
17 April 13 - Brauer groups of central simple algebras, reduced norm and trace 

17.1 Reduced norm and trace 

We can generalize the determinant and trace to central simple algebras. Suppose 𝐴 is a central simple algebra of 
degree 𝑑 over 𝑘 . 

Proposition 17.1: There exist unique polynomial maps 𝜏 , 𝛿 : 𝐴 → 𝑘 so that for any field extension 𝐾 /𝑘 such that
𝐴 splits over 𝐾 , 

𝜏𝑘 : 𝐴 ⊗𝑘 𝐾  Mat𝑛 (𝐾 ) → 𝐾

is the trace and 
𝛿 𝐾 : 𝐴 ⊗𝑘 𝐾  Mat𝑛 (𝐾 ) → 𝐾

is the determinant. 𝜏 is called the reduced trace and 𝛿 is called the reduced norm. 

Example 17.2: Let’s take 𝐴 = H and 𝑘 = R. Then 𝜏 : 𝑎 +𝑏𝑖 +𝑐 𝑗 +𝑑 𝑘 ↦→ 2𝑎 and 𝛿 : 𝑎 +𝑏𝑖 +𝑐 𝑗 +𝑑 𝑘 ↦→ 𝑎 2 +𝑏 2 +𝑐 2 +𝑑 2 .

Proof. By the Artin-Wedderburn theorem, WLOG we can assume |𝑘 | = ∞ so that we can say that polynomials are
determined by their values on 𝑘 𝑛 . Now the proof follows from Galois descent and the fact that Tr, det are invariant 
under all automorphisms of the matrix ring. For a fixed extension 𝐾 /𝑘 , 𝜏 , 𝛿 satisfying the compatibility with Tr, det 
are unique; moreover, they will satisfy the same compatibility for any extension 𝐾 ′ ⊃ 𝐾 , and also for 𝐾 ′′ ⊂ 𝐾 if 𝐾 
splits 𝐴. So we only have to construct 𝜏 , 𝛿 satisfying the compatibility for a fixed extension splitting 𝐴 . 
Choose a finite Galois extension 𝐾 /𝑘 which splits 𝐴 and choose an isomorphism 𝐴 ⊗ 𝐾  Mat𝑛 (𝐾 ). Let 𝐺 =
Gal(𝐾 /𝑘 ), it acts on 𝐴 ⊗ 𝐾 by acting on 𝐾 . It suffices for us to show that det, Tr commute with the 𝐺 -action, which 
will imply that they come from polynomial maps defined over 𝑘 . 
To see this, consider the action of 𝐺 on Mat𝑛 (𝐾 ), which is different from the action above; say it sends 𝑎 ↦→ 𝛾 𝑎 .
Then the map 𝑎 ↦→ 𝛾 −1 (𝛾 𝑎 ) is a 𝐾 -linear automorphism on Mat𝑛 (𝐾 ), hence given by conjugation by some element
𝑔𝛾 ∈ GL𝑛 (𝐾 ). Since det is conjugation-invariant, we have

det(𝑎 ) = det(𝛾 −1 (𝛾 𝑎 )) ⇒ det(𝛾 (𝑎 )) = det(𝛾 𝑎 ) = 𝛾 (det 𝑎 ).

The same argument works for trace. So we are done. □ 

From these, we see that 𝜏 (𝑎𝑏 ) = 𝜏 (𝑏𝑎 ), 𝛿 (𝑎𝑏 ) = 𝛿 (𝑎 )𝛿 (𝑏 ), and 𝛿 (1) = 1. 

17.2 𝐶 1 fields 

Definition 17.3: We say a field is a quasi-closed or 𝐶 1 if any homogeneous polynomial of degree 𝑑 in 𝑛 > 𝑑 
variables has a nontrivial zero. More generally, we say a field is 𝐶𝑘 if any homogeneous polynomial of degree 𝑑 in 
𝑛 > 𝑑 𝑘 variables has a nontrivial zero. 

Proposition 17.4: If 𝐹 is 𝐶 1, Br(𝐹 ) = 0.

Proof. Suppose not. Then let 𝐷 be a skew field finite over 𝐹 with 𝑍 (𝐷 ) = 𝐹 . Then 𝛿 (the reduced norm) is a degree
𝑑 polynomial but dim𝐹 (𝐷 ) = 𝑑 2 , so 𝛿 has a nontrivial zero. But 𝛿 is invertible, a contradiction. □

Lemma 17.5: Finite extensions of 𝐶 1 fields are also 𝐶 1. 

