
16 April 11 - Cohomological description of the Brauer group 

More on the Brauer group. 

16.1 Cross-product algebras and Galois extensions 

Proposition 16.1: Suppose 𝐸 /𝐹 is a Galois extension. Then we have a bijection between central simple algebras 
over 𝐹 with maximal commutative subfield (isomorphic to) 𝐸 and cross-product extensions of 𝐺 = Gal(𝐸 /𝐹 ) by 𝐸 × .

Proof. The bijection will send a central simple algebra 𝐴 with maximal commutative subfield 𝐸 to ˜ 𝐺 = Nm𝐴 × (𝐸 ),
where Nm is for normalizer; this is a cross-product extension of 𝐺 by 𝐸 × . Since conjugating by an element of ˜ 𝐺
induces a Galois automorphism of 𝐸 by definition, there is a homomorphism ˜ 𝐺 → 𝐺 . Skolem-Noether implies 
that this is onto. The kernel of this homomorphism is the invertible elements of 𝐴 that commute with 𝐸 . Since 
𝑍𝐴 (𝐸 ) = 𝐸 , the kernel must be 𝐸 × and we have an exact sequence 0 → 𝐸 × → ˜ 𝐺 → 𝐺 → 0, giving us a cross-
product extension. 
In the other direction, the bijection will take a cross-product extension, which corresponds to 𝑐 ∈ 𝐻 2 (𝐺, 𝐸 ×), to
𝐴 := 𝐺 #𝑐 𝐸 . First, we claim that 𝐴 is a central simple algebra. First, it is simple. Notice that 𝐸 ⊗𝐹 𝐸 


𝐺 𝐸 (by

Galois theory) and 𝐴 is a free rank 1 module over 𝐸 ⊗𝐹 𝐸 . Conjugation by an element 𝑥𝑔 ∈ 𝐴𝑐 , 𝑥 ≠ 0, will permute
the copies of 𝐸 and send 𝐸ℎ to 𝐸ℎ ′ . Therefore, for a nonzero ideal 𝐼 ⊂ 𝐴, 𝐼 must have a nonzero intersection with
some 𝐸𝑔 , hence it contains 𝐸𝑔 , but then 𝐼 contains all the 𝐸𝑔 and 𝐼 = 𝐴.
And 𝑍𝐴 (𝐸 ) = 𝐸 : if 𝑥 = (𝑥𝑔 ) ∈ 𝐴 with 𝑥𝑔 ≠ 0 and 𝑔 ≠ 1, we can pick 𝑦 ∈ 𝐸 such that 𝑔 (𝑦 ) ≠ 𝑦 , in which case

(𝑥 𝑦 )𝑔 = 𝑔 (𝑦 )𝑥 ≠ 𝑦𝑥 = (𝑦𝑥 )𝑔 . 

Hence, 𝑍 (𝐴 ) ⊂ 𝐸 and 𝑍 (𝐴 ) = 𝐸 𝐺 = 𝐹 . 
Now we check these are inverse bijections. Start with ˜ 𝐺 = 𝐺̃𝑐 and let 𝐴 = 𝐺 #𝑐 𝐸 . Then Nm𝐴 × (𝐸 ) = ˜ 𝐺 , since if
𝑎 ∈ 𝐴 × normalizes 𝐸 , then 𝑎𝑔 −1 ∈ 𝑍 (𝐸 ) for some 𝑔 ∈ 𝐺 , so 𝑎𝑔 −1 ∈ 𝐸 × . Conversely, starting with 𝐴, mapping to a
cocycle 𝑐 , the map (𝑥𝑔 ) ↦→ 

 
𝑥 𝑔 is a homomorphism. Then the map 𝐺 #𝑐 𝐸 → 𝐴 is injective because 𝐺 #𝑐 𝐸 is simple,
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and moreover, these have the same dimension over 𝐹 , so the map is an isomorphism. □ 

Remark 16.2: While the above gives a transparent relation between central simple algebras and cross-products, 
some questions about this construction turn out to be quite hard. In particular, it’s hard to determine whether 
a given cross-product algebra is a skew field or whether a given skew field is isomorphic to a cross-product 
algebra, see e.g. [2]. 

