Lecture 17: Brauer Groups of Central Simple Algebras, Reduced Norm and Trace

17 April 13 - Brauer groups of central simple algebras, reduced norm and trace

17.1 Reduced norm and trace

We can generalize the determinant and trace to central simple algebras. Suppose A is a central simple algebra of degree d over k.

Proposition 17.1: There exist unique polynomial maps $\tau, \delta: A \rightarrow k$ so that for any field extension K / k such that A splits over K,

$$
\tau_{k}: A \otimes_{k} K \cong \operatorname{Mat}_{n}(K) \rightarrow K
$$

is the trace and

$$
\delta_{K}: A \otimes_{k} K \cong \operatorname{Mat}_{n(K)} \rightarrow K
$$

is the determinant. τ is called the reduced trace and δ is called the reduced norm.
Example 17.2: Let's take $A=\mathbb{H}$ and $k=\mathbb{R}$. Then $\tau: a+b i+c j+d k \mapsto 2 a$ and $\delta: a+b i+c j+d k \mapsto a^{2}+b^{2}+c^{2}+d^{2}$.
Proof. By the Artin-Wedderburn theorem, WLOG we can assume $|k|=\infty$ so that we can say that polynomials are determined by their values on k^{n}. Now the proof follows from Galois descent and the fact that Tr , det are invariant under all automorphisms of the matrix ring. For a fixed extension $K / k, \tau, \delta$ satisfying the compatibility with Tr , det are unique; moreover, they will satisfy the same compatibility for any extension $K^{\prime} \supset K$, and also for $K^{\prime \prime} \subset K$ if K splits A. So we only have to construct τ, δ satisfying the compatibility for a fixed extension splitting A.
Choose a finite Galois extension K / k which splits A and choose an isomorphism $A \otimes K \cong \operatorname{Mat}_{n}(K)$. Let $G=$ $\operatorname{Gal}(K / k)$, it acts on $A \otimes K$ by acting on K. It suffices for us to show that det, Tr commute with the G-action, which will imply that they come from polynomial maps defined over k.
To see this, consider the action of G on $\operatorname{Mat}_{n}(K)$, which is different from the action above; say it sends $a \mapsto \gamma a$. Then the map $a \mapsto \gamma^{-1}(\gamma a)$ is a K-linear automorphism on $\operatorname{Mat}_{n}(K)$, hence given by conjugation by some element $g_{\gamma} \in \mathrm{GL}_{n}(K)$. Since det is conjugation-invariant, we have

$$
\operatorname{det}(a)=\operatorname{det}\left(\gamma^{-1}\left({ }^{\gamma} a\right)\right) \Rightarrow \operatorname{det}(\gamma(a))=\operatorname{det}\left({ }^{\gamma} a\right)=\gamma(\operatorname{det} a) .
$$

The same argument works for trace. So we are done.
From these, we see that $\tau(a b)=\tau(b a), \delta(a b)=\delta(a) \delta(b)$, and $\delta(1)=1$.

$17.2 \quad C_{1}$ fields

Definition 17.3: We say a field is a quasi-closed or C_{1} if any homogeneous polynomial of degree d in $n>d$ variables has a nontrivial zero. More generally, we say a field is C_{k} if any homogeneous polynomial of degree d in $n>d^{k}$ variables has a nontrivial zero.

Proposition 17.4: If F is $C_{1}, \operatorname{Br}(F)=0$.
Proof. Suppose not. Then let D be a skew field finite over F with $Z(D)=F$. Then δ (the reduced norm) is a degree d polynomial but $\operatorname{dim}_{F}(D)=d^{2}$, so δ has a nontrivial zero. But δ is invertible, a contradiction.

Lemma 17.5: Finite extensions of C_{1} fields are also C_{1}.

Proof. Suppose F is C_{1} and E / F is a degree m extension. Let P be a polynomial of degree d in n variables over E. By choosing a basis for E over F, we can identify $E^{n}=F^{n m}$. Then consider the polynomial

$$
\tilde{P}(x):=\operatorname{Nm}_{E / F}(P(x))
$$

this is a degree $m d$ polynomial in $m n$ variables over F, and it has a nontrivial zero iff P does.

