑘 [𝑡 ]/(𝑡 𝑛 +1) and an isomorphism
𝐴̃/𝑡 ˜ 𝐴 = 𝐴. A formal deformation of 𝐴 is the same as above, but over 𝑘 [[𝑡 ]] (and we need to use flatness instead 
of free), and a polynomial deformation of 𝐴 is the one over 𝑘 [𝑡 ]. 

Proof. Suppose ˜ 𝐴 is a first order deformation of 𝐴 and fix an isomorphism ˜ 𝐴 ≃ 𝐴 ⊗𝑘 (𝑘 [𝑡 ]/(𝑡 2)). The multiplication
𝜇 on ˜ 𝐴 will correspond to a cocycle: it is determined by 𝜇 (𝑎, 𝑏 ) for 𝑎, 𝑏 ∈ 𝐴 , and we must have 𝜇 (𝑎, 𝑏 ) = 𝑎𝑏 modulo 
𝑡 , so we can say that 𝜇 (𝑎, 𝑏 ) = 𝑎𝑏 + 𝜑 (𝑎, 𝑏 )𝑡 where 𝜑 : 𝐴 ⊗ 𝐴 → 𝐴 . Then associativity of 𝜇 corresponds to 𝜑 being 
a cochain since we need 

𝑎𝜑 (𝑏 , 𝑐 ) − 𝜑 (𝑎𝑏 , 𝑐 ) + 𝜑 (𝑎, 𝑏 𝑐 ) − 𝜑 (𝑎, 𝑏 )𝑐 = 0. 

Given any cocycle, we can define a deformation of 𝐴 by defining multiplication on 𝐴 ⊗ 𝑘 [𝑡 ]/𝑡 2 to be 𝑎𝑏 + 𝜑 (𝑎, 𝑏 )𝑡 .
An isomorphism of deformations 𝐴𝜑 ≃𝑓 𝐴𝜓 is a map 𝑓 : ˜ 𝑎 ↦→ ˜ 𝑎 + 𝑡 𝑓 (𝑎 ) for 𝑓 : 𝐴 → 𝐴, since again it only depends
on the values it takes on 𝐴. 𝑓 is an algebra homomorphism iff 

(𝜓 − 𝜑 ) (𝑎, 𝑏 ) = 𝑎 𝑓 (𝑏 ) − 𝑓 (𝑎 )𝑏, 

that is, if 𝜓 − 𝜑 is a coboundary. □ 

Remark 13.3: Given an 𝑛 th order deformation, the obstruction to extending it to an 𝑛 + 1th order deformation
lies in HH3 (𝐴); an expression in terms of the multiplication on ˜ 𝐴 must vanish in HH3 . Hence, if HH3 (𝐴 ) = 0,
any deformation can be extended, and the set of all such extensions is in bijection with HH2 . However, this
bijection is not canonical. Exercise: to get a canonical bijection, you also need the data of a torsor over HH2 .

Example 13.4: What is HH•(𝐴) and HH•(𝐴 ) for 𝐴 = 𝑘 [𝑥 1, . . . , 𝑥𝑛 ] = Sym(𝑉 )? For simplicity, assume char 𝑘 =
0. We see we need to compute 

Ext• Sym(𝑉 ⊕𝑉 ) (Sym(𝑉 ), Sym(𝑉 ))

and we already know how to do this: change coordinates using the Koszul complex to find that it’s Sym(𝑉 ) ⊗ (𝑉 ∗). 
In particular, we remarked above that HH1 is the outer derivations. For a commutative ring, there are no inner
derivations, so HH1 (𝐴) is exactly the derivations of Sym(𝑉 ), which are 

𝑛∑︁ 

𝑖 =1 

𝑝𝑖 𝜕𝑥𝑖 

 

, 𝑝𝑖 ∈ 𝑘 [𝑥 1, . . . , 𝑥 𝑛 ], 𝜕𝑥𝑖 : 𝑃 → 
𝜕 𝑃
𝜕𝑥𝑖 

. 

Hence, HH•(𝐴) is the polyvector fields on 𝑉 ∗ = Spec(Sym(𝑉 )) and HH•(𝐴) ≃ Sym(𝑉 ) ⊗ 
 
𝑉 , 

 
𝑉 is in degree 

−1. These are the differential forms on 𝑉 , Ω𝑖 is in degree −𝑖 .
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Remark 13.5: Hochschild-Kostant-Rosenberg generalized this to a smooth algebraic variety 𝑉 . HH• and HH• 
carry more structure, related to differential geometry: the de Rham differential on forms corresponds to the 
Connes differential, which corresponds to cyclic cohomology. The latter uses the fact that the differential in the 
bar complex has cyclic symmetry. 
The polyvector fields have a Schouten bracket, extending the commutator of vector fields [𝑣 , 𝑤 ] = Lie𝑣 (𝑤 ) (the 
Lie derivative). This generalizes to HH•(𝐴), e.g. the obstruction in HH3 for extending the 1st order deformation 
is [ℎ, ℎ ] where ℎ is the deformation class. 

13.2 Cobar complex and 𝐴! 

Let 𝐴 be an augmented algebra, 𝐴 = 𝑘 · 1 ⊕ 𝐴 +, 𝐴+ = 
 

𝑛 ⩾1 𝐴𝑛 . This induces a splitting of the bar resolution 

𝐴 ⊗ 𝐴 + ⊗ · · · ⊗ 𝐴+ ⊗ 𝐴 
 

span(𝑎 0 ⊗ · · · ⊗ 1 ⊗ · · · ⊗ 𝑎𝑛 ). 

