Lecture 15: Separable Splitting Fields and Cross-Product Algebras

15 April 6 - Separable splitting fields and cross-product algebras

15.1 Separable splitting fields

Theorem 15.1: For a finite Galois extension E/F, we have a natural isomorphism

$$\operatorname{Br}(E/F) = H^2(\operatorname{Gal}(E/F), E^{\times}).$$

To use this theorem, we want to say that every element splits over a finite Galois extension. In characteristic 0, every finite extension is contained in a finite Galois extension and we proved that every element splits over a finite extension. In general, a field extension is contained in a Galois extension iff it is separable.

Proposition 15.2: Every element in Br(F) splits over a finite separable extension (and hence over a finite Galois extension).

Proof. Let *D* be a skew field with center *F* (so a central simple algebra over *F*). It's enough to show that there exists a commutative subfield $E \subset D$ such that $E \supseteq F$ and E/F is separable; then we can consider instead the centralizer $D' = Z_D(E)$; since $[Z_D(E)] = [E \otimes_F D]$, we are done by induction on dim_{*F*} *D*, use Lemma 14.12.

Suppose such an *E* does not exist. Then, by field extension theory, for every $x \in D$, there exists *n* such that $x^{p^n} \in F$.

Lemma 15.3: Let A be an \mathbb{F}_p -algebra. For $x \in A$, we have $\operatorname{ad}(x)^p = \operatorname{ad}(x^p)$, where $\operatorname{ad}(x)(y) = y \mapsto xy - yx$.

Proof. If *a*, *b* are commuting elements in an \mathbb{F}_p -algebra, then $(a - b)^p = a^p - b^p$. Applying this to $a = L_x$ and $b = R_x$, where L_x is left multiplication by *x* and R_x is right multiplication by *x*, we see that $(a - b)^p = \operatorname{ad}(x)^p$ while $a^p - b^p = \operatorname{ad}(x^p)$.

Now we have two ways to finish the argument.

The first uses Engel's Theorem (see 18.745): if $\mathfrak{g} \subset \mathfrak{gl}_n(F)$ is a subalgebra consisting of nilpotent matrices, then \mathfrak{g} is nilpotent. Equivalently, it is contained in the algebra of strictly upper triangular matrices in some basis. The lemma implies that ad(x) is nilpotent for all x. Hence, the image of D in the Lie algebra $\operatorname{End}_F(D)$ (via the map $x \mapsto ad(x)$) is nilpotent by Engel's Theorem. This contradicts that $D \otimes_F E \cong \operatorname{Mat}_n(E)$ for some E.

The second uses Jordan normal form. Pick $x \in D$ such that $x \notin F$ but $x^p \in F$. Let E = F(x). Then [E:F] = p and $\dim_F(Z_D(E)) = \frac{d^2}{p}$. By the lemma, $\operatorname{ad}(x)^p = 0$ where $\operatorname{ad}(x) : D \to D$, and

$$\dim_F(\ker(\operatorname{ad}(x))) = \dim_F(Z_D(E)) = \frac{\dim_F(D)}{p}.$$

Therefore, the Jordan normal form of ad(x) must have d^2/p equal Jordan blocks of size p > 1. In particular, $ker(ad(x)) \subset im(ad(x))$. So if $x \in ker(ad(x))$, there exists y such that [x, y] = x. Then ad(-y) fixes x, so ad(-y) cannot be nilpotent, contradiction.

15.2 Group cohomology

Let G be a group. Recall that a G-module is the same as a $\mathbb{Z}[G]$ -module, and for such a G-module M, we define

$$H^{i}(M) := \operatorname{Ext}^{i}_{\mathbb{Z}[G]}(\mathbb{Z}, M)$$

where \mathbb{Z} is the trivial $\mathbb{Z}[G]$ -module. In other words, H^i is the *i*th derived functor of the functor of *G*-invariants. To compute this, you can also use the bar resolution, which is a resolution for any flat algebra over a commutative ring, in particular $\mathbb{Z}[G]$. This results in a complex where C^n consists of maps $f: G^n \to M$ and the differential is

$$df(g_0,\ldots,g_n) = g_0 f(g_1,\ldots,g_n) + \sum_{i=0}^{n-1} (-1)^i f(\ldots,g_i g_{i+1},\ldots) + (-1)^n f(g_0,\ldots,g_{n-1}).$$

Example 15.4: In particular, a 1-cocycle is a map $c: G \to M$ such that gc(h) - c(gh) + c(g) = 0; these are called "cross homomorphisms" and you can produce them from an *M*-torsor *T* over *G* and a choice of point $x_0 \in T$. The correspondence takes a cocycle *c* to the *G*-module structure on *M* where g.m = m + c(g) (T = M and $x_0 = 0$). Given a torsor *T* and a point $x_0 \in T$, for each $g \in G$ we set c(g) to be the element in *M* such that $g(x_0) = x_0 + c(g)$. Varying the choice of a point results in adding a coboundary to the cocycle. We end up with a bijection between $H^1(G, M)$ and isomorphism classes of *M*-torsors over *G*. There is also a bijection between $H^1(G, M)$ and extensions of \mathbb{Z} by *M* because of its definition as Ext¹.

Remark 15.5: Moreover, the definition of $H^1(G, M)$ generalizes to the case when M is a nonabelian group equipped with a *G*-action, and in this case we view M as acting on itself on the right, while *G* acts on the left. This does not hold for higher cohomology.

Example 15.6: A 2-cocycle is a map $c: G^2 \to M$ such that gc(h,k) - c(gh,k) + c(g,hk) - c(g,h) = 0.

Definition 15.7: A cross-product extension of G by M is a group \tilde{G} with a normal subgroup identified with M and an isomorphism $\tilde{G}/M \cong G$ (i.e. an extension of G by M) such that the conjugation action of \tilde{G} on M, which automatically factors through G, coincides with the given action of G on M (the cross-product).

2-cocycles are in bijection with cross-product extensions of *G* by *M* together with a splitting of the surjection of sets $\tilde{G} \to G$. Choosing a different splitting modifies the cocycle by a coboundary. Hence, there is a bijection between $H^2(G, M)$ and cross-product extensions of *G* by *M* up to isomorphism.

15.3 Cross-product algebras

Recall that given a group G acting on a ring R, we can form the smash product

$$G#R = \bigoplus_{g \in G} R_g, x_g y_h = (xg(y))_{gh}$$

Given a cocycle $c \in H^2(G, \mathbb{R}^{\times})$, one can define a twisted version of this called the **cross-product algebra**,

$$G\#_c R = \bigoplus_{g \in G} R_g, x_g y_h = (xg(y)c(g,h))_{gh}.$$

Up to isomorphism, the cross-product algebra depends only on the class of *c* in $H^2(G, \mathbb{R}^{\times})$.

This can also be described in terms of the cross-product group \tilde{G} as

 $\tilde{G} # R / (\lambda - [\lambda]), \lambda \in R^{\times}, [\lambda] \in \tilde{G}$ is the corresponding element.

18.706 Noncommutative Algebra Spring 2023

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.