Lecture 14: Brauer Group and Skolem-Noether Theorems

14 April 4 - Brauer group and Skolem-Noether Theorems

14.1 Definition and first properties of Brauer group
Lemma 14.1: The center of a simple ring is a field.

Proof. Saying that A is a simple ring, i.e. it has no nontrivial proper two-sided ideals, is equivalent to saying that
A is simple as an A ® A°P-module. Then Homug, a» (A, A) = Z(A) and by Schur’s Lemma, it must be a division
ring. It remains to note that every commutative division ring is a field. O

Lemma 14.2: For A, B two algebras over k, Z(A ® B) = Z(A) ® Z(B).

Proof. Suppose x € A ® B is central. We can write x = )] a; ® b; where the a; € A are linearly independent and
likewise for the b; € B;. Then for all a € A,

[x,a® 1] =Z[a,a,—]®bl—=0.

Since the b; are linearly independent, this implies the a; are all central. Likewise, b; € Z(B). O

Proof (of Theorem 13.6).  a) By Theorem([13.8] the tensor product A®y B is a simple ring, and by the above lemmas
its center is the field Z(A) ® Z(B) = k.
b) The tensor operation is well-defined up to Morita equivalence since A ~ Mat, (A) and

Mat, (A) ®, B = Mat, (k) ® A ®; B = Mat, (A ® B).

The operation is obviously commutative and associative, has identity k, and inverse —[A] = [A°P] since
[A ® AP] = [Endi(A)] = [K].
To see that the set is in bijection with division rings over k of finite dimension, note that Theorem 2.16
implies that any central simple algebra A with center k has the form Mat, (D) where D is a skew field with
center k. D is unique because we can define D as End4 (L)°P where L is the unique simple A-module.

O

Example 14.3: Br(R) = Z/2Z because there are exactly two finite-dimensional skew fields over R, namely R
and H.

Lemma 14.4: IfE/F is a field extension, then A is a central simple algebra over F iff A ® E is a central simple
algebra over E. More generally, if B is an algebra over E, and A is an algebra over F, then A ®F B is a central simple
algebra over E iff A is a central simple algebra over F and B is a central simple algebra over E.

Proof. Assume that A/F and B/E are central simple algebras. Then, by Theorem|[13.8] A ®r B is a simple ring. Its
center is (by lemma [14.2):
Z(AQrB)=Z(A)®r Z(B) =FQrE=E.

Assume now that A ®r B is a central simple algebra over E. Again from lemma|[14.2| we know that Z(A) ®¢ Z(B) =
Z(A ®F B) = E so we must have Z(A) = F, Z(B) = E. It remains to note that if A is not simple, then there
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exists a nonzero proper two-sided ideal I C A but then I ®r B will be a nonzero proper two-sided ideal in A ®F B.
Contradiction finishes the proof. O

Corollary 14.5: IfE/F is a field extension, it induces a group homomorphism called the base change map

Br(F) — Br(E), [A] — [A®F E].

Proof. 1t’s a group homomorphism because

(AQ®F E) ® (E®F B) = E ®F (AQ®F B).

Example 14.6: Algebraically closed fields have no finite skew field extensions, so if k = k then Br(k) = 0. This
implies that all central simple algebras over such k are of the form Maty (k).

Definition 14.7: Let A be a central simple algebra over an arbitrary field F. The degree of A is the d such that
A ®p F = Maty(F).

Alternately, it is the d such that dimp(A) = d?.
Definition 14.8: The kernel of the base change map for an extension E/F is denoted Br(E/F).

Definition 14.9: Let A be a central simple algebra over F. We say an algebraic field extension E/F splits A, or
that A splits over E, if [A] € Br(E/F), i.e. A®f E = Mat, (E).

Example 14.10: Every central simple algebra A over F will split over F.

Corollary 14.11: Every central simple algebra A over F will split over a finite extension, namely the one generated
by the matrix coefficients of the isomorphism A ® F = Mat, (F) (in some bases of A, Mat,,(F)).

14.2 Torsors and Galois forms

Classifying the central simple algebras of a fixed degree over a fixed field F splitting over a fixed field extension of
E is a special case of Galois forms or the Galois descent problem. Here is an overview of the general procedure
and the classification:

Assume that E/F is Galois. Then consider the set I of all E-linear isomorphism A ®f E = Mat, (E). PGL,(E) acts on
Mat, (E) by conjugation; in fact, it is isomorphic to the group of automorphisms of Mat, (E) (either a special case of
the Theorem see below, or a direct computation).

Hence, PGL, (E) acts on I by sending an isomorphism A®g E = Mat,(E) to A®rE = Mat,(E) RaliN Mat, (E). It turns
out that this action is simply transitive. On the other hand, we have an action of the Galois group G = Gal(E/F) on
both A ®r E and on Mat,(E), so it acts on I by conjugation. These actions of PGL,(E) and G are compatible. This
defines what we call a PGL,,(E)-torsor over G.