48 

Lecture 17: Brauer Groups of Central Simple Algebras, Reduced Norm and Trace



Proof. Suppose 𝐹 is 𝐶 1 and 𝐸 /𝐹 is a degree 𝑚 extension. Let 𝑃 be a polynomial of degree 𝑑 in 𝑛 variables over 𝐸 . 
By choosing a basis for 𝐸 over 𝐹 , we can identify 𝐸 𝑛 = 𝐹 𝑛𝑚 . Then consider the polynomial 

𝑃 (𝑥 ) := Nm𝐸 /𝐹 (𝑃 (𝑥 )); 

this is a degree 𝑚𝑑 polynomial in 𝑚𝑛 variables over 𝐹 , and it has a nontrivial zero iff 𝑃 does. □ 

Theorem 17.6 (Chevalley-Warning): Finite fields are 𝐶 1 fields. 

Proof. The previous lemma shows that it’s enough to consider F𝑝 . Then the result follows from the following fact: 
if 𝑃 is a homogeneous polynomial in 𝑛 variables of degree 𝑛 > 𝑑 over F𝑝 , the number of zeroes is 0 mod 𝑝 . Since 
there is at least one zero (the trivial one), there are at least 𝑝 zeroes. So it remains to prove this fact. 
We know that for 𝑎 ∈ F𝑝 , 𝑎𝑝 −1 is either 0 or 1 (if 𝑎 ≠ 0). So ∑︁ 

𝑎1,...,𝑎𝑛 ∈F𝑝 

(1 − 𝑃 (𝑎 1, . . . , 𝑎𝑛 )𝑝 −1) ≡ # zeroes of 𝑃 (mod 𝑝 ). 

Every monomial in this sum (considered as a polynomial in 𝑎𝑖 ) will have at least one variable that has exponent 
less than 𝑝 − 1 because the polynomial has degree 𝑑 (𝑝 − 1) and has 𝑛 variables (we use that 𝑑 (𝑝 − 1) < 𝑛 (𝑝 − 1) 
because 𝑑 < 𝑛 ). Summing over that variable and using that 


𝑎 𝑎

𝑚 = 0 when 0 ⩽ 𝑚 < 𝑝 − 1, we see that the whole 
sum is 0. □ 

Remark 17.7: This gives another proof of Theorem 14.15. 

Theorem 17.8 (Tsen’s Theorem): Suppose 𝑘 is algebraically closed. Then the field 𝐹 = 𝑘 (𝑡 ) is 𝐶 1. 

Proof (Sketch). Clear denominators so that WLOG 𝑃 ∈ 𝑘 [𝑡 ] [𝑥 1, . . . , 𝑥𝑛 ]. Then use that a system of 𝑚 homogeneous 
polynomial equations over 𝑘 in 𝑛 variables has a nontrivial solution if 𝑛 > 𝑚 (this is true because 𝑘 is algebraically 
closed). If 𝐾 is the maximum degree (in 𝑡 ) of a coefficient of 𝑃 , look at a solution of degree 𝑟 . Then you get 𝑑 𝑟 +𝐾 +1 
equations in (𝑟 + 1)𝑛 variables and 𝑑 < 𝑛 implies 𝑑 𝑟 + 𝐾 + 1 < (𝑟 + 1)𝑛 when 𝑟 ≫ 0. □ 

17.3 Second approach to the cohomological description of Brauer group 

Let 𝐴 be a central simple algebra over 𝐹 and 𝐸 /𝐹 a finite Galois extension. As described in the proof of Proposition 
17.1, when you fix an isomorphism 𝐴 ⊗𝐹 𝐸  Mat𝑛 (𝐸 ), you get two 𝐺 -actions, 𝛾 (𝑎 ) and 𝛾 𝑎 , that differ by conjugation 
by 𝑔𝛾 ∈ GL𝑛 (𝐸 ). This 𝑔𝛾 is determined up to multiplication by a scalar matrix, so 𝑔𝛾1𝑔𝛾2 and 𝑔𝛾1𝛾2 have the same 
image in PGL𝑛 (𝐸 ) = Aut(Mat𝑛 (𝐸 )) (but lifting to GL𝑛 requires a choice). So we can define 

𝑐 (𝛾 1, 𝛾 2) = 𝑔𝛾1 𝑔𝛾2 𝑔 −1 
𝛾1𝛾2 
∈ 𝐸 × . 