This is because 𝑑 (𝛼 ⊗ 1 ⊗ 𝛽 ) = 𝑑 (𝛼 ) ⊗ 1 ⊗ 𝛽 ± 𝛼 ⊗ 1 ⊗ 𝑑 (𝛽 ) + stuff and you can check that the stuff is all like 
· · · 𝑎𝑖 −1 ⊗ 𝑎𝑖 · · · − · · · 𝑎𝑖 −1 ⊗ 𝑎𝑖 · · · so it cancels. Therefore, both of the above are closed under the 𝑑 -action. Hence, we 
can consider the reduced bar resolution and we can use it to compute graded Ext• 

𝐴
(𝑘 , 𝑘 ) and show that it is 𝐴! . 

Define the graded dual of 𝑀 = 
 

𝑀𝑖 to be 𝑀 ∗ := 
 

𝑀∗𝑖 ; in this notation, the cobar complex is 

𝐴 ∗ + → 𝐴 ∗⊗2 
+ → · · · 

where the first is in degree ⩽ −1, the second is in degree ⩽ −2, and so on. Consider the degree −𝑖 part in the 𝑖 th 
term; it will equal (𝑉 ∗)⊗𝑖 where 𝑉 = 𝐴 1, and 

Ext𝑖 𝐴 (𝑘 , 𝑘 )−𝑖 ≃ 𝑉 ∗ /𝑑 () 

where 𝑑 () is spanned by 𝑑 (𝑎 1 ⊗ 𝑎 2 ⊗ · · · ⊗ 𝑏 ⊗ 𝑎 𝑗 ⊗ · · · ⊗ 𝑎𝑖 ) where 𝑎𝑘 ∈ 𝑉 ∗ and 𝑏 ∈ 𝐴 ∗2; this is 

±𝑑 (𝑎 1 ⊗ 𝑎 2 ⊗ · · · ⊗ 𝑑𝑏 ⊗ · · · ⊗ 𝑎𝑖 ). 

So 𝑑 : 𝐴 ∗2 → 𝐴∗ 1 ⊗ 𝐴∗1, 𝐴2 = 𝐴 1 ⊗ 𝐴1/𝐼 , and 𝐼 is the space of degree 2 relations. 𝐴∗ 2 = 𝐼 ⊥ 𝑑 
↩→ 𝑉 ∗ ⊗ 𝑉 ∗ . So 𝑉 ∗/𝑑 () ≃ 𝐴! 

𝑖 , 
the quadratic dual to the quadratic part of 𝐴 . 

The cobar complex above is a DGA acting on the bar resolution of 𝑘 . Hence, 𝐴! ≃ 
 

Ext𝑖
𝐴 (𝑘 , 𝑘 )−𝑖 is an algebra 

isomorphism. 

Note : For our next topic, we’ll need that 𝐻 ∗(𝐺 , 𝑀 ) = Ext• 
Z[𝐺 ] (Z, 𝑀 ) where 𝐺 is a group (see Section 15.2 below). 

13.3 Central simple algebras and Brauer group 

We will look at simple Artinian rings 𝑅 , so they are of the form 𝑅 = Mat𝑛 (𝐷 ) for 𝐷 a skew field. The center of 𝐷 is 
a field 𝑘 ; then we say that 𝑅 is a central simple algebra over 𝑘 . We want to understand central simple algebras of 
finite dimension over a given field 𝑘 . 

Theorem 13.6: 
a) If 𝐴, 𝐵 are two finite-dimensional central simple algebras over 𝑘 , so is 𝐴 ⊗𝑘 𝐵 . 
b) Consider the set of finite-dimensional central simple algebras over 𝑘 modulo Morita equivalence. This set is 

in bijection with central division rings over 𝑘 of finite dimension. With the operation [𝐴] + [𝐵 ] := [𝐴 ⊗𝑘 𝐵 ], 
this set forms an abelian group, called the Brauer group of 𝑘 . 

Lemma 13.7: If 𝐴 is a finite-dimensional central simple algebra over 𝑘 , then 𝐴𝑒 := 𝐴 ⊗𝑘 𝐴
op ≃ End𝑘 (𝐴 ). 

Proof. 𝐴 is a simple algebra iff 𝐴 is a simple 𝐴𝑒 -module (𝐴 -bimodule). So 𝑍 (𝐴) = End𝐴𝑒 (𝐴) ≃ 𝑘 and 𝐴 is 
finite-dimensional over 𝑘 . Then by the density theorem, 𝐴𝑒 ↠ End𝑘 (𝐴). If 𝑑 = dim𝑘 (𝐴), then dim𝑘 (𝐴𝑒 ) = 
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dim𝑘 (End(𝐴 )) = 𝑑 2 , so in fact this surjection is an isomorphism. □ 

Theorem 13.8 (Azumaya-Nakayama): Suppose A is a central simple algebra over 𝑘 and 𝐵 is any algebra over 
𝑘 . Then two-sided ideals in 𝐴 ⊗𝑘 𝐵 are in bijection with two-sided ideals in 𝐵 . 

Proof. Our goal is to describe submodules of the 𝐴𝑒 ⊗𝑘 𝐵𝑒 -module 𝐴 ⊗𝑘 𝐵 . Consider 𝐴 ⊗𝑘 𝐵 as an 𝐴𝑒 ⊗𝑘 𝑘 -module first.
Then it’s a simple module tensored with vector space. Hence 𝐴𝑒 -submodules of it are of the form 𝐴 ⊗𝑘 𝑉 , 𝑉 ⊂ 𝐵
a subspace (this follows from the classification of submodules in a semisimple module). But 𝐴 ⊗𝑘 𝑉 is a 𝑘 ⊗𝑘 𝐵𝑒 -
submodule iff 𝑉 is a 𝐵𝑒 -submodule of 𝐵 , so in fact 𝑉 must be a two-sided ideal of 𝐵 . □
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