
14 April 4 - Brauer group and Skolem-Noether Theorems 

14.1 Definition and first properties of Brauer group 

Lemma 14.1: The center of a simple ring is a field. 

Proof. Saying that 𝐴 is a simple ring, i.e. it has no nontrivial proper two-sided ideals, is equivalent to saying that
𝐴 is simple as an 𝐴 ⊗𝑘 𝐴

op-module. Then Hom𝐴 ⊗𝑘 𝐴
op (𝐴, 𝐴) = 𝑍 (𝐴) and by Schur’s Lemma, it must be a division

ring. It remains to note that every commutative division ring is a field. □

Lemma 14.2: For 𝐴, 𝐵 two algebras over 𝑘 , 𝑍 (𝐴 ⊗𝑘 𝐵 ) = 𝑍 (𝐴) ⊗𝑘 𝑍 (𝐵 ). 

Proof. Suppose 𝑥 ∈ 𝐴 ⊗ 𝐵 is central. We can write 𝑥 =
 
𝑎𝑖 ⊗ 𝑏𝑖 where the 𝑎𝑖 ∈ 𝐴 are linearly independent and

likewise for the 𝑏 𝑖 ∈ 𝐵𝑖 . Then for all 𝑎 ∈ 𝐴,

[𝑥 , 𝑎 ⊗ 1] = 
∑︁ 
[𝑎, 𝑎𝑖 ] ⊗ 𝑏 𝑖 = 0.

Since the 𝑏𝑖 are linearly independent, this implies the 𝑎𝑖 are all central. Likewise, 𝑏 𝑖 ∈ 𝑍 (𝐵 ). □ 

Proof (of Theorem 13.6). a) By Theorem 13.8, the tensor product 𝐴 ⊗𝑘 𝐵 is a simple ring, and by the above lemmas
its center is the field 𝑍 (𝐴) ⊗𝑘 𝑍 (𝐵 ) = 𝑘 .

b) The tensor operation is well-defined up to Morita equivalence since 𝐴 ∼ Mat𝑛 (𝐴 ) and

Mat𝑛 (𝐴) ⊗𝑘 𝐵 = Mat𝑛 (𝑘 ) ⊗𝑘 𝐴 ⊗𝑘 𝐵 = Mat𝑛 (𝐴 ⊗𝑘 𝐵 ).

The operation is obviously commutative and associative, has identity 𝑘 , and inverse −[𝐴] = [𝐴op] since
[𝐴 ⊗𝑘 𝐴

op] = [End𝑘 (𝐴 )] = [𝑘 ].
To see that the set is in bijection with division rings over 𝑘 of finite dimension, note that Theorem 2.16 
implies that any central simple algebra 𝐴 with center 𝑘 has the form Mat𝑛 (𝐷 ) where 𝐷 is a skew field with
center 𝑘 . 𝐷 is unique because we can define 𝐷 as End𝐴 (𝐿 )op where 𝐿 is the unique simple 𝐴-module.

□ 

Example 14.3: Br(R)  Z/2Z because there are exactly two finite-dimensional skew fields over R, namely R
and H. 

Lemma 14.4: If 𝐸 /𝐹 is a field extension, then 𝐴 is a central simple algebra over 𝐹 iff 𝐴 ⊗𝐹 𝐸 is a central simple 
algebra over 𝐸 . More generally, if 𝐵 is an algebra over 𝐸 , and 𝐴 is an algebra over 𝐹 , then 𝐴 ⊗𝐹 𝐵 is a central simple 
algebra over 𝐸 iff 𝐴 is a central simple algebra over 𝐹 and 𝐵 is a central simple algebra over 𝐸 . 

Proof. Assume that 𝐴/𝐹 and 𝐵 /𝐸 are central simple algebras. Then, by Theorem 13.8, 𝐴 ⊗𝐹 𝐵 is a simple ring. Its
center is (by lemma 14.2): 

𝑍 (𝐴 ⊗𝐹 𝐵 ) = 𝑍 (𝐴) ⊗𝐹 𝑍 (𝐵 ) = 𝐹 ⊗𝐹 𝐸 = 𝐸 . 

Assume now that 𝐴 ⊗𝐹 𝐵 is a central simple algebra over 𝐸 . Again from lemma 14.2 we know that 𝑍 (𝐴) ⊗𝐹 𝑍 (𝐵 ) =
𝑍 (𝐴 ⊗𝐹 𝐵 ) = 𝐸 so we must have 𝑍 (𝐴) = 𝐹 , 𝑍 (𝐵 ) = 𝐸 . It remains to note that if 𝐴 is not simple, then there
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exists a nonzero proper two-sided ideal 𝐼 ⊂ 𝐴 but then 𝐼 ⊗𝐹 𝐵 will be a nonzero proper two-sided ideal in 𝐴 ⊗𝐹 𝐵 . 
Contradiction finishes the proof. □ 

Corollary 14.5: If 𝐸 /𝐹 is a field extension, it induces a group homomorphism called the base change map 

Br(𝐹 ) → Br(𝐸 ), [𝐴] ↦→ [𝐴 ⊗𝐹 𝐸 ] . 

