15.1 Separable splitting fields

Theorem 15.1: For a finite Galois extension E/F, we have a natural isomorphism

$$\text{Br}(E/F) = H^2(\text{Gal}(E/F), E^\times).$$

To use this theorem, we want to say that every element splits over a finite Galois extension. In characteristic 0, every finite extension is contained in a finite Galois extension and we proved that every element splits over a finite extension. In general, a field extension is contained in a Galois extension iff it is separable.

Proposition 15.2: Every element in $\text{Br}(F)$ splits over a finite separable extension (and hence over a finite Galois extension).
Proof. Let D be a skew field with center F (so a central simple algebra over F). It’s enough to show that there exists a commutative subfield $E \subset D$ such that $E \supseteq F$ and E/F is separable; then we can consider instead the centralizer $D' = Z_D(E)$; since $[Z_D(E)] = [E \otimes F D]$, we are done by induction on dim D, use Lemma 14.12. Suppose such an E does not exist. Then, by field extension theory, for every $x \in D$, there exists n such that $x^n \in F$.

Lemma 15.3: Let A be an F_p-algebra. For $x \in A$, we have $\text{ad}(x)^p = \text{ad}(x^p)$, where $\text{ad}(x)(y) = y \mapsto xy -yx$.

Proof. If a, b are commuting elements in an F_p-algebra, then $(a - b)^p = a^p - b^p$. Applying this to $a = L_x$ and $b = R_x$, where L_x is left multiplication by x and R_x is right multiplication by x, we see that $(a - b)^p = \text{ad}(x)^p$ while $a^p - b^p = \text{ad}(x^p)$.

Now we have two ways to finish the argument.

The first uses Engel’s Theorem (see 18.745): if $\mathfrak{g} \subset \mathfrak{gl}_n(F)$ is a subalgebra consisting of nilpotent matrices, then \mathfrak{g} is nilpotent. Equivalently, it is contained in the algebra of strictly upper triangular matrices in some basis. The lemma implies that $\text{ad}(x)$ is nilpotent for all x. Hence, the image of D in the Lie algebra $\text{End}_F(D)$ (via the map $x \mapsto \text{ad}(x)$) is nilpotent by Engel’s Theorem. This contradicts that $D \otimes_F E \cong \text{Mat}_n(E)$ for some E.

The second uses Jordan normal form. Pick $x \in D$ such that $x \not\in F$ but $x^p \in F$. Let $E = F(x)$. Then $[E:F] = p$ and $\text{dim}_F(Z_D(E)) = \frac{d^2}{p}$. By the lemma, $\text{ad}(x)^p = 0$ where $\text{ad}(x) : D \rightarrow D$, and

$$\text{dim}_F(\ker(\text{ad}(x))) = \text{dim}_F(Z_D(E)) = \frac{\text{dim}_F(D)}{p}.$$

Therefore, the Jordan normal form of $\text{ad}(x)$ must have d^2/p equal Jordan blocks of size $p > 1$. In particular, $\ker(\text{ad}(x)) \subset \text{im}(\text{ad}(x))$. So if $x \in \ker(\text{ad}(x))$, there exists y such that $[x, y] = x$. Then $\text{ad}(-y)$ fixes x, so $\text{ad}(-y)$ cannot be nilpotent, contradiction. \qed

15.2 Group cohomology

Let G be a group. Recall that a G-module is the same as a $\mathbb{Z}[G]$-module, and for such a G-module M, we define

$$H^i(M) := \text{Ext}^i_{\mathbb{Z}[G]}(\mathbb{Z}, M)$$

where \mathbb{Z} is the trivial $\mathbb{Z}[G]$-module. In other words, H^i is the ith derived functor of the functor of G-invariants. To compute this, you can also use the bar resolution, which is a resolution for any flat algebra over a commutative ring, in particular $\mathbb{Z}[G]$. This results in a complex where C^n consists of maps $f : G^n \rightarrow M$ and the differential is

$$df(g_0, \ldots, g_n) = g_0f(g_1, \ldots, g_n) + \sum_{i=0}^{n-1} (-1)^i f(\ldots, g_ig_{i+1}, \ldots) + (-1)^n f(g_0, \ldots, g_{n-1}).$$

Example 15.4: In particular, a 1-cocycle is a map $c : G \rightarrow M$ such that $gc(h) - c(gh) + c(g) = 0$; these are called “cross homomorphisms” and you can produce them from an M-torsor T over G and a choice of point $x_0 \in T$. The correspondence takes a cocycle c to the G-module structure on M where $g.m = m + c(g) (T = M$ and $x_0 = 0)$. Given a torsor T and a point $x_0 \in T$, for each $g \in G$ we set $c(g)$ to be the element in M such that $g(x_0) = x_0 + c(g)$. Varying the choice of a point results in adding a coboundary to the cocycle. We end up with a bijection between $H^1(G, M)$ and isomorphism classes of M-torsors over G. There is also a bijection between $H^1(G, M)$ and extensions of \mathbb{Z} by M because of its definition as Ext^1.

Remark 15.5: Moreover, the definition of $H^1(G, M)$ generalizes to the case when M is a nonabelian group equipped with a G-action, and in this case we view M as acting on itself on the right, while G acts on the left. This does not hold for higher cohomology.
Example 15.6: A 2-cocycle is a map \(c : G^2 \to M \) such that \(gc(h, k) - c(gh, k) + c(g, hk) - c(g, h) = 0 \).

Definition 15.7: A cross-product extension of \(G \) by \(M \) is a group \(\tilde{G} \) with a normal subgroup identified with \(M \) and an isomorphism \(G/M \cong G \) (i.e., an extension of \(G \) by \(M \)) such that the conjugation action of \(G \) on \(M \), which automatically factors through \(G \), coincides with the given action of \(G \) on \(M \) (the cross-product).

2-cocycles are in bijection with cross-product extensions of \(G \) by \(M \) together with a splitting of the surjection of sets \(\tilde{G} \to G \). Choosing a different splitting modifies the cocycle by a coboundary. Hence, there is a bijection between \(H^2(G, M) \) and cross-product extensions of \(G \) by \(M \) up to isomorphism.

15.3 Cross-product algebras

Recall that given a group \(G \) acting on a ring \(R \), we can form the smash product

\[
G \# R = \bigoplus_{g \in G} R_g, x_g y_h = (x g(y))_{gh}.
\]

Given a cocycle \(c \in H^2(G, R^\times) \), one can define a twisted version of this called the cross-product algebra,

\[
G \#_c R = \bigoplus_{g \in G} R_g, x_g y_h = (x g(y)c(g, h))_{gh}.
\]

Up to isomorphism, the cross-product algebra depends only on the class of \(c \) in \(H^2(G, R^\times) \).

This can also be described in terms of the cross-product group \(\tilde{G} \) as

\[
\tilde{G} \# R/(\lambda - [\lambda]), \lambda \in R^\times, [\lambda] \in \tilde{G} \text{ is the corresponding element.}
\]