Lecture 14: Brauer Group and Skolem-Noether Theorems

14 April 4 - Brauer group and Skolem-Noether Theorems

П

14.1 Definition and first properties of Brauer group

Lemma 14.1: The center of a simple ring is a field.

Proof. Saying that A is a simple ring, i.e. it has no nontrivial proper two-sided ideals, is equivalent to saying that A is simple as an $A \otimes_k A^{\operatorname{op}}$ -module. Then $\operatorname{Hom}_{A \otimes_k A^{\operatorname{op}}}(A, A) = Z(A)$ and by Schur's Lemma, it must be a division ring. It remains to note that every commutative division ring is a field.

Lemma 14.2: For A, B two algebras over k, $Z(A \otimes_k B) = Z(A) \otimes_k Z(B)$.

Proof. Suppose $x \in A \otimes B$ is central. We can write $x = \sum a_i \otimes b_i$ where the $a_i \in A$ are linearly independent and likewise for the $b_i \in B_i$. Then for all $a \in A$,

$$[x, a \otimes 1] = \sum [a, a_i] \otimes b_i = 0.$$

Since the b_i are linearly independent, this implies the a_i are all central. Likewise, $b_i \in Z(B)$.

Proof (of Theorem 13.6). a) By Theorem 13.8, the tensor product $A \otimes_k B$ is a simple ring, and by the above lemmas its center is the field $Z(A) \otimes_k Z(B) = k$.

b) The tensor operation is well-defined up to Morita equivalence since $A \sim \operatorname{Mat}_n(A)$ and

$$\operatorname{Mat}_n(A) \otimes_k B = \operatorname{Mat}_n(k) \otimes_k A \otimes_k B = \operatorname{Mat}_n(A \otimes_k B).$$

The operation is obviously commutative and associative, has identity k, and inverse $-[A] = [A^{op}]$ since $[A \otimes_k A^{op}] = [\operatorname{End}_k(A)] = [k]$.

To see that the set is in bijection with division rings over k of finite dimension, note that Theorem 2.16 implies that any central simple algebra A with center k has the form $\mathrm{Mat}_n(D)$ where D is a skew field with center k. D is unique because we can define D as $\mathrm{End}_A(L)^{\mathrm{op}}$ where L is the unique simple A-module.

Example 14.3: Br(\mathbb{R}) $\cong \mathbb{Z}/2\mathbb{Z}$ because there are exactly two finite-dimensional skew fields over \mathbb{R} , namely \mathbb{R} and \mathbb{H} .

Lemma 14.4: If E/F is a field extension, then A is a central simple algebra over F iff $A \otimes_F E$ is a central simple algebra over E. More generally, if B is an algebra over E, and A is an algebra over F, then $A \otimes_F B$ is a central simple algebra over E iff A is a central simple algebra over E and B is a central simple algebra over E.

Proof. Assume that A/F and B/E are central simple algebras. Then, by Theorem 13.8, $A \otimes_F B$ is a simple ring. Its center is (by lemma 14.2):

$$Z(A \otimes_F B) = Z(A) \otimes_F Z(B) = F \otimes_F E = E.$$

Assume now that $A \otimes_F B$ is a central simple algebra over E. Again from lemma 14.2 we know that $Z(A) \otimes_F Z(B) = Z(A \otimes_F B) = E$ so we must have Z(A) = F, Z(B) = E. It remains to note that if A is not simple, then there

exists a nonzero proper two-sided ideal $I \subset A$ but then $I \otimes_F B$ will be a nonzero proper two-sided ideal in $A \otimes_F B$. Contradiction finishes the proof.

Corollary 14.5: If E/F is a field extension, it induces a group homomorphism called the base change map

$$Br(F) \to Br(E), [A] \mapsto [A \otimes_F E].$$

Proof. It's a group homomorphism because

$$(A \otimes_F E) \otimes_E (E \otimes_F B) \cong E \otimes_F (A \otimes_F B).$$

П

Example 14.6: Algebraically closed fields have no finite skew field extensions, so if $k = \bar{k}$ then Br(k) = 0. This implies that all central simple algebras over such k are of the form $Mat_d(k)$.

Definition 14.7: Let A be a central simple algebra over an arbitrary field F. The **degree of** A is the d such that

$$A \otimes_F \bar{F} \cong \operatorname{Mat}_d(\bar{F}).$$

Alternately, it is the d such that $\dim_F(A) = d^2$.