Theorem 17.6 (Chevalley-Warning): Finite fields are C_{1} fields.
Proof. The previous lemma shows that it's enough to consider \mathbb{F}_{p}. Then the result follows from the following fact: if P is a homogeneous polynomial in n variables of degree $n>d$ over \mathbb{F}_{p}, the number of zeroes is $0 \bmod p$. Since there is at least one zero (the trivial one), there are at least p zeroes. So it remains to prove this fact.
We know that for $a \in \mathbb{F}_{p}, a^{p-1}$ is either 0 or 1 (if $a \neq 0$). So

$$
\sum_{a_{1}, \ldots, a_{n} \in \mathbb{F}_{p}}\left(1-P\left(a_{1}, \ldots, a_{n}\right)^{p-1}\right) \equiv \# \text { zeroes of } P(\bmod p)
$$

Every monomial in this sum (considered as a polynomial in a_{i}) will have at least one variable that has exponent less than $p-1$ because the polynomial has degree $d(p-1)$ and has n variables (we use that $d(p-1)<n(p-1)$ because $d<n$). Summing over that variable and using that $\sum_{a} a^{m}=0$ when $0 \leqslant m<p-1$, we see that the whole sum is 0 .

Remark 17.7: This gives another proof of Theorem 14.15.

Theorem 17.8 (Tsen's Theorem): Suppose k is algebraically closed. Then the field $F=k(t)$ is C_{1}.
Proof (Sketch). Clear denominators so that WLOG $P \in k[t]\left[x_{1}, \ldots, x_{n}\right]$. Then use that a system of m homogeneous polynomial equations over k in n variables has a nontrivial solution if $n>m$ (this is true because k is algebraically closed). If K is the maximum degree (in t) of a coefficient of P, look at a solution of degree r. Then you get $d r+K+1$ equations in $(r+1) n$ variables and $d<n$ implies $d r+K+1<(r+1) n$ when $r \gg 0$.

17.3 Second approach to the cohomological description of Brauer group

Let A be a central simple algebra over F and E / F a finite Galois extension. As described in the proof of Proposition 17.1 when you fix an isomorphism $A \otimes_{F} E \cong \operatorname{Mat}_{n}(E)$, you get two G-actions, $\gamma(a)$ and ${ }^{\gamma} a$, that differ by conjugation by $g_{\gamma} \in \mathrm{GL}_{n}(E)$. This g_{γ} is determined up to multiplication by a scalar matrix, so $g_{\gamma_{1}} g_{\gamma_{2}}$ and $g_{\gamma_{1} \gamma_{2}}$ have the same image in $\mathrm{PGL}_{n}(E)=\operatorname{Aut}\left(\operatorname{Mat}_{n}(E)\right.$) (but lifting to GL_{n} requires a choice). So we can define

$$
c\left(\gamma_{1}, \gamma_{2}\right)=g_{\gamma_{1}} g_{\gamma_{2}} g_{\gamma_{1} \gamma_{2}}^{-1} \in E^{\times} .
$$

In fact, c is a 2-cocycle, and its class in H^{2} is independent of choice. Therefore, we get a map $\operatorname{Br}(E / F) \rightarrow H^{2}\left(G, E^{\times}\right)$, and it's an isomorphism.

