13.1 Deformations and Hochschild cohomology

From the definition of Hochschild (co)homology, we see that $\mathrm{HH}_{0}=C(A)=A /[A, A]$ the cocenter and $\mathrm{HH}^{0}=$ $\operatorname{Hom}_{A \otimes A^{\text {op }}}(A, A)=Z(A)$ the center.
We also have a nice description for HH^{1} : the kernel of d is $\{\varphi: A \rightarrow A \mid \varphi(a b)=\varphi(a) b+a \varphi(b)\}$ and the image of d is $\{\varphi \mid \exists x$ s.t. $\varphi(a)=[a, x]\}$. So HH^{1} is the derivations modulo the inner derivations, i.e., the outer derivations of A.

Lemma 13.1: $\mathrm{HH}^{2}(A)$ is in bijection with isomorphism classes of first order deformations of A.

Definition 13.2: An nth order deformation of A is an algebra \tilde{A} free over $k[t] /\left(t^{n+1}\right)$ and an isomorphism $\tilde{A} / t \tilde{A}=A$. A formal deformation of A is the same as above, but over $k[[t]]$ (and we need to use flatness instead of free), and a polynomial deformation of A is the one over $k[t]$.

Proof. Suppose \tilde{A} is a first order deformation of A and fix an isomorphism $\tilde{A} \simeq A \otimes_{k}\left(k[t] /\left(t^{2}\right)\right)$. The multiplication μ on \tilde{A} will correspond to a cocycle: it is determined by $\mu(a, b)$ for $a, b \in A$, and we must have $\mu(a, b)=a b$ modulo t, so we can say that $\mu(a, b)=a b+\varphi(a, b) t$ where $\varphi: A \otimes A \rightarrow A$. Then associativity of μ corresponds to φ being a cochain since we need

$$
a \varphi(b, c)-\varphi(a b, c)+\varphi(a, b c)-\varphi(a, b) c=0
$$

Given any cocycle, we can define a deformation of A by defining multiplication on $A \otimes k[t] / t^{2}$ to be $a b+\varphi(a, b) t$. An isomorphism of deformations $\widetilde{A_{\varphi}} \simeq_{f} \widetilde{A_{\psi}}$ is a map $f: \tilde{a} \mapsto \tilde{a}+t f(a)$ for $f: A \rightarrow A$, since again it only depends on the values it takes on A. f is an algebra homomorphism iff

$$
(\psi-\varphi)(a, b)=a f(b)-f(a) b
$$

that is, if $\psi-\varphi$ is a coboundary.
Remark 13.3: Given an nth order deformation, the obstruction to extending it to an $n+1$ th order deformation lies in $\mathrm{HH}^{3}(A)$; an expression in terms of the multiplication on \tilde{A} must vanish in HH^{3}. Hence, if $\mathrm{HH}^{3}(A)=0$, any deformation can be extended, and the set of all such extensions is in bijection with HH^{2}. However, this bijection is not canonical. Exercise: to get a canonical bijection, you also need the data of a torsor over HH^{2}.

Example 13.4: What is $\mathrm{HH}_{\bullet}(A)$ and $\mathrm{HH}^{\bullet}(A)$ for $A=k\left[x_{1}, \ldots, x_{n}\right]=\operatorname{Sym}(V)$? For simplicity, assume char $k=$ 0 . We see we need to compute

$$
\operatorname{Ext}_{\operatorname{Sym}(V \oplus V)}^{\bullet}(\operatorname{Sym}(V), \operatorname{Sym}(V))
$$

and we already know how to do this: change coordinates using the Koszul complex to find that it's $\operatorname{Sym}(V) \otimes$ $\wedge\left(V^{*}\right)$.
In particular, we remarked above that HH^{1} is the outer derivations. For a commutative ring, there are no inner derivations, so $\mathrm{HH}^{1}(A)$ is exactly the derivations of $\operatorname{Sym}(V)$, which are

$$
\left\{\sum_{i=1}^{n} p_{i} \partial_{x_{i}}\right\}, p_{i} \in k\left[x_{1}, \ldots, x_{n}\right], \partial_{x_{i}}: P \rightarrow \frac{\partial P}{\partial x_{i}}
$$

Hence, $\mathrm{HH}^{\bullet}(A)$ is the polyvector fields on $V^{*}=\operatorname{Spec}(\operatorname{Sym}(V))$ and $\mathrm{HH}_{\bullet}(A) \simeq \operatorname{Sym}(V) \otimes \wedge V, \wedge V$ is in degree -1 . These are the differential forms on V, Ω^{i} is in degree $-i$.

Remark 13.5: Hochschild-Kostant-Rosenberg generalized this to a smooth algebraic variety V. HH. and HH ${ }^{\bullet}$ carry more structure, related to differential geometry: the de Rham differential on forms corresponds to the Connes differential, which corresponds to cyclic cohomology. The latter uses the fact that the differential in the bar complex has cyclic symmetry.
The polyvector fields have a Schouten bracket, extending the commutator of vector fields $[v, w]=\operatorname{Lie}_{v}(w)$ (the Lie derivative). This generalizes to $\mathrm{HH}^{\bullet}(A)$, e.g. the obstruction in HH^{3} for extending the 1 st order deformation is $[h, h]$ where h is the deformation class.