Proof. It’s a group homomorphism because 

(𝐴 ⊗𝐹 𝐸 ) ⊗𝐸 (𝐸 ⊗𝐹 𝐵 )  𝐸 ⊗𝐹 (𝐴 ⊗𝐹 𝐵 ). 

□ 

Example 14.6: Algebraically closed fields have no finite skew field extensions, so if 𝑘 = ¯ 𝑘 then Br(𝑘 ) = 0. This 
implies that all central simple algebras over such 𝑘 are of the form Mat𝑑 (𝑘 ). 

Definition 14.7: Let 𝐴 be a central simple algebra over an arbitrary field 𝐹 . The degree of 𝐴 is the 𝑑 such that 

𝐴 ⊗𝐹 𝐹  Mat𝑑 ( 𝐹 ). 

Alternately, it is the 𝑑 such that dim𝐹 (𝐴) = 𝑑 2 . 

Definition 14.8: The kernel of the base change map for an extension 𝐸 /𝐹 is denoted Br(𝐸 /𝐹 ). 

Definition 14.9: Let 𝐴 be a central simple algebra over 𝐹 . We say an algebraic field extension 𝐸 /𝐹 splits 𝐴, or 
that 𝐴 splits over 𝐸 , if [𝐴] ∈ Br(𝐸 /𝐹 ), i.e. 𝐴 ⊗𝐹 𝐸  Mat𝑛 (𝐸 ). 

Example 14.10: Every central simple algebra 𝐴 over 𝐹 will split over ¯ 𝐹 . 

Corollary 14.11: Every central simple algebra 𝐴 over 𝐹 will split over a finite extension, namely the one generated 
by the matrix coefficients of the isomorphism 𝐴 ⊗𝐹 ¯ 𝐹  Mat𝑛 (𝐹 ) (in some bases of 𝐴, Mat𝑛 (𝐹 )). 

14.2 Torsors and Galois forms 
Classifying the central simple algebras of a fixed degree over a fixed field 𝐹 splitting over a fixed field extension of 
𝐸 is a special case of Galois forms or the Galois descent problem. Here is an overview of the general procedure 
and the classification: 

Assume that 𝐸 /𝐹 is Galois. Then consider the set 𝐼 of all 𝐸 -linear isomorphism 𝐴 ⊗𝐹 𝐸  Mat𝑛 (𝐸 ). PGL𝑛 (𝐸 ) acts on 
Mat𝑛 (𝐸 ) by conjugation; in fact, it is isomorphic to the group of automorphisms of Mat𝑛 (𝐸 ) (either a special case of 
the Theorem 14.14, see below, or a direct computation). 

Hence, PGL𝑛 (𝐸 ) acts on 𝐼 by sending an isomorphism 𝐴 ⊗𝐹 𝐸  Mat𝑛 (𝐸 ) to 𝐴 ⊗𝐹 𝐸  Mat𝑛 (𝐸 ) 
conj 
−−− → Mat𝑛 (𝐸 ). It turns 

out that this action is simply transitive. On the other hand, we have an action of the Galois group 𝐺 = Gal(𝐸 /𝐹 ) on 
both 𝐴 ⊗𝐹 𝐸 and on Mat𝑛 (𝐸 ), so it acts on 𝐼 by conjugation. These actions of PGL𝑛 (𝐸 ) and 𝐺 are compatible. This 
defines what we call a PGL𝑛 (𝐸 )-torsor over 𝐺 . 

Hence, to every central simple algebra 𝐴 of degree 𝑑 split over 𝐸 , we can assign a corresponding PGL𝑑 (𝐸 )-torsor over 
𝐺 , and it is not hard to see that this is a bijection. For example, the trivial torsor, where 𝐼 = PGL𝑛 (𝐸 ), corresponds to 
𝐴  Mat𝑛 (𝐹 ). 

We will see in the next lecture that isomorphism classes of such torsors are classified by the nonabelian cohomology 
group 𝐻 1 (𝐺 , PGL𝑛 (𝐸 )). 

Moreover, this method generalizes to other algebraic objects depending on the choice of the base field, as long as 
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“base change under field extension” makes sense: fix a reference object 𝑆 , then the objects whose base change to 𝐸 
are isomorphic to 𝑆 are in bijection with Aut( 𝑆 ) -torsors over 𝐺 . 

