Lecture 17: Brauer Groups of Central Simple Algebras, Reduced Norm and Trace

17 April 13 - Brauer groups of central simple algebras, reduced norm and trace

17.1 Reduced norm and trace

We can generalize the determinant and trace to central simple algebras. Suppose A is a central simple algebra of degree d over k.

Proposition 17.1: There exist unique polynomial maps τ , δ : $A \rightarrow k$ so that for any field extension K/k such that A splits over K,

 $\tau_k \colon A \otimes_k K \cong \operatorname{Mat}_n(K) \to K$

is the trace and

 $\delta_K \colon A \otimes_k K \cong \operatorname{Mat}_{n(K)} \to K$

is the determinant. τ is called the **reduced trace** and δ is called the **reduced norm**.

Example 17.2: Let's take $A = \mathbb{H}$ and $k = \mathbb{R}$. Then $\tau: a+bi+cj+dk \mapsto 2a$ and $\delta: a+bi+cj+dk \mapsto a^2+b^2+c^2+d^2$.

Proof. By the Artin-Wedderburn theorem, WLOG we can assume $|k| = \infty$ so that we can say that polynomials are determined by their values on k^n . Now the proof follows from Galois descent and the fact that Tr, det are invariant under all automorphisms of the matrix ring. For a fixed extension K/k, τ , δ satisfying the compatibility with Tr, det are unique; moreover, they will satisfy the same compatibility for any extension $K' \supset K$, and also for $K'' \subset K$ if K splits A. So we only have to construct τ , δ satisfying the compatibility for a fixed extension splitting A.

Choose a finite Galois extension K/k which splits A and choose an isomorphism $A \otimes K \cong Mat_n(K)$. Let G = Gal(K/k), it acts on $A \otimes K$ by acting on K. It suffices for us to show that det, Tr commute with the G-action, which will imply that they come from polynomial maps defined over k.

To see this, consider the action of *G* on $Mat_n(K)$, which is different from the action above; say it sends $a \mapsto \gamma^a$. Then the map $a \mapsto \gamma^{-1}(\gamma a)$ is a *K*-linear automorphism on $Mat_n(K)$, hence given by conjugation by some element $g_{\gamma} \in GL_n(K)$. Since det is conjugation-invariant, we have

$$\det(a) = \det(\gamma^{-1}(\gamma a)) \Longrightarrow \det(\gamma(a)) = \det(\gamma a) = \gamma(\det a).$$

The same argument works for trace. So we are done.

From these, we see that $\tau(ab) = \tau(ba)$, $\delta(ab) = \delta(a)\delta(b)$, and $\delta(1) = 1$.

17.2 *C*₁ **fields**

Definition 17.3: We say a field is a **quasi-closed** or C_1 if any homogeneous polynomial of degree d in n > d variables has a nontrivial zero. More generally, we say a field is C_k if any homogeneous polynomial of degree d in $n > d^k$ variables has a nontrivial zero.

Proposition 17.4: If F is C_1 , Br(F) = 0.

Proof. Suppose not. Then let *D* be a skew field finite over *F* with Z(D) = F. Then δ (the reduced norm) is a degree *d* polynomial but dim_{*F*}(*D*) = d^2 , so δ has a nontrivial zero. But δ is invertible, a contradiction.

Lemma 17.5: Finite extensions of C_1 fields are also C_1 .

Proof. Suppose *F* is C_1 and E/F is a degree *m* extension. Let *P* be a polynomial of degree *d* in *n* variables over *E*. By choosing a basis for *E* over *F*, we can identify $E^n = F^{nm}$. Then consider the polynomial

$$\tilde{P}(x) := \operatorname{Nm}_{E/F}(P(x));$$

this is a degree *md* polynomial in *mn* variables over *F*, and it has a nontrivial zero iff *P* does.

Theorem 17.6 (Chevalley-Warning): Finite fields are C₁ fields.

Proof. The previous lemma shows that it's enough to consider \mathbb{F}_p . Then the result follows from the following fact: if *P* is a homogeneous polynomial in *n* variables of degree n > d over \mathbb{F}_p , the number of zeroes is 0 mod *p*. Since there is at least one zero (the trivial one), there are at least *p* zeroes. So it remains to prove this fact. We know that for $a \in \mathbb{F}_p$, a^{p-1} is either 0 or 1 (if $a \neq 0$). So

$$\sum_{a_1,\ldots,a_n\in\mathbb{F}_p} (1-P(a_1,\ldots,a_n)^{p-1}) \equiv \# \text{ zeroes of } P \pmod{p}.$$

Every monomial in this sum (considered as a polynomial in a_i) will have at least one variable that has exponent less than p-1 because the polynomial has degree d(p-1) and has n variables (we use that d(p-1) < n(p-1)) because d < n). Summing over that variable and using that $\sum_a a^m = 0$ when $0 \le m < p-1$, we see that the whole sum is 0.