In fact, 𝑐 is a 2-cocycle, and its class in 𝐻 2 is independent of choice. Therefore, we get a map Br(𝐸 /𝐹 ) → 𝐻 2 (𝐺 , 𝐸 ×), 
and it’s an isomorphism. 
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Remark 17.9: We can interpret the definition of 𝑐 as follows. The set of isomorphisms 𝐴 ⊗𝐹 𝐸  Mat𝑛 (𝐸 ) 
form a PGL𝑛 (𝐸 )-torsor over 𝐺 . As discussed earlier, the isomorphism class of this torsor corresponds to an 
element ˜ 𝑐 ∈ 𝐻 1 (𝐺 , PGL𝑛 (𝐸 )), the nonabelian cohomology group. A short exact sequence of abelian groups 
with a 𝐺 -action will produce a long exact sequence in cohomology. For 

1 → 𝐸 × → GL𝑛 (𝐸 ) → PGL𝑛 (𝐸 ) → 1 

the first few terms of the sequence are still well-defined, even though the sequence involves two nonabelian 
groups. The class 𝑐 is the image of 𝑐 under the connecting homomorphism. 
The injectivity of the map can be deduced from Hilbert’s Theorem 90, which says that 𝐻 1 (𝐺 , GL𝑛 (𝐸 )) = 1. 
(Hilbert originally considered the case 𝑛 = 1 only.) An equivalent form of this statement is as follows: given an 
𝑛 -dimensional 𝐸 -vector space 𝑉𝐸 with a compatible 𝐺 -action, there is an 𝐹 -vector space 𝑉𝐹 and a 𝐺 -equivariant 
isomorphism 𝑉𝐸 = 𝑉𝐹 ⊗𝐹 𝐸 . 

17.4 Brauer groups of local fields 

Theorem 17.10: Let 𝐹 be a non-Archimedean local field, i.e. it’s a finite extension of Q𝑝 or F𝑝 ((𝑡 )) (in which case 
𝐹  F𝑞 ((𝑡 ))). Then Br(𝐹 )  Q/Z. 

First, let us recall without proof some facts about non-Archimedean local fields. If 𝐹 is such a field, we have a 
valuation 𝐹 × → Z satisfying 𝑣 (𝑎𝑏 ) = 𝑣 (𝑎 ) + 𝑣 (𝑏 ) and 𝑣 (𝑎 + 𝑏 ) ⩾ min(𝑣 (𝑎 ), 𝑣 (𝑏 )); we can extend this to 𝐹 by setting 
𝑣 (0) = ∞. WLOG we can assume that 𝑣 is onto. Then there exists an element 𝜋 with 𝑣 (𝜋 ) = 1, called a uniformizer. 
The elements 𝑥 with 𝑣 (𝑥 ) ⩾ 0 form the ring of integers O ⊂ 𝐹 , the elements 𝑥 with 𝑣 (𝑥 ) ⩾ 1 form the unique 
maximal ideal 𝔪 = 𝜋 O ⊂ O, and the residue field 𝑘 = O/𝜋 O is finite. For all 𝑥 ∈ 𝐹 × , 𝑥 𝜋 −𝑣 (𝑥 ) ∈ O× . 

Definition 17.11: If 𝐸 /𝐹 is a finite extension, then 𝑘 𝐸 /𝑘 𝐹 is an extension of finite fields. Its degree 𝑖 𝐸 /𝐹 = [𝑘 𝐸 : 𝑘 𝐹 ] 
is the inertia degree of the extension. The ramification index of the extension, 𝑟 = 𝑟 𝐸 /𝐹 , is the integer such that 
𝜋𝑟 
𝐸
𝜋 −1 
𝐹
∈ O× where 𝜋𝐸 , 𝜋 𝐹 are uniformizers of their respective valuations. Then 

[𝐸 : 𝐹 ] = 𝑖 𝐸 /𝐹 𝑟 𝐸 /𝐹 

since you can see these are both dim𝑘𝐹 (O𝐸 /𝔪𝐸 ). 

Remark 17.12: This also works if 𝐸 is a skew field. 

Definition 17.13: If 𝑟 = 1, we say that 𝐸 /𝐹 is unramified. In this case, 𝐸 /𝐹 is Galois and Gal(𝐸 /𝐹 )  Gal(𝑘 𝐸 /𝑘 𝐹 ) 
(in particular, it is cyclic). 

Proposition 17.14: Every central simple algebra over a local field 𝐹 splits over an unramified extension. 