16.2 Maximal commutative subfields and splitting fields 

Lemma 16.3: Let 𝐸 /𝐹 be a finite extension and 𝐴 a central simple algebra over 𝐹 . Then [𝐴] ∈ Br(𝐸 /𝐹 ) iff 𝐴 is 
equivalent to an algebra 𝐴 ′ containing 𝐸 as a maximal subfield. 

Proof. Suppose that 𝐸 ⊂ 𝐴 is a maximal subfield. Recall that 𝐴 is isomorphic to a matrix algebra over some skew 
field 𝐷 . It is enough to show that 𝐷 splits over 𝐸 . From the last lecture, we proved that for a central simple algebra 
𝐷 over 𝐹 and a field 𝐸 ⊂ 𝐷 , [𝐷 ⊗𝐹 𝐸 ] = [𝑍 𝐷 (𝐸 )]. So if 𝑍 𝐷 (𝐸 ) = 𝐸 , then [𝑍 𝐷 (𝐸 )] = 0 and 𝐷 splits over 𝐸 . 
In the other direction, suppose that 𝐴 splits over 𝐸 and is represented by a skew field 𝐷 . Write 𝐴 = Mat𝑚 (𝐷 ) and 
consider the minimal 𝑛 such that Mat𝑛 (𝐷 ) ⊃ 𝐸 (as 𝐹 -rings). Then we claim 𝐴 ′ := Mat𝑛 (𝐷 ) contains 𝐸 as a maximal 
subfield. Let 𝐵 = 𝑍𝐴 ′ (𝐸 ). Then [𝐵 ] = [𝐷 ⊗𝐹 𝐸 ] (also from last time). Moreover, we claim that 𝐵 cannot contain any 
nontrivial idempotents. Otherwise, 𝑒 Mat𝑛 (𝐷 )𝑒 would be a smaller central simple algebra in the same Brauer class 
containing 𝐸 , as 𝑥 ↦→ 𝑒 𝑥 would be a nonzero homomorphism 𝐸 → 𝑒 Mat𝑛 (𝐷 )𝑒 . Hence 𝐵 is a skew field. So if 𝐴 
splits over 𝐸 , then [𝐵 ] = 0 ∈ Br(𝐸 ), and 𝐵 = 𝐸 as it is a skew field. So 𝐴 ′ contains 𝐵 = 𝐸 as a maximal subfield. □ 

16.3 Proof of the theorem 

Corollary 16.4: Let 𝐸 /𝐹 be a finite Galois extension. Then Br(𝐸 /𝐹 )  𝐻 2 (Gal(𝐸 /𝐹 ), 𝐸 ×). 

Proof. Now we know that there is a bijection between central simple algebras over 𝐹 with maximal commutative 
subfield 𝐸 and 𝐻 2 (𝐺 , 𝐸 × ). The Lemma 16.3 implies that every class 𝐴 in Br(𝐸 /𝐹 ) has a representative 𝐴 ′ with 
maximal commutative subfield 𝐸 , hence there is a map Br(𝐸 /𝐹 ) ↠ 𝐻 2 (𝐺 , 𝐸 ×) (currently just a map of sets, not a 
homomorphism). It is an injection (on sets), since two equivalent central simple algebras of the same degree are 
isomorphic: if Mat𝑛 (𝐷 ) and Mat𝑚 (𝐷 ) have the same dimension over their center, 𝑚 = 𝑛 . So we have a bijection 
between Br(𝐸 /𝐹 ) and 𝐻 2 (𝐺 , 𝐸 × ). 
We need to check that this is a group homomorphism. Let’s rewrite the group structure on 𝐻 2 in terms of cross-
products. Given 𝐺̃𝑐 1 and 𝐺̃𝑐 2 , one can check that 

𝐺̃𝑐 1𝑐 2  𝐺̃𝑐 1 ×𝐺 𝐺̃𝑐 2 /(𝑚, −𝑚 ) ⊂ 𝑀 × 𝑀 . 