14.3 Centralizer of a commutative subfield 

Lemma 14.12: If 𝑘 ⊂ 𝐹 ⊂ 𝐴 where 𝐴 is a central simple algebra over 𝑘 , dim𝑘 ( 𝐴) = 𝑑 2 , [ 𝐹 : 
𝑘 ] = 𝑛 , and 𝐵 = 𝑍𝐴 ( 𝐹 ) , then dim𝐹 ( 𝐵 ) = 

 
𝑑 
𝑛 

2 
and 𝐵 is a central simple algebra over 𝐹 also. That 

is, 
𝐴 𝐹 𝑘 

𝐵 = 𝑍𝐴 ( 𝐹 ) 

𝑛 

(𝑑 /𝑛 ) 2 

𝑑 2 

. 

Moreover, [ 𝐵 ] = [𝐴 ⊗𝑘 𝐹 ] ∈ Br( 𝐹 ) . 

Proof. 𝐴 ⊗𝑘 𝐹 is a central simple algebra over 𝐹 , and moreover it acts on 𝐴 by 𝑎 ⊗ 𝑓 : 𝑥 ↦→ 𝑎𝑥 𝑓 . So End𝐴 ⊗𝑘 𝐹 ( 𝐴) = 
𝑍𝐴 ( 𝐹 ) = 𝐵 is also a central simple algebra and is Morita equivalent to 𝐴 ⊗𝑘 𝐹 (recall that we have the natural 
identification 𝐴 ⊗ 𝑘 𝐴 op ∼ −→ End𝑘 ( 𝐴) and 𝑍𝐴 ( 𝐹 ) ⊗ 𝑘 𝐴

op identifies with End𝐹 ( 𝐴) ⊂ End𝑘 ( 𝐴) so, by Lemma 14.4, 
𝐵 = 𝑍𝐴 ( 𝐹 ) is indeed a c.s.a. over 𝐹 ). 
To find dim𝐹 ( 𝐵 ) , notice that for any central simple algebra 𝐶 over 𝐹 and a 𝐶 -module 𝑀 with 𝐸 = End𝐶 ( 𝑀 ) , we 
have 

dim𝐹 (𝐶 ) dim𝐹 ( 𝐸 ) = dim𝐹 ( 𝑀 ) 2 . 

Moreover, 𝐶 ⊗ 𝐹 𝐸  End𝐹 ( 𝑀 ) . This is because 𝐶 = Mat𝑛 ( 𝐷 ) , so 𝑀 = ( 𝐷 𝑛 ) 𝑚 for some 𝑚 and 𝐸 = Mat𝑚 ( 𝐷 op) . Then 

𝐶 ⊗ 𝐹 𝐸 = Mat𝑛𝑚 ( 𝐷 ⊗ 𝐷 op) = Mat𝑛𝑚𝑑 ( 𝐹 ) = End𝐹 ( 𝑀 ) 

where 𝑑 = dim𝐹 ( 𝐷 ) , and taking dimensions we get the desired identity. 
Setting 𝐶 = 𝐴 ⊗𝑘 𝐹 , 𝑀 = 𝐴, 𝐵 = 𝐸 , we get 

𝑛 2 dim𝐹 ( 𝐵 ) = 𝑑 2 ⇒ dim𝐹 ( 𝐵 ) = 

 
𝑑 
𝑛 

2 

. 

□ 

Corollary 14.13: Let 𝐴 be a central simple algebra of degree 𝑑 over a field 𝑘 . Then every subfield 𝐹 of 𝐴 has degree 
⩽ 𝑑 over 𝑘 . Moreover, field 𝐹 is a maximal commutative subalgebra of 𝐴 iff [ 𝐹 : 𝑘 ] = 𝑑 . 

Proof. The fact that [ 𝐹 : 𝑘 ] ⩽ 𝑑 directly follows from Lemma 14.12. 
If 𝐹 ⊂ 𝐴 is maximal commutative, then 𝑍𝐴 ( 𝐹 ) must be equal to 𝐹 (indeed, otherwise there exists an element 
𝑥 ∈ 𝑍𝐴 ( 𝐹 ) \ 𝐹 so 𝐹 [𝑥 ] is a commutative subalgebra of 𝐴 that is bigger than 𝐹 ). So 𝑍𝐴 ( 𝐹 ) = 𝐹 and the claim about 
the dimension of 𝐹 (over 𝑘 ) follows from Lemma 14.12. □ 

Warning : It may happen that 𝐹 ⊂ 𝐴 is a maximal commutative subfield but not a maximal commutative 
subalgebra (take, for example, 𝐴 = Mat𝑛 ( 𝑘 ) and 𝐹 = 𝑘 ). If 𝐴 is a skew field, then these two properties do 
coincide. 

