
15 April 6 - Separable splitting fields and cross-product algebras 

15.1 Separable splitting fields 

Theorem 15.1: For a finite Galois extension 𝐸 /𝐹 , we have a natural isomorphism 

Br(𝐸 /𝐹 ) = 𝐻 2 (Gal(𝐸 /𝐹 ), 𝐸 ×).

To use this theorem, we want to say that every element splits over a finite Galois extension. In characteristic 0, 
every finite extension is contained in a finite Galois extension and we proved that every element splits over a finite 
extension. In general, a field extension is contained in a Galois extension iff it is separable. 

Proposition 15.2: Every element in Br(𝐹 ) splits over a finite separable extension (and hence over a finite Galois
extension). 
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Proof. Let 𝐷 be a skew field with center 𝐹 (so a central simple algebra over 𝐹 ). It’s enough to show that there exists 
a commutative subfield 𝐸 ⊂ 𝐷 such that 𝐸 ⊋ 𝐹 and 𝐸 /𝐹 is separable; then we can consider instead the centralizer 
𝐷 ′ = 𝑍 𝐷 (𝐸 ); since [𝑍 𝐷 (𝐸 )] = [𝐸 ⊗𝐹 𝐷 ], we are done by induction on dim𝐹 𝐷 , use Lemma 14.12. 
Suppose such an 𝐸 does not exist. Then, by field extension theory, for every 𝑥 ∈ 𝐷 , there exists 𝑛 such that 𝑥 𝑝 𝑛 ∈ 𝐹 . 

Lemma 15.3: Let 𝐴 be an F𝑝 -algebra. For 𝑥 ∈ 𝐴, we have ad(𝑥 )𝑝 = ad(𝑥 𝑝 ), where ad(𝑥 ) (𝑦 ) = 𝑦 ↦→ 𝑥 𝑦 − 𝑦𝑥 . 

Proof. If 𝑎, 𝑏 are commuting elements in an F𝑝 -algebra, then (𝑎 − 𝑏 )𝑝 = 𝑎𝑝 − 𝑏 𝑝 . Applying this to 𝑎 = 𝐿𝑥 and 
𝑏 = 𝑅𝑥 , where 𝐿𝑥 is left multiplication by 𝑥 and 𝑅𝑥 is right multiplication by 𝑥 , we see that (𝑎 − 𝑏 )𝑝 = ad(𝑥 )𝑝 

while 𝑎𝑝 − 𝑏 𝑝 = ad(𝑥 𝑝 ). □ 

Now we have two ways to finish the argument. 
The first uses Engel’s Theorem (see 18.745): if 𝔤 ⊂ 𝔤𝔩𝑛 (𝐹 ) is a subalgebra consisting of nilpotent matrices, then 𝔤 
is nilpotent. Equivalently, it is contained in the algebra of strictly upper triangular matrices in some basis. The 
lemma implies that ad(𝑥 ) is nilpotent for all 𝑥 . Hence, the image of 𝐷 in the Lie algebra End𝐹 (𝐷 ) (via the map 
𝑥 ↦→ ad(𝑥 )) is nilpotent by Engel’s Theorem. This contradicts that 𝐷 ⊗𝐹 𝐸  Mat𝑛 (𝐸 ) for some 𝐸 . 
The second uses Jordan normal form. Pick 𝑥 ∈ 𝐷 such that 𝑥 ∉ 𝐹 but 𝑥 𝑝 ∈ 𝐹 . Let 𝐸 = 𝐹 (𝑥 ). Then [𝐸 : 𝐹 ] = 𝑝 and 
dim𝐹 (𝑍 𝐷 (𝐸 )) = 𝑑

2 

𝑝
. By the lemma, ad(𝑥 )𝑝 = 0 where ad(𝑥 ) : 𝐷 → 𝐷 , and 

dim𝐹 (ker(ad(𝑥 ))) = dim𝐹 (𝑍 𝐷 (𝐸 )) = 
dim𝐹 (𝐷 ) 

𝑝 
. 

Therefore, the Jordan normal form of ad(𝑥 ) must have 𝑑 2/𝑝 equal Jordan blocks of size 𝑝 > 1. In particular, 
ker(ad(𝑥 )) ⊂ im(ad(𝑥 )). So if 𝑥 ∈ ker(ad(𝑥 )), there exists 𝑦 such that [𝑥 , 𝑦 ] = 𝑥 . Then ad(−𝑦 ) fixes 𝑥 , so ad(−𝑦 ) 
cannot be nilpotent, contradiction. □ 

15.2 Group cohomology 

Let 𝐺 be a group. Recall that a 𝐺 -module is the same as a Z[𝐺 ]-module, and for such a 𝐺 -module 𝑀 , we define 