Remark 17.9: We can interpret the definition of c as follows. The set of isomorphisms $A \otimes_{F} E \cong \operatorname{Mat}_{n}(E)$ form a $\mathrm{PGL}_{n}(E)$-torsor over G. As discussed earlier, the isomorphism class of this torsor corresponds to an element $\tilde{c} \in H^{1}\left(G, \mathrm{PGL}_{n}(E)\right)$, the nonabelian cohomology group. A short exact sequence of abelian groups with a G-action will produce a long exact sequence in cohomology. For

$$
1 \rightarrow E^{\times} \rightarrow \mathrm{GL}_{n}(E) \rightarrow \mathrm{PGL}_{n}(E) \rightarrow 1
$$

the first few terms of the sequence are still well-defined, even though the sequence involves two nonabelian groups. The class c is the image of \tilde{c} under the connecting homomorphism.
The injectivity of the map can be deduced from Hilbert's Theorem 90, which says that $H^{1}\left(G, \mathrm{GL}_{n}(E)\right)=1$. (Hilbert originally considered the case $n=1$ only.) An equivalent form of this statement is as follows: given an n-dimensional E-vector space V_{E} with a compatible G-action, there is an F-vector space V_{F} and a G-equivariant isomorphism $V_{E}=V_{F} \otimes_{F} E$.

17.4 Brauer groups of local fields

Theorem 17.10: Let F be a non-Archimedean local field, i.e. it's a finite extension of \mathbb{Q}_{p} or $\mathbb{F}_{p}((t))$ (in which case $\left.F \cong \mathbb{F}_{q}((t))\right)$. Then $\operatorname{Br}(F) \cong \mathbb{Q} / \mathbb{Z}$.

First, let us recall without proof some facts about non-Archimedean local fields. If F is such a field, we have a valuation $F^{\times} \rightarrow \mathbb{Z}$ satisfying $v(a b)=v(a)+v(b)$ and $v(a+b) \geqslant \min (v(a), v(b))$; we can extend this to F by setting $v(0)=\infty$. WLOG we can assume that v is onto. Then there exists an element π with $v(\pi)=1$, called a uniformizer. The elements x with $v(x) \geqslant 0$ form the ring of integers $O \subset F$, the elements x with $v(x) \geqslant 1$ form the unique maximal ideal $\mathrm{m}=\pi O \subset O$, and the residue field $k=O / \pi O$ is finite. For all $x \in F^{\times}, x \pi^{-v(x)} \in O^{\times}$.

Definition 17.11: If E / F is a finite extension, then k_{E} / k_{F} is an extension of finite fields. Its degree $i_{E / F}=\left[k_{E}: k_{F}\right]$ is the inertia degree of the extension. The ramification index of the extension, $r=r_{E / F}$, is the integer such that $\pi_{E}^{r} \pi_{F}^{-1} \in O^{\times}$where π_{E}, π_{F} are uniformizers of their respective valuations. Then

$$
[E: F]=i_{E / F} r_{E / F}
$$

since you can see these are both $\operatorname{dim}_{k_{F}}\left(O_{E} / \mathfrak{m}_{E}\right)$.

Remark 17.12: This also works if E is a skew field.
Definition 17.13: Ifr $=1$, we say that E / F is unramified. In this case, E / F is Galois and $\operatorname{Gal}(E / F) \cong \operatorname{Gal}\left(k_{E} / k_{F}\right)$ (in particular, it is cyclic).

Proposition 17.14: Every central simple algebra over a local field F splits over an unramified extension.
Proof (Sketch). Let D be a central simple algebra over F. Then we can extend the valuation to D^{\times}, choose a uniformizer π_{D} where $v_{D}\left(\pi_{D}\right)=1, O_{D}=\left\{x \in D \mid v_{D}(x) \geqslant 0\right\}$. We get a finite extension $k_{D}:=O_{D} / \pi_{D} O_{D}$ over k_{F} (note that by Artin-Wedderburn theorem, k_{D} is a field), and

$$
\operatorname{dim}_{F} D=d^{2}=\left[k_{D}: k_{F}\right] r_{D / F}
$$

where d is the degree of D. We also claim that $i_{D / F}, r_{D / F} \leqslant d$ (recall that $i_{D / F}:=\left[k_{D}: k_{F}\right]$). To see this, it's enough to show the existence of commutative subfields E_{1}, E_{2} in D with $i_{D / F} \leqslant\left[E_{1}: F\right]$ and $r_{D / F} \leqslant\left[E_{2}: F\right]$ (use Corollary 14.13). Let $E_{1}=F(\alpha)$ where $\alpha \in O_{D}$ is such that $\alpha \bmod \pi_{D} O_{D}$ generates k_{D} over k_{F} and $E_{2}=F\left(\pi_{D}\right)$.