14.4 Skolem-Noether 

Theorem 14.14 (Skolem-Noether): Let 𝐴 be a simple Artinian ring with center 𝑘 and 𝐵 a simple finite-
dimensional 𝑘 -algebra. Then any two 𝑘 -linear homomorphisms 𝐵 → 𝐴 are conjugate by an invertible element 
of 𝐴. 

This allows us to relate different embeddings of a given field in a central simple algebra. 
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Proof. Let 𝜑 : 𝐵 → 𝐴, 𝜓 : 𝐵 → 𝐴 be two 𝑘 -linear maps 𝐵 → 𝐴 . These give 𝐴 two structures as an (𝐴, 𝐵 )-bimodule:
𝐴𝜑 where

𝑎 ⊗ 𝑏 : 𝑥 ↦→ 𝑎𝑥 𝜑 (𝑏 ) 

and 𝐴𝜓 where
𝑎 ⊗ 𝑏 : 𝑥 ↦→ 𝑎𝑥𝜓 (𝑏 ). 

Since 𝐴 ⊗𝑘 𝐵 op is simple (Theorem 13.8) and finitely generated as an 𝐴-module, it must be Artinian. So 𝐴 ⊗𝑘 𝐵 op

has only one simple module 𝐿 , and any module 𝑀 finitely generated over 𝐴 will be isomorphic to 𝐿𝑛 , 𝑛 < ∞, and 𝑛 
is determined by the isomorphism class of 𝑀 |𝐴 . Then 𝐴𝜑  𝐴𝜓 . The isomorphism is given by right multiplication
by some left invertible, hence invertible, element of 𝐴 that conjugates 𝜑 into 𝜓 . □

14.5 Artin-Wedderburn 

Theorem 14.15 (Artin-Wedderburn): There are no finite noncommutative skew fields. Hence, the Brauer group 
of a finite field is trivial. 

Proof. Suppose that 𝐷 is a noncommutative finite skew field with center 𝐹 = F𝑞 . Let 𝐸 ⊂ 𝐷 be a maximal
commutative subfield. So by Corollary 14.13, [𝐸 : 𝐹 ] = 𝑑 where 𝑑 2 = dim𝐹 (𝐷 ). For 𝛼 ∈ 𝐷 , 𝐾 = 𝐹 (𝛼 ) will have
degree 𝑑 ′ over 𝐹 with 𝑑 ′ | 𝑑 . 
Then 𝐸 = F𝑞𝑑 and 𝐾 = F𝑞𝑑 ′ . This implies that 𝐾 is isomorphic to a subfield in 𝐸 as an extension of 𝐹 . This gives us
two homomorphisms 𝐸 → 𝐷 and 𝐾 → 𝐷 , so there exists an 𝑥 ∈ 𝐷 × such that 𝑥 𝐾 𝑥 −1 ⊂ 𝐸 by Theorem 14.14. 𝐷 ×

is a finite group and 𝐸 × ⊂ 𝐷 × is a subgroup, and the following lemma implies that 𝐸 = 𝐷 . 

Lemma 14.16: Let 𝐻 ⊂ 𝐺 be a subgroup in a finite group 𝐺 . If every element in 𝐺 is conjugate to an element in 
𝐻 , then 𝐻 = 𝐺 . 

Proof. Let C be the set of conjugacy classes in 𝐺 . For each conjugacy class 𝐶 ∈ C, we know |𝐶 | = |𝐺 : 𝑍𝐺 (𝑔 ) |,
𝑔 ∈ 𝐶 , and 𝑍𝐺 (𝑔 ) is the centralizer of 𝑔 . By assumption 𝐶 ∩ 𝐻 is nonempty for every conjugacy class, and we
can bound 

|𝐶 ∩ 𝐻 | ⩾ [𝐻 : 𝐶 𝐻 (𝑔 )] ⩾ 
[𝐺 : 𝑍𝐺 (𝑔)]
[𝐺 : 𝐻 ] = 

|𝐶 | 
[𝐺 : 𝐻 ] .

with equality when 𝐶 ∩ 𝐻 is single 𝐻 -conjugacy class (first equality) and 𝑍𝐺 (𝑔) ⊂ 𝐻 (second equality). In
particular, if 𝑔 = 1, we will always get a strict inequality. Then 

|𝐻 | = 
∑︁ 
|𝐶 ∩ 𝐻 | > 

 |𝐶 |
[𝐺 : 𝐻 ] =

|𝐺 | 
[𝐺 : 𝐻 ] ,

contradiction. □ 

□ 
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