𝐻 𝑖 (𝑀 ) := Ext𝑖 Z[𝐺 ] (Z, 𝑀 ) 

where Z is the trivial Z[𝐺 ]-module. In other words, 𝐻 𝑖 is the 𝑖 th derived functor of the functor of 𝐺 -invariants. To 
compute this, you can also use the bar resolution, which is a resolution for any flat algebra over a commutative ring, 
in particular Z[𝐺 ]. This results in a complex where 𝐶 𝑛 consists of maps 𝑓 : 𝐺 𝑛 → 𝑀 and the differential is 

𝑑 𝑓 (𝑔0, . . . , 𝑔𝑛 ) = 𝑔0 𝑓 (𝑔1, . . . , 𝑔𝑛 ) + 
𝑛 −1∑︁ 

𝑖 =0 

(−1)𝑖 𝑓 (. . . , 𝑔𝑖 𝑔𝑖 +1, . . .) + (−1)𝑛 𝑓 (𝑔0, . . . , 𝑔𝑛 −1). 

Example 15.4: In particular, a 1-cocycle is a map 𝑐 : 𝐺 → 𝑀 such that 𝑔𝑐 (ℎ ) − 𝑐 (𝑔ℎ ) + 𝑐 (𝑔) = 0; these are 
called “cross homomorphisms” and you can produce them from an 𝑀 -torsor 𝑇 over 𝐺 and a choice of point 
𝑥 0 ∈ 𝑇 . The correspondence takes a cocycle 𝑐 to the 𝐺 -module structure on 𝑀 where 𝑔 .𝑚 = 𝑚 + 𝑐 (𝑔) (𝑇 = 𝑀 
and 𝑥 0 = 0). Given a torsor 𝑇 and a point 𝑥 0 ∈ 𝑇 , for each 𝑔 ∈ 𝐺 we set 𝑐 (𝑔 ) to be the element in 𝑀 such that 
𝑔 (𝑥 0) = 𝑥 0 + 𝑐 (𝑔 ). Varying the choice of a point results in adding a coboundary to the cocycle. We end up with 
a bijection between 𝐻 1 (𝐺 , 𝑀 ) and isomorphism classes of 𝑀 -torsors over 𝐺 . There is also a bijection between 
𝐻 1 (𝐺 , 𝑀 ) and extensions of Z by 𝑀 because of its definition as Ext1 . 

Remark 15.5: Moreover, the definition of 𝐻 1 (𝐺 , 𝑀 ) generalizes to the case when 𝑀 is a nonabelian group 
equipped with a 𝐺 -action, and in this case we view 𝑀 as acting on itself on the right, while 𝐺 acts on the left. 
This does not hold for higher cohomology. 
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Example 15.6: A 2-cocycle is a map 𝑐 : 𝐺 2 → 𝑀 such that 𝑔𝑐 (ℎ, 𝑘 ) − 𝑐 (𝑔ℎ, 𝑘 ) + 𝑐 (𝑔, ℎ𝑘 ) − 𝑐 (𝑔, ℎ ) = 0.

Definition 15.7: A cross-product extension of 𝐺 by 𝑀 is a group �̃� with a normal subgroup identified 
with 𝑀 and an isomorphism �̃� /𝑀  𝐺 (i.e. an extension of 𝐺 by 𝑀 ) such that the conjugation action of �̃� on 
𝑀 , which automatically factors through 𝐺 , coincides with the given action of 𝐺 on 𝑀 (the cross-product). 

2-cocycles are in bijection with cross-product extensions of 𝐺 by 𝑀 together with a splitting of the surjection
of sets ˜ 𝐺 → 𝐺 . Choosing a different splitting modifies the cocycle by a coboundary. Hence, there is a bijection
between 𝐻 2 (𝐺 , 𝑀 ) and cross-product extensions of 𝐺 by 𝑀 up to isomorphism.

15.3 Cross-product algebras 
Recall that given a group 𝐺 acting on a ring 𝑅 , we can form the smash product 

𝐺 #𝑅 = 
 

𝑔 ∈𝐺 

𝑅𝑔 , 𝑥𝑔𝑦ℎ = (𝑥 𝑔 (𝑦 ))𝑔ℎ . 

Given a cocycle 𝑐 ∈ 𝐻 2 (𝐺 , 𝑅 ×), one can define a twisted version of this called the cross-product algebra,

𝐺 #𝑐 𝑅 =
 

𝑔 ∈𝐺 

𝑅𝑔 , 𝑥𝑔𝑦ℎ = (𝑥 𝑔 (𝑦 )𝑐 (𝑔, ℎ ))𝑔ℎ . 

Up to isomorphism, the cross-product algebra depends only on the class of 𝑐 in 𝐻 2 (𝐺 , 𝑅 ×).

This can also be described in terms of the cross-product group ˜ 𝐺 as 

�̃� #𝑅 /(𝜆 − [𝜆 ]), 𝜆 ∈ 𝑅 × , [𝜆 ] ∈ ˜ 𝐺 is the corresponding element. 
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