Therefore, $i_{D / F}=r_{D / F}=d=\left[E_{1}: F\right]$. This shows that E_{1} / F is unramified and that it is a maximal commutative subfield in D. Thus it splits D (see Lemma 16.3) and is our desired extension.

Proposition 17.15: IfE/F is an unramified degree n extension of a non-Archimedean local field, then $\operatorname{Br}(E / F)=$ $\mathbb{Z} / n \mathbb{Z}$.

Proof. We saw last time that for a cyclic extension, $\operatorname{Br}(E / F) \cong F^{\times} / \operatorname{Nm}\left(E^{\times}\right)$. Since E / F is unramified, $\operatorname{Gal}(E / F) \cong$ $\operatorname{Gal}\left(k_{E} / k_{F}\right)$ and every extension of finite fields is cyclic (the Galois group is generated by the Frobenius). For an unramified extension, $O_{E}^{\times} \rightarrow O_{F}^{\times}$; this follows from surjectivity of the associated graded maps $k_{E}^{\times} \rightarrow k_{F}^{\times}$and $\left(1+\pi^{n} O_{E}\right) /\left(1+\pi^{n+1} O_{E}\right) \rightarrow\left(1+\pi^{n} O_{F}\right) /\left(1+\pi^{n+1} O_{F}\right)$, where $\pi=\pi_{F}$. The first map is identified with the norm and the second with the trace $k_{E} \rightarrow k_{F}$. Since $\operatorname{Nm}(\pi)=\pi^{n}$, we get that $\operatorname{Br}(E / F)=\mathbb{Z} / n \mathbb{Z}$.

Proof (of Theorem 17.10). Let F^{unr} be a maximal unramified extension of F. Then it contains a unique degree n subextension F_{n} / F for every $n>1$ and

$$
\operatorname{Br}(F)=\operatorname{Br}\left(F^{\mathrm{unr}} / F\right)=\underset{\rightarrow}{\lim } \operatorname{Br}\left(F_{n} / F\right)=\underset{\rightarrow}{\lim } \mathbb{Z} / n \mathbb{Z}=\mathbb{Q} / \mathbb{Z}
$$

Remark 17.16: The theorem allows us to formulate a version of the reciprocity law of Class Field Theory. Let k be a global field, i.e. a finite extension of \mathbb{Q} or $\mathbb{F}_{p}(t)$. For every valuation v, we get a corresponding local field k_{v} by completing k at v. Then we get a map

$$
\operatorname{Br}(k) \rightarrow \prod_{v} \operatorname{Br}\left(k_{v}\right)
$$

and we claim that in fact

$$
\operatorname{Br}(k) \hookrightarrow \bigoplus_{v} \operatorname{Br}\left(k_{v}\right)
$$

and this induces an isomorphism of $\operatorname{Br}(k)$ with the kernel of the sum map, i.e.

$$
\operatorname{Br}(k) \cong\left\{\left(b_{v}\right) \in \bigoplus_{v} \operatorname{Br}\left(k_{v}\right) \mid \sum b_{v}=0\right\}=\operatorname{ker}\left(\bigoplus_{v} \operatorname{Br}\left(k_{v}\right) \rightarrow \mathbb{Q} / \mathbb{Z}\right)
$$

This is one of several equivalent forms of the reciprocity law of class field theory. For example, the corresponding identity for degree 2 central simple algebras over $\mathbb{Q}, \mathbb{H}_{a, b}=\mathbb{Q}\langle i, j\rangle /\left(i^{2}=a, j^{2}=b, i j=-j i\right)$ is essentially equivalent to quadratic reciprocity.

MIT OpenCourseWare
https://ocw.mit.edu

18.706 Noncommutative Algebra

Spring 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