Remark 17.7: This gives another proof of Theorem 14.15.

Theorem 17.8 (Tsen's Theorem): Suppose k is algebraically closed. Then the field F = k(t) is C_1 .

Proof (Sketch). Clear denominators so that WLOG $P \in k[t][x_1, ..., x_n]$. Then use that a system of *m* homogeneous polynomial equations over *k* in *n* variables has a nontrivial solution if n > m (this is true because *k* is algebraically closed). If *K* is the maximum degree (in *t*) of a coefficient of *P*, look at a solution of degree *r*. Then you get dr + K + 1 equations in (r + 1)n variables and d < n implies dr + K + 1 < (r + 1)n when $r \gg 0$.

17.3 Second approach to the cohomological description of Brauer group

Let *A* be a central simple algebra over *F* and *E*/*F* a finite Galois extension. As described in the proof of Proposition 17.1, when you fix an isomorphism $A \otimes_F E \cong \text{Mat}_n(E)$, you get two *G*-actions, $\gamma(a)$ and γ_a , that differ by conjugation by $g_{\gamma} \in \text{GL}_n(E)$. This g_{γ} is determined up to multiplication by a scalar matrix, so $g_{\gamma_1}g_{\gamma_2}$ and $g_{\gamma_1\gamma_2}$ have the same image in PGL_n(*E*) = Aut(Mat_n(*E*)) (but lifting to GL_n requires a choice). So we can define

$$c(\gamma_1,\gamma_2)=g_{\gamma_1}g_{\gamma_2}g_{\gamma_1\gamma_2}^{-1}\in E^{\times}.$$

In fact, *c* is a 2-cocycle, and its class in H^2 is independent of choice. Therefore, we get a map $Br(E/F) \rightarrow H^2(G, E^{\times})$, and it's an isomorphism.

Remark 17.9: We can interpret the definition of *c* as follows. The set of isomorphisms $A \otimes_F E \cong \operatorname{Mat}_n(E)$ form a $\operatorname{PGL}_n(E)$ -torsor over *G*. As discussed earlier, the isomorphism class of this torsor corresponds to an element $\tilde{c} \in H^1(G, \operatorname{PGL}_n(E))$, the nonabelian cohomology group. A short exact sequence of abelian groups with a *G*-action will produce a long exact sequence in cohomology. For

$$1 \to E^{\times} \to \operatorname{GL}_n(E) \to \operatorname{PGL}_n(E) \to 1$$

the first few terms of the sequence are still well-defined, even though the sequence involves two nonabelian groups. The class *c* is the image of \tilde{c} under the connecting homomorphism.

The injectivity of the map can be deduced from Hilbert's Theorem 90, which says that $H^1(G, \operatorname{GL}_n(E)) = 1$. (Hilbert originally considered the case n = 1 only.) An equivalent form of this statement is as follows: given an *n*-dimensional *E*-vector space V_E with a compatible *G*-action, there is an *F*-vector space V_F and a *G*-equivariant isomorphism $V_E = V_F \otimes_F E$.

17.4 Brauer groups of local fields

Theorem 17.10: Let *F* be a non-Archimedean local field, i.e. it's a finite extension of \mathbb{Q}_p or $\mathbb{F}_p((t))$ (in which case $F \cong \mathbb{F}_q((t))$). Then $\operatorname{Br}(F) \cong \mathbb{Q}/\mathbb{Z}$.

First, let us recall without proof some facts about non-Archimedean local fields. If *F* is such a field, we have a valuation $F^{\times} \to \mathbb{Z}$ satisfying v(ab) = v(a) + v(b) and $v(a + b) \ge \min(v(a), v(b))$; we can extend this to *F* by setting $v(0) = \infty$. WLOG we can assume that *v* is onto. Then there exists an element π with $v(\pi) = 1$, called a uniformizer. The elements *x* with $v(x) \ge 0$ form the ring of integers $O \subset F$, the elements *x* with $v(x) \ge 1$ form the unique maximal ideal $\mathfrak{m} = \pi O \subset O$, and the residue field $k = O/\pi O$ is finite. For all $x \in F^{\times}$, $x\pi^{-v(x)} \in O^{\times}$.

Definition 17.11: If E/F is a finite extension, then k_E/k_F is an extension of finite fields. Its degree $i_{E/F} = [k_E : k_F]$ is the **inertia degree** of the extension. The **ramification index** of the extension, $r = r_{E/F}$, is the integer such that $\pi_E^r \pi_F^{-1} \in O^{\times}$ where π_E, π_F are uniformizers of their respective valuations. Then

$$[E:F] = i_{E/F}r_{E/F}$$

since you can see these are both $\dim_{k_F}(O_E/\mathfrak{m}_E)$.