13.2 Cobar complex and $A^{!}$

Let A be an augmented algebra, $A=k \cdot 1 \oplus A_{+}, A_{+}=\bigoplus_{n \geqslant 1} A_{n}$. This induces a splitting of the bar resolution

$$
A \otimes A_{+} \otimes \cdots \otimes A_{+} \otimes A \bigoplus \operatorname{span}\left(a_{0} \otimes \cdots \otimes 1 \otimes \cdots \otimes a_{n}\right)
$$

This is because $d(\alpha \otimes 1 \otimes \beta)=d(\alpha) \otimes 1 \otimes \beta \pm \alpha \otimes 1 \otimes d(\beta)+$ stuff and you can check that the stuff is all like $\cdots a_{i-1} \otimes a_{i} \cdots-\cdots a_{i-1} \otimes a_{i} \cdots$ so it cancels. Therefore, both of the above are closed under the d-action. Hence, we can consider the reduced bar resolution and we can use it to compute graded $\operatorname{Ext}_{A}^{\bullet}(k, k)$ and show that it is $A^{!}$.
Define the graded dual of $M=\bigoplus M_{i}$ to be $M^{*}:=\bigoplus M_{i}^{*}$; in this notation, the cobar complex is

$$
A_{+}^{*} \rightarrow A_{+}^{* \otimes 2} \rightarrow \cdots
$$

where the first is in degree $\leqslant-1$, the second is in degree $\leqslant-2$, and so on. Consider the degree $-i$ part in the i th term; it will equal $\left(V^{*}\right)^{\otimes i}$ where $V=A_{1}$, and

$$
\operatorname{Ext}_{A}^{i}(k, k)_{-i} \simeq V^{*} / d()
$$

where $d()$ is spanned by $d\left(a_{1} \otimes a_{2} \otimes \cdots \otimes b \otimes a_{j} \otimes \cdots \otimes a_{i}\right)$ where $a_{k} \in V^{*}$ and $b \in A_{2}^{*}$; this is

$$
\pm d\left(a_{1} \otimes a_{2} \otimes \cdots \otimes d b \otimes \cdots \otimes a_{i}\right)
$$

So $d: A_{2}^{*} \rightarrow A_{1}^{*} \otimes A_{1}^{*}, A_{2}=A_{1} \otimes A_{1} / I$, and I is the space of degree 2 relations. $A_{2}^{*}=I^{\perp} \stackrel{d}{\hookrightarrow} V^{*} \otimes V^{*}$. So $V^{*} / d() \simeq A_{i}^{!}$, the quadratic dual to the quadratic part of A.

The cobar complex above is a DGA acting on the bar resolution of k. Hence, $A^{!} \simeq \bigoplus \operatorname{Ext}_{A}^{i}(k, k)_{-i}$ is an algebra isomorphism.

Note : For our next topic, we'll need that $H^{*}(G, M)=\operatorname{Ext}_{\mathbb{Z}[G]}^{\bullet}(\mathbb{Z}, M)$ where G is a group (see Section 15.2 below).

13.3 Central simple algebras and Brauer group

We will look at simple Artinian rings R, so they are of the form $R=\operatorname{Mat}_{n}(D)$ for D a skew field. The center of D is a field k; then we say that R is a central simple algebra over k. We want to understand central simple algebras of finite dimension over a given field k.

Theorem 13.6:
a) If A, B are two finite-dimensional central simple algebras over k, so is $A \otimes_{k} B$.
b) Consider the set of finite-dimensional central simple algebras over k modulo Morita equivalence. This set is in bijection with central division rings over k of finite dimension. With the operation $[A]+[B]:=\left[A \otimes_{k} B\right]$, this set forms an abelian group, called the Brauer group of k.

Lemma 13.7: If A is a finite-dimensional central simple algebra over k, then $A_{e}:=A \otimes_{k} A^{\mathrm{op}} \simeq \operatorname{End}_{k}(A)$.
Proof. A is a simple algebra iff A is a simple A_{e}-module (A-bimodule). So $Z(A)=\operatorname{End}_{A_{e}}(A) \simeq k$ and A is finite-dimensional over k. Then by the density theorem, $A_{e} \rightarrow \operatorname{End}_{k}(A)$. If $d=\operatorname{dim}_{k}(A)$, then $\operatorname{dim}_{k}\left(A_{e}\right)=$
$\operatorname{dim}_{k}(\operatorname{End}(A))=d^{2}$, so in fact this surjection is an isomorphism.
Theorem 13.8 (Azumaya-Nakayama): Suppose A is a central simple algebra over k and B is any algebra over k. Then two-sided ideals in $A \otimes_{k} B$ are in bijection with two-sided ideals in B.

Proof. Our goal is to describe submodules of the $A_{e} \otimes_{k} B_{e}$-module $A \otimes_{k} B$. Consider $A \otimes_{k} B$ as an $A_{e} \otimes_{k} k$-module first. Then it's a simple module tensored with vector space. Hence A_{e}-submodules of it are of the form $A \otimes_{k} V, V \subset B$ a subspace (this follows from the classification of submodules in a semisimple module). But $A \otimes_{k} V$ is a $k \otimes_{k} B_{e^{-}}$ submodule iff V is a B_{e}-submodule of B, so in fact V must be a two-sided ideal of B.

MIT OpenCourseWare
https://ocw.mit.edu

18.706 Noncommutative Algebra

Spring 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