Proof (Sketch). Let 𝐷 be a central simple algebra over 𝐹 . Then we can extend the valuation to 𝐷 × , choose a uni-
formizer 𝜋𝐷 where 𝑣 𝐷 (𝜋𝐷 ) = 1, O𝐷 = {𝑥 ∈ 𝐷 | 𝑣 𝐷 (𝑥 ) ⩾ 0}. We get a finite extension 𝑘𝐷 := O𝐷 /𝜋𝐷 O𝐷 over 𝑘 𝐹 

(note that by Artin-Wedderburn theorem, 𝑘𝐷 is a field), and 

dim𝐹 𝐷 = 𝑑 2 = [𝑘𝐷 : 𝑘 𝐹 ]𝑟 𝐷 /𝐹 

where 𝑑 is the degree of 𝐷 . We also claim that 𝑖 𝐷 /𝐹 , 𝑟 𝐷 /𝐹 ⩽ 𝑑 (recall that 𝑖 𝐷 /𝐹 := [𝑘𝐷 : 𝑘 𝐹 ]). To see this, it’s enough 
to show the existence of commutative subfields 𝐸 1, 𝐸 2 in 𝐷 with 𝑖 𝐷 /𝐹 ⩽ [𝐸 1 : 𝐹 ] and 𝑟 𝐷 /𝐹 ⩽ [𝐸 2 : 𝐹 ] (use Corollary 
14.13). Let 𝐸1 = 𝐹 (𝛼 ) where 𝛼 ∈ O𝐷 is such that 𝛼 mod 𝜋 𝐷 O𝐷 generates 𝑘 𝐷 over 𝑘 𝐹 and 𝐸 2 = 𝐹 (𝜋 𝐷 ). 
Therefore, 𝑖 𝐷 /𝐹 = 𝑟 𝐷 /𝐹 = 𝑑 = [𝐸 1 : 𝐹 ]. This shows that 𝐸 1/𝐹 is unramified and that it is a maximal commutative 
subfield in 𝐷 . Thus it splits 𝐷 (see Lemma 16.3) and is our desired extension. □ 
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Proposition 17.15: If 𝐸 /𝐹 is an unramified degree 𝑛 extension of a non-Archimedean local field, then Br(𝐸 /𝐹 ) =
Z/𝑛 Z. 

Proof. We saw last time that for a cyclic extension, Br(𝐸 /𝐹 )  𝐹 ×/Nm(𝐸 ×). Since 𝐸 /𝐹 is unramified, Gal(𝐸 /𝐹 ) 
Gal(𝑘 𝐸 /𝑘 𝐹 ) and every extension of finite fields is cyclic (the Galois group is generated by the Frobenius). For
an unramified extension, O× 

𝐸 ↠ O×
𝐹

; this follows from surjectivity of the associated graded maps 𝑘 × 
𝐸 ↠ 𝑘 × 

𝐹
and 

(1 + 𝜋 𝑛 O𝐸 )/(1 + 𝜋 𝑛 +1 O𝐸 ) ↠ (1 + 𝜋𝑛 O𝐹 )/(1 + 𝜋 𝑛 +1 O𝐹 ), where 𝜋 = 𝜋 𝐹 . The first map is identified with the norm
and the second with the trace 𝑘𝐸 → 𝑘 𝐹 . Since Nm(𝜋 ) = 𝜋 𝑛 , we get that Br(𝐸 /𝐹 ) = Z/𝑛 Z. □ 

Proof (of Theorem 17.10). Let 𝐹 unr be a maximal unramified extension of 𝐹 . Then it contains a unique degree 𝑛
subextension 𝐹𝑛 /𝐹 for every 𝑛 > 1 and

Br(𝐹 ) = Br(𝐹 unr/𝐹 ) = lim 
−→ 

Br(𝐹𝑛 /𝐹 ) = lim 
−→ 
Z/𝑛 Z = Q/Z. 

□ 

Remark 17.16: The theorem allows us to formulate a version of the reciprocity law of Class Field Theory. Let
𝑘 be a global field, i.e. a finite extension of Q or F𝑝 (𝑡 ). For every valuation 𝑣 , we get a corresponding local field
𝑘 𝑣 by completing 𝑘 at 𝑣 . Then we get a map

Br(𝑘 ) → 
 

𝑣 

Br(𝑘 𝑣 )

and we claim that in fact 
Br(𝑘 ) ↩→ 

 

𝑣 

Br(𝑘 𝑣 )

and this induces an isomorphism of Br(𝑘 ) with the kernel of the sum map, i.e. 

Br(𝑘 ) 
 

(𝑏 𝑣 ) ∈ 
 

𝑣 

Br(𝑘 𝑣 ) |
∑︁ 

𝑏 𝑣 = 0
 

= ker 
  

𝑣 

Br(𝑘 𝑣 ) → Q/Z
 
. 

This is one of several equivalent forms of the reciprocity law of class field theory. For example, the corresponding 
identity for degree 2 central simple algebras over Q, H𝑎,𝑏 = Q⟨𝑖 , 𝑗 ⟩/(𝑖 2 = 𝑎, 𝑗 2 = 𝑏, 𝑖 𝑗 = − 𝑗 𝑖 ) is essentially
equivalent to quadratic reciprocity. 
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