Definition 14.8: The kernel of the base change map for an extension E/F is denoted Br(E/F).

Example 14.10: Every central simple algebra A over F will split over \bar{F} .

Corollary 14.11: Every central simple algebra A over F will split over a finite extension, namely the one generated by the matrix coefficients of the isomorphism $A \otimes_F \bar{F} \cong \operatorname{Mat}_n(\bar{F})$ (in some bases of A, $\operatorname{Mat}_n(F)$).

14.2 Torsors and Galois forms

Classifying the central simple algebras of a fixed degree over a fixed field *F* splitting over a fixed field extension of *E* is a special case of **Galois forms** or the **Galois descent problem**. Here is an overview of the general procedure and the classification:

Assume that E/F is Galois. Then consider the set I of all E-linear isomorphism $A \otimes_F E \cong \operatorname{Mat}_n(E)$. $\operatorname{PGL}_n(E)$ acts on $\operatorname{Mat}_n(E)$ by conjugation; in fact, it is isomorphic to the group of automorphisms of $\operatorname{Mat}_n(E)$ (either a special case of the Theorem 14.14, see below, or a direct computation).

Hence, $\operatorname{PGL}_n(E)$ acts on I by sending an isomorphism $A \otimes_F E \cong \operatorname{Mat}_n(E)$ to $A \otimes_F E \cong \operatorname{Mat}_n(E) \xrightarrow{\operatorname{conj}} \operatorname{Mat}_n(E)$. It turns out that this action is *simply transitive*. On the other hand, we have an action of the Galois group $G = \operatorname{Gal}(E/F)$ on both $A \otimes_F E$ and on $\operatorname{Mat}_n(E)$, so it acts on I by conjugation. These actions of $\operatorname{PGL}_n(E)$ and G are compatible. This defines what we call a $\operatorname{PGL}_n(E)$ -torsor over G.

Hence, to every central simple algebra A of degree d split over E, we can assign a corresponding $\operatorname{PGL}_d(E)$ -torsor over G, and it is not hard to see that this is a bijection. For example, the trivial torsor, where $I = \operatorname{PGL}_n(E)$, corresponds to $A \cong \operatorname{Mat}_n(F)$.

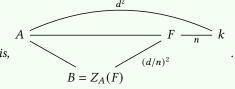
We will see in the next lecture that isomorphism classes of such torsors are classified by the nonabelian cohomology group $H^1(G, \operatorname{PGL}_n(E))$.

Moreover, this method generalizes to other algebraic objects depending on the choice of the base field, as long as

"base change under field extension" makes sense: fix a reference object S, then the objects whose base change to E are isomorphic to S are in bijection with Aut(S)-torsors over G.

14.3 Centralizer of a commutative subfield

Lemma 14.12: If $k \subset F \subset A$ where A is a central simple algebra over k, $\dim_k(A) = d^2$, [F : k] = n, and $B = Z_A(F)$, then $\dim_F(B) = \left(\frac{d}{n}\right)^2$ and B is a central simple algebra over F also. That



Moreover, $[B] = [A \otimes_k F] \in Br(F)$.

Proof. $A \otimes_k F$ is a central simple algebra over F, and moreover it acts on A by $a \otimes f : x \mapsto axf$. So $\operatorname{End}_{A \otimes_k F}(A) = Z_A(F) = B$ is also a central simple algebra and is Morita equivalent to $A \otimes_k F$ (recall that we have the natural identification $A \otimes_k A^{\operatorname{op}} \xrightarrow{\sim} \operatorname{End}_k(A)$ and $Z_A(F) \otimes_k A^{\operatorname{op}}$ identifies with $\operatorname{End}_F(A) \subset \operatorname{End}_k(A)$ so, by Lemma 14.4, $B = Z_A(F)$ is indeed a c.s.a. over F).

To find $\dim_F(B)$, notice that for any central simple algebra C over F and a C-module M with $E = \operatorname{End}_C(M)$, we have

$$\dim_F(C)\dim_F(E)=\dim_F(M)^2$$
.