Now we want to check that 
𝐵 := 𝐴𝑐 1 ⊗𝐹 𝐴𝑐 2 ∼ 𝐴𝑐 1𝑐 2 . 

But 𝐵 ⊃ 𝐸 ⊗𝐹 𝐸 = 

𝐺 𝐸 . Let 𝑒 = 11 ∈ 𝐸 ⊗𝐹 𝐸 . Then 𝑒 𝐵𝑒  𝐴𝑐 1𝑐 2 and this represents the class [𝐴𝑐 1 ] + [𝐴𝑐 2 ], so the 

group structures on both are compatible. □ 

16.4 Applications 
Proof (of Theorem 14.15). Recall that we want to prove that there are no finite noncommutative skew fields. This 
is equivalent to proving that Br(F𝑞𝑛 /F𝑞 ) is trivial, i.e. by the above, that 𝐻 2 (𝐺 , F×𝑞𝑛 ) = 0. The Galois group of 
this extension is Z/𝑛 Z. Pick a generator 𝛾 ∈ Z/𝑛 Z. For cyclic groups, we can use the following resolution of Z to 
compute 𝐻 ∗ (Z/𝑛 Z, 𝑀 ): 

· · · → Z[𝐺 ] 
1++···+𝛾 𝑛−1 

−−−−−−−−−→ Z[𝐺 ] 
1−𝛾 
−−−→ Z[𝐺 ] 

1+𝛾 +···+𝛾 𝑛−1 

−−−−−−−−−−→ Z[𝐺 ] 
1−𝛾 
−−−→ Z[𝐺 ] → Z 
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where the leftmost arrow fits in the exact sequence because 

(1 − 𝛾 ) 
𝑛 −1∑︁ 

𝑖 =0 

𝑛𝑖 𝛾 
𝑖 = 

𝑛 −1∑︁ 

𝑖 =0 

(𝑛𝑖 − 𝑛𝑖 −1)𝛾 𝑖 = 0 ⇔ 𝑛𝑖 = 𝑛 𝑗 ∀𝑖 , 𝑗 . 

The complex is 2-periodic, since  
𝑛 −1∑︁ 

𝑖 =0 

𝛾 𝑖 
  

𝑛 −1∑︁ 

𝑖 =0 

𝑛𝑖 𝛾 
𝑖 

 
= 

 
𝑛 −1∑︁ 

𝑖 =0 

𝑛𝑖 

  
𝑛 −1∑︁ 

𝑖 =0 

𝛾 𝑖 
 
. 

So 𝐻 2𝑘 (Z/𝑛 Z, 𝑀 ) = 𝑀 𝐺 /Im(Av), where Av : 𝑀 → 𝑀 𝐺 takes 𝑚 ↦→ 
 
𝑔 ∈𝐺 𝑔 (𝑚 ). Thus if 𝐸 /𝐹 is a Galois extension 

with 𝐺  Z/𝑛 Z, which is our case, Br(𝐸 /𝐹 ) = 𝐻 2 (𝐺 , 𝐸 ×) = 𝐹 ×/Nm(𝐸 ×) where here Nm is the image of the 
norm map. But for 𝐹 = F𝑞 , 𝐸 = F𝑞𝑛 , Nm(𝑥 ) = 𝑥 (𝑞

𝑛 −1)/𝑞 −1 , so cyclicity of 𝐸 × implies that Nm : 𝐸 × ↠ 𝐹 × and 
Br(𝐸 /𝐹 ) = 0. □ 

Remark 16.5: We have shown that if 𝐸 /𝐹 is a Galois extension with 𝐺  Z/𝑛 Z, then Br(𝐸 /𝐹 ) = 𝐻 2 (𝐺 , 𝐸 ×) = 
𝐹 ×/Nm(𝐸 ×). The identification can be explicitly described as follows: recall that 𝛾 ∈ 𝐺 is a generator. Consider 
the “twisted polynomial algebra” 𝐸 ⟨𝑥 ; 𝛾 ⟩ := { 𝑖 𝑐𝑖 𝑥 𝑖 | 𝑐 𝑖 ∈ 𝐸 } with 𝑥 𝑐 = 𝛾 (𝑐 )𝑥 for 𝑐 ∈ 𝐸 . Pick 𝑎 ∈ 𝐹 × , the 
corresponding central simple algebra is 𝐸 ⟨𝑥 ; 𝛾 ⟩/(𝑥 𝑛 − 𝑎 ) (such algebras are called cyclic algebras). 

