Lecture 15: Separable Splitting Fields and Cross-Product Algebras

15 April 6 - Separable splitting fields and cross-product algebras

15.1 Separable splitting fields
Theorem 15.1: For a finite Galois extension E/F, we have a natural isomorphism
Br(E/F) = H*(Gal(E/F), E®).

To use this theorem, we want to say that every element splits over a finite Galois extension. In characteristic 0,
every finite extension is contained in a finite Galois extension and we proved that every element splits over a finite
extension. In general, a field extension is contained in a Galois extension iff it is separable.

Proposition 15.2: Every element in Br(F) splits over a finite separable extension (and hence over a finite Galois

extension).
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Proof. Let D be a skew field with center F (so a central simple algebra over F). It’s enough to show that there exists
a commutative subfield E ¢ D such that E 2 F and E/F is separable; then we can consider instead the centralizer
D’ = Zp(E); since [Zp(E)] = [E ®F D], we are done by induction on dimg D, use Lemma 14.12.

Suppose such an E does not exist. Then, by field extension theory, for every x € D, there exists n such that x*" € F.

I Lemma 15.3: Let A be an F,,-algebra. For x € A, we have ad(x)P = ad(x?), where ad(x)(y) = y — xy — yx.

Proof. If a, b are commuting elements in an [F,-algebra, then (a — b)? = a? — bP. Applying this to a = L, and
b = Ry, where Ly is left multiplication by x and Ry is right multiplication by x, we see that (a — b)? = ad(x)?
while a? — b? = ad(x?). O

Now we have two ways to finish the argument.

The first uses Engel’s Theorem (see 18.745): if g C gl,,(F) is a subalgebra consisting of nilpotent matrices, then g
is nilpotent. Equivalently, it is contained in the algebra of strictly upper triangular matrices in some basis. The
lemma implies that ad(x) is nilpotent for all x. Hence, the image of D in the Lie algebra Endp(D) (via the map
x > ad(x)) is nilpotent by Engel’s Theorem. This contradicts that D ®p E = Mat, (E) for some E.

The second uses Jordan normal form. Pick x € D such that x ¢ F but x” € F. Let E = F(x). Then [E : F] = p and

dimp(Zp(E)) = df. By the lemma, ad(x)? = 0 where ad(x) : D — D, and

dimp (ker(ad(x))) = dimp(Zp(E)) = dims(D)

Therefore, the Jordan normal form of ad(x) must have d?/p equal Jordan blocks of size p > 1. In particular,
ker(ad(x)) c im(ad(x)). So if x € ker(ad(x)), there exists y such that [x, y] = x. Then ad(—y) fixes x, so ad(-y)
cannot be nilpotent, contradiction. ]

15.2 Group cohomology

Let G be a group. Recall that a G-module is the same as a Z[G]-module, and for such a G-module M, we define

H'(M) := Ext’Z[G] (z, M)
where Z is the trivial Z[G]-module. In other words, H' is the ith derived functor of the functor of G-invariants. To
compute this, you can also use the bar resolution, which is a resolution for any flat algebra over a commutative ring,
in particular Z[G]. This results in a complex where C" consists of maps f: G* — M and the differential is

n—1
df (9o, -gn) = Gof (g1, -Gn) + D (D' (.. Gigiws, - ) + (=1)"f(Go, - - Gn-1)-
i=0

Example 15.4: In particular, a 1-cocycle is a map ¢c: G — M such that gc(h) — c(gh) + c(g) = 0; these are
called “cross homomorphisms” and you can produce them from an M-torsor T over G and a choice of point
xo € T. The correspondence takes a cocycle ¢ to the G-module structure on M where gm = m+c(g) (T = M
and xo = 0). Given a torsor T and a point xy € T, for each g € G we set c¢(g) to be the element in M such that
g(x0) = xo + ¢(g). Varying the choice of a point results in adding a coboundary to the cocycle. We end up with
a bijection between H'(G, M) and isomorphism classes of M-torsors over G. There is also a bijection between
H!(G, M) and extensions of Z by M because of its definition as Ext!.

Remark 15.5: Moreover, the definition of H'(G, M) generalizes to the case when M is a nonabelian group
equipped with a G-action, and in this case we view M as acting on itself on the right, while G acts on the left.
This does not hold for higher cohomology.
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Example 15.6: A 2-cocycle is a map c: G> — M such that ge(h, k) — c(gh, k) + c(g, hk) — c(g, k) = 0.

Definition 15.7: A cross-product extension of G by M is a group G with a normal subgroup identified
with M and an isomorphism G/M = G (i.e. an extension of G by M) such that the conjugation action of G on
M, which automatically factors through G, coincides with the given action of G on M (the cross-product).

2-cocycles are in bijection with cross-product extensions of G by M together with a splitting of the surjection
of sets G — G. Choosing a different splitting modifies the cocycle by a coboundary. Hence, there is a bijection
between H?(G, M) and cross-product extensions of G by M up to isomorphism.

15.3 Cross-product algebras

Recall that given a group G acting on a ring R, we can form the smash product

G#R = ) Ry, x4 = (x9(y))gn-
geG

Given a cocycle c € H 2(G,R*), one can define a twisted version of this called the cross-product algebra,

G#eR = P Ry, xgyn = (xg(y)c(g, M)gn.
geG

Up to isomorphism, the cross-product algebra depends only on the class of ¢ in H?(G, RX).
This can also be described in terms of the cross-product group G as

G#R/(A—[A]), A € R, [A] € G is the corresponding element.
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