Moreover, $C \otimes_F E \cong \operatorname{End}_F(M)$. This is because $C = \operatorname{Mat}_n(D)$, so $M = (D^n)^m$ for some m and $E = \operatorname{Mat}_m(D^{\operatorname{op}})$. Then

$$C \otimes_F E = \operatorname{Mat}_{nm}(D \otimes D^{\operatorname{op}}) = \operatorname{Mat}_{nmd}(F) = \operatorname{End}_F(M)$$

where $d = \dim_F(D)$, and taking dimensions we get the desired identity. Setting $C = A \otimes_k F$, M = A, B = E, we get

$$n^2 \dim_F(B) = d^2 \Rightarrow \dim_F(B) = \left(\frac{d}{n}\right)^2.$$

Corollary 14.13: Let A be a central simple algebra of degree d over a field k. Then every subfield F of A has degree d over d. Moreover, field d is a maximal commutative subalgebra of d iff d if d if d is d in d if d if

Proof. The fact that $[F:k] \le d$ directly follows from Lemma 14.12.

If $F \subset A$ is maximal commutative, then $Z_A(F)$ must be equal to F (indeed, otherwise there exists an element $x \in Z_A(F) \setminus F$ so F[x] is a commutative subalgebra of A that is bigger than F). So $Z_A(F) = F$ and the claim about the dimension of F (over K) follows from Lemma 14.12.

Warning : It may happen that $F \subset A$ is a maximal commutative *subfield* but not a maximal commutative *subalgebra* (take, for example, $A = \operatorname{Mat}_n(k)$ and F = k). If A is a skew field, then these two properties do coincide.

14.4 Skolem-Noether

Theorem 14.14 (Skolem-Noether): Let A be a simple Artinian ring with center k and B a simple finite-dimensional k-algebra. Then any two k-linear homomorphisms $B \to A$ are conjugate by an invertible element of A.

This allows us to relate different embeddings of a given field in a central simple algebra.

Proof. Let $\varphi: B \to A, \psi: B \to A$ be two k-linear maps $B \to A$. These give A two structures as an (A, B)-bimodule: A_{φ} where

$$a \otimes b \colon x \mapsto ax\varphi(b)$$

and A_{ψ} where

$$a \otimes b : x \mapsto ax\psi(b)$$
.

Since $A \otimes_k B^{\text{op}}$ is simple (Theorem 13.8) and finitely generated as an A-module, it must be Artinian. So $A \otimes_k B^{\text{op}}$ has only one simple module L, and any module M finitely generated over A will be isomorphic to L^n , $n < \infty$, and n is determined by the isomorphism class of $M|_A$. Then $A_{\varphi} \cong A_{\psi}$. The isomorphism is given by right multiplication by some left invertible, hence invertible, element of A that conjugates φ into ψ .

14.5 Artin-Wedderburn

Theorem 14.15 (Artin-Wedderburn): There are no finite noncommutative skew fields. Hence, the Brauer group of a finite field is trivial.

Proof. Suppose that D is a noncommutative finite skew field with center $F = \mathbb{F}_q$. Let $E \subset D$ be a maximal commutative subfield. So by Corollary 14.13, [E:F] = d where $d^2 = \dim_F(D)$. For $\alpha \in D$, $K = F(\alpha)$ will have degree d' over F with $d' \mid d$.

Then $E = \mathbb{F}_{q^d}$ and $K = \mathbb{F}_{q^{d'}}$. This implies that K is isomorphic to a subfield in E as an extension of F. This gives us two homomorphisms $E \to D$ and $K \to D$, so there exists an $X \in D^\times$ such that $XKX^{-1} \subset E$ by Theorem 14.14. D^\times is a finite group and $E^\times \subset D^\times$ is a subgroup, and the following lemma implies that E = D.

Lemma 14.16: Let $H \subset G$ be a subgroup in a finite group G. If every element in G is conjugate to an element in G, then G is conjugate to an element in G.

Proof. Let C be the set of conjugacy classes in G. For each conjugacy class $C \in C$, we know $|C| = |G : Z_G(g)|$, $g \in C$, and $Z_G(g)$ is the centralizer of g. By assumption $C \cap H$ is nonempty for every conjugacy class, and we can bound

$$|C \cap H| \ge [H : C_H(g)] \ge \frac{[G : Z_G(g)]}{[G : H]} = \frac{|C|}{[G : H]}.$$

with equality when $C \cap H$ is single H-conjugacy class (first equality) and $Z_G(g) \subset H$ (second equality). In particular, if g = 1, we will always get a strict inequality. Then

$$|H| = \sum |C \cap H| > \frac{\sum |C|}{[G:H]} = \frac{|G|}{[G:H]},$$

contradiction.

MIT OpenCourseWare https://ocw.mit.edu

18.706 Noncommutative Algebra Spring 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.