Example 16.6: Br(C/R) = R×/Nm(C×) = Z/2Z. It is easy to see that the element [1] ∈ Z/2Z corresponds to 
the central simple algebra H of quaternions. 

16.5 Index and period 

Definition 16.7: The index of an element in a Brauer group is the degree of its minimal representative. That is, 
the index of [Mat𝑛 (𝐷 )] = [𝐷 ] equals 𝑑 if 𝐷 is a skew field of dimension 𝑑 2 . 

Definition 16.8: The period of a central simple algebra 𝐴 over 𝐹 is the order of [𝐴] ∈ Br(𝐹 ). 

Lemma 16.9: The period of an element in the Brauer group divides its index. In particular, the period is always 
finite, and Br is torsion. 

Proof. Let 𝐷 be the skew field representative of this element, say it has degree 𝑑 , with center 𝐹 . We proved that 𝐷 
has a maximal subfield 𝐸 such that 𝐸 /𝐹 is separable in Proposition 15.2. Let 𝐾 be a Galois extension of 𝐹 containing 
𝐸 and 𝐺 = Gal(𝐸 /𝐹 ). Then 𝐸 = 𝐾 𝐻 for an index 𝑑 subgroup 𝐻 ⊂ 𝐺 , 𝐻 = Gal(𝐾 /𝐸 ). 
Now the lemma follows from the following fact about group cohomology: given a finite group 𝐺 , 𝐻 ⊂ 𝐺 of index 
𝑑 , and a 𝐺 -module 𝑀 , the kernel of res : 𝐻 𝑖 (𝐺 , 𝑀 ) → 𝐻 𝑖 (𝐻 , 𝑀 ) is killed by 𝑑 . This is because we can define a map 
𝑎 : 𝐻 𝑖 (𝐻 , 𝑀 ) → 𝐻 𝑖 (𝐺 , 𝑀 ) so that 𝑎 ◦ res is multiplication by 𝑑 . For 𝑖 = 0, this map sends 𝑚 ↦→ 


𝑔 ∈𝐺 /𝐻 𝑔 (𝑚 ), and 

in higher degrees, take an injective resolution of 𝑀 over 𝐺 , which will restrict to an injective resolution over 𝐻 , 
then apply the above map to each term of the resolution. 
Hence, the 𝑑 th power of every element in the Brauer group vanishes. □ 

Not all integers arise as indexes of Brauer classes: 

Lemma 16.10: If 𝐹 is a perfect characteristic 𝑝 field, the Brauer group has no 𝑝 -torsion. 

Proof. A separable finite extension 𝐸 of 𝐹 is also perfect. Hence 𝐸 × → 𝐸 × , 𝑥 ↦→ 𝑥 𝑝 is an isomorphism, so it induces 
an automorphism 𝐻 2 (𝐺 , 𝐸 ×) → 𝐻 2 (𝐺 , 𝐸 ×). □ 

Finally, we give a cohomological description of Br(𝐹 ) in terms of the absolute Galois group. We can describe by taking 
a limit of the Br(𝐸 /𝐹 ), but we need to take into account that the absolute Galois group 𝐺 𝐹 = Gal(𝐹sep/𝐹 ) (where 𝐹sep 

is the separable algebraic closure) is a profinite group. Hence, we need to consider continuous cohomology instead 
of normal cohomology, where all cocycles in the standard complex are required to be continuous. Then we can show 
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that 
𝐻 2 

cont (𝐺 𝐹 , 𝐹 
× 
sep) = lim

−→ 
𝐸 

𝐻 2 (Gal(𝐸 /𝐹 ), 𝐸 × ) = lim 
−→ 

Br(𝐸 /𝐹 ) = Br(𝐹 ). 
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