Remark 17.12: This also works if *E* is a skew field.

Definition 17.13: If r = 1, we say that E/F is **unramified**. In this case, E/F is Galois and $Gal(E/F) \cong Gal(k_E/k_F)$ (in particular, it is cyclic).

Proposition 17.14: Every central simple algebra over a local field F splits over an unramified extension.

Proof (Sketch). Let *D* be a central simple algebra over *F*. Then we can extend the valuation to D^{\times} , choose a uniformizer π_D where $v_D(\pi_D) = 1$, $O_D = \{x \in D \mid v_D(x) \ge 0\}$. We get a finite extension $k_D := O_D/\pi_D O_D$ over k_F (note that by Artin-Wedderburn theorem, k_D is a field), and

$$\dim_F D = d^2 = [k_D : k_F]r_{D/F}$$

where *d* is the degree of *D*. We also claim that $i_{D/F}, r_{D/F} \leq d$ (recall that $i_{D/F} := [k_D : k_F]$). To see this, it's enough to show the existence of commutative subfields E_1, E_2 in *D* with $i_{D/F} \leq [E_1 : F]$ and $r_{D/F} \leq [E_2 : F]$ (use Corollary 14.13). Let $E_1 = F(\alpha)$ where $\alpha \in O_D$ is such that $\alpha \mod \pi_D O_D$ generates k_D over k_F and $E_2 = F(\pi_D)$.

Therefore, $i_{D/F} = r_{D/F} = d = [E_1 : F]$. This shows that E_1/F is unramified and that it is a maximal commutative subfield in *D*. Thus it splits *D* (see Lemma 16.3) and is our desired extension.

Proposition 17.15: *If* E/F *is an unramified degree n extension of a non-Archimedean local field, then* $Br(E/F) = \mathbb{Z}/n\mathbb{Z}$.

Proof. We saw last time that for a cyclic extension, $\operatorname{Br}(E/F) \cong F^{\times}/\operatorname{Nm}(E^{\times})$. Since E/F is unramified, $\operatorname{Gal}(E/F) \cong \operatorname{Gal}(k_E/k_F)$ and every extension of finite fields is cyclic (the Galois group is generated by the Frobenius). For an unramified extension, $O_E^{\times} \twoheadrightarrow O_F^{\times}$; this follows from surjectivity of the associated graded maps $k_E^{\times} \twoheadrightarrow k_F^{\times}$ and $(1 + \pi^n O_E)/(1 + \pi^{n+1} O_E) \twoheadrightarrow (1 + \pi^n O_F)/(1 + \pi^{n+1} O_F)$, where $\pi = \pi_F$. The first map is identified with the norm and the second with the trace $k_E \to k_F$. Since $\operatorname{Nm}(\pi) = \pi^n$, we get that $\operatorname{Br}(E/F) = \mathbb{Z}/n\mathbb{Z}$.

Proof (of Theorem 17.10). Let F^{unr} be a maximal unramified extension of F. Then it contains a unique degree n subextension F_n/F for every n > 1 and

$$\operatorname{Br}(F) = \operatorname{Br}(F^{\operatorname{unr}}/F) = \lim_{\longrightarrow} \operatorname{Br}(F_n/F) = \lim_{\longrightarrow} \mathbb{Z}/n\mathbb{Z} = \mathbb{Q}/\mathbb{Z}.$$

Remark 17.16: The theorem allows us to formulate a version of the reciprocity law of Class Field Theory. Let k be a global field, i.e. a finite extension of \mathbb{Q} or $\mathbb{F}_p(t)$. For every valuation v, we get a corresponding local field k_v by completing k at v. Then we get a map

$$\operatorname{Br}(k) \to \prod_{v} \operatorname{Br}(k_{v})$$

and we claim that in fact

$$\operatorname{Br}(k) \hookrightarrow \bigoplus_{v} \operatorname{Br}(k_{v})$$

and this induces an isomorphism of Br(k) with the kernel of the sum map, i.e.

$$\operatorname{Br}(k) \cong \left\{ (b_v) \in \bigoplus_v \operatorname{Br}(k_v) | \sum b_v = 0 \right\} = \operatorname{ker}\left(\bigoplus_v \operatorname{Br}(k_v) \to \mathbb{Q}/\mathbb{Z} \right)$$

This is one of several equivalent forms of the reciprocity law of class field theory. For example, the corresponding identity for degree 2 central simple algebras over \mathbb{Q} , $\mathbb{H}_{a,b} = \mathbb{Q}\langle i, j \rangle / (i^2 = a, j^2 = b, ij = -ji)$ is essentially equivalent to quadratic reciprocity.

18.706 Noncommutative Algebra Spring 2023

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.