Hence, to every central simple algebra A of degree d split over E, we can assign a corresponding PGL;(E)-torsor over
G, and it is not hard to see that this is a bijection. For example, the trivial torsor, where I = PGL,, (E), corresponds to
A = Mat,(F).

We will see in the next lecture that isomorphism classes of such torsors are classified by the nonabelian cohomology
group H!(G,PGL,(E)).

Moreover, this method generalizes to other algebraic objects depending on the choice of the base field, as long as
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“base change under field extension” makes sense: fix a reference object S, then the objects whose base change to E
are isomorphic to S are in bijection with Aut(S)-torsors over G.

14.3 Centralizer of a commutative subfield

Lemma 14.12: f k C¢ F C A where A is a central simple algebra over k, dimg(A) = d?, [F
2
k] = n, and B = Z4(F), then dimp(B) = (%) and B is a central simple algebra over F also. That
dZ
N /\Fn )
is, \ /
(d/n)?
B =Z(F)

Moreover, [B] = [A ® F] € Br(F).

Proof. A ® F is a central simple algebra over F, and moreover it acts on Aby a ® f: x = axf. So Endag, r(A) =
Z4(F) = B is also a central simple algebra and is Morita equivalent to A ®; F (recall that we have the natural
identification A ® A°® — Endy(A) and Z4(F) Q A°P identifies with Endp(A) € Endg(A) so, by Lemma
B = Z,(F) is indeed a c.s.a. over F).
To find dimp(B), notice that for any central simple algebra C over F and a C-module M with E = End¢c (M), we
have

dimp (C) dimp (E) = dimp(M)2.

Moreover, C ® E = Endp(M). This is because C = Mat, (D), so M = (D")™ for some m and E = Mat,,(D°P). Then
C ®r E = Matyy, (D ® D) = Matpmq(F) = Endp(M)

where d = dimp(D), and taking dimensions we get the desired identity.
Setting C = A®, F,M = A, B=E, we get

2
n? dimp (B) = d> = dimp(B) = (i) .
n

Corollary 14.13: Let A be a central simple algebra of degree d over a field k. Then every subfield F of A has degree
< d over k. Moreover, field F is a maximal commutative subalgebra of A iff [F : k] = d.

Proof. The fact that [F : k] < d directly follows from Lemma|[14.12}

If F c A is maximal commutative, then Z4(F) must be equal to F (indeed, otherwise there exists an element
x € Z5(F) \ F so F[x] is a commutative subalgebra of A that is bigger than F). So Z4(F) = F and the claim about
the dimension of F (over k) follows from Lemma O

Warning : It may happen that F C A is a maximal commutative subfield but not a maximal commutative
subalgebra (take, for example, A = Mat,(k) and F = k). If A is a skew field, then these two properties do
coincide.

14.4 Skolem-Noether

Theorem 14.14 (Skolem-Noether): Let A be a simple Artinian ring with center k and B a simple finite-
dimensional k-algebra. Then any two k-linear homomorphisms B — A are conjugate by an invertible element

of A.

This allows us to relate different embeddings of a given field in a central simple algebra.
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Proof. Let ¢: B— A,¢: B — A be two k-linear maps B — A. These give A two structures as an (A, B)-bimodule:
A, where
a®b: x> axe(b)

and Ay where
a®b: x+— axy(b).

Since A ® B is simple (Theorem [13.8) and finitely generated as an A-module, it must be Artinian. So A ®; B°P
has only one simple module L, and any module M finitely generated over A will be isomorphic to L",n < o0, and n
is determined by the isomorphism class of M|4. Then A, = Ay. The isomorphism is given by right multiplication
by some left invertible, hence invertible, element of A that conjugates ¢ into 1. O

14.5 Artin-Wedderburn

Theorem 14.15 (Artin-Wedderburn): There are no finite noncommutative skew fields. Hence, the Brauer group
of a finite field is trivial.

Proof. Suppose that D is a noncommutative finite skew field with center F = F,;. Let E C D be a maximal
commutative subfield. So by Corollary [E : F] = d where d* = dimp(D). For a € D, K = F(«) will have
degree d’ over F with d’ | d.

Then E = Fa and K = F . This implies that K is isomorphic to a subfield in E as an extension of F. This gives us
two homomorphisms E — D and K — D, so there exists an x € D* such that xKx™1 c Eby Theorem D%
is a finite group and E* ¢ D* is a subgroup, and the following lemma implies that E = D.

Lemma 14.16: Let H C G be a subgroup in a finite group G. If every element in G is conjugate to an element in
H, then H = G.

Proof. Let C be the set of conjugacy classes in G. For each conjugacy class C € C, we know |C| = |G : Zg(g)|,
g € C, and Z;(g) is the centralizer of g. By assumption C N H is nonempty for every conjugacy class, and we

can bound (G Z6(9)] ]
LG g
CNH|>|[H:C > = .
COHI> [H: Cuo)] > 250 = 5
with equality when C N H is single H-conjugacy class (first equality) and Zg(g9) € H (second equality). In
particular, if g = 1, we will always get a strict inequality. Then

x1Cl |G|
[G:H]  [G:H]

|H|=Z|cmH|>

contradiction.
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