Lecture 18: Azumaya Algebras

18 April 18 - Azumaya algebras

18.1 Azumaya algebras

Let *R* be a commutative ring and *A* a ring over *R* that is finitely generated and projective (equivalently, locally free) as an *R*-module. Then the rank is a locally constant function on Spec(*R*). Assume this function is nowhere vanishing. It will also be occasionally convenient for us to assume that the rank is constant. Let us use the notation $A_S := S \otimes_R A$ for a homomorphism of rings $R \to S$.

Lemma 18.1: For *R*, *A* as above the following are equivalent:

- a) The map $A \otimes_k A^{\text{op}} \to \text{End}_R(A)$ is an isomorphism.
- b) For every algebraically closed field k and a homomorphism $R \to k, A_k \cong Mat_n(k)$.
- c) For every maximal ideal $\mathfrak{m} \subset R$, let $k = R/\mathfrak{m}$; the ring A_k is a central simple algebra over k.

Proof. We check that $a \Rightarrow b \Rightarrow c \Rightarrow a$.

 $a) \Rightarrow b$: since A is locally free, for every $R \rightarrow S$, $\operatorname{End}_S(A_S) = (\operatorname{End}_R(A))_S$. Thus property a) is inherited by base change and A_k is a finite-dimensional central simple k-algebra. Hence it's isomorphic to $\operatorname{Mat}_n(k)$ when k is algebraically closed.

 $b \rightarrow c$: since $A_k \otimes_k \bar{k} \cong \operatorname{Mat}_n(\bar{k}), A_k$ is a central simple algebra.

c) \Rightarrow a): If $\varphi: M \to N$ is a map of finitely generated modules over a commutative ring where N is projective that induces an isomorphism $M_k \to N_k$ for every $k = R/\mathfrak{m}$, then it is an isomorphism. This is because Nakayama's Lemma implies φ is surjective, so N projective implies $M \cong N \oplus \ker \varphi$; then another application of Nakayama's Lemma shows that ker $\varphi = 0$. Applying this fact to $M = A \otimes_R A^{\mathrm{op}}$, $N = \operatorname{End}_R(A)$, we get the claim.

Definition 18.2: *A ring A satisfying the equivalent conditions of the lemma is called an Azumaya algebra over R*.

Example 18.3: Let *R* be a Noetherian domain and *A* an *R*-algebra finitely generated as an *R*-module. Let *F* be the field of fractions of *R*, and suppose R_F is a central simple algebra over *F*. Then, for a finite localization $S = R_{(r)}$ ($r \in R$), the ring A_S is an Azumaya algebra over *S*.

Example 18.4 (Differential operators in char *p*): Let *k* be a characteristic *p* field and $A = k\langle x, y \rangle / (yx - xy - 1)$ be the Weyl algebra. Then x^p , y^p are central in *A* since $ad(x^p) = ad(x)^p$ while $ad(x)^2(y) = [x, 1] = 0$, likewise for *y*. We claim that *A* is an Azumaya algebra over $R = k[x^p, y^p]$.

One can check that $\{x^m y^n \mid m, n \in \mathbb{Z}_{\geq 0}\}$ form a *k*-basis in *A*, so *A* is a free module over $k[x^p, y^p]$ with basis $x^m y^n$, $m, n \in \{0, ..., p-1\}$. To check that it's an Azumaya algebra, it suffices to check this holds after an extension of scalars to \bar{k} , so WLOG we can assume that $k = \bar{k}$. Then by the Hilbert Nullstellensatz, maximal ideals in *R* are generated by $x^p - a, y^p - b$ for $a, b \in k$. Then

$$A_{a,b} := A/(x^p - a, y^p - b) \cong \operatorname{Mat}_p(k) = \operatorname{End}_k(k[x]/x^p)$$

where the isomorphism sends x to "multiplication by $x + \alpha$ " and y to $\frac{\partial}{\partial x} + \beta$, $\alpha^p = a$, $\beta^p = b$.

Example 18.5 (Quantum torus): Let $A = \mathbb{C}\langle z, z^{-1}, t, t^{-1} \rangle / (zt = qtz)$ for $q \in \mathbb{C}^{\times}$ fixed constant. If q is a primitive order *l* root of unity, then A is an Azumaya algebra over $\mathbb{C}[z^l, z^{-l}, t^l, t^{-l}]$; the proof is similar to the previous example.

Azumaya algebras allow us to define the notion of a Brauer group over a ring. In particular, if *A*, *B* are Azumaya algebras over *R*, then so is $A \otimes_R B$.

Definition 18.6: The **Brauer group** of a ring R is the set of Morita equivalence classes of Azumaya algebras over R; $[A] + [B] = [A \otimes_R B], -[A] = [A^{\text{op}}].$

For a homomorphism $R \to S$, we have a base change homomorphism $Br(R) \to Br(S)$, given by $A \mapsto A_S$; this is a homomorphism since A_S is Azumaya over S and $(A \otimes_R B)_S \cong A_S \otimes_S B_S$.

Remark 18.7: [A] = 0 iff $A \cong \text{End}_R(M)$ where *M* is a finitely generated projective constant rank module over *R*. This does not necessarily imply that $A \cong \text{Mat}_n(R)$ as in the field case.

18.2 Cohomological description of the Brauer group over a ring - preliminary discussion

Recall that for a central simple algebra A over a field F, we proved that

- a) A is split over some algebraic extension of F.
- *b*) We can choose such an extension to be separable.
- c) For a fixed splitting Galois extension E/F, the action of G = Gal(E/F) on $A \otimes_F E \cong \text{Mat}_n(E)$ leads to the cohomological description of the Brauer group.

These statements can be generalized to a Noetherian commutative ring *R*.

18.3 Faithfully flat ring homomorphisms and faithfully flat descent

Let *A* be an Azumaya algebra over a Noetherian commutative ring *R*. The obvious analog of point 1 is some *S* with a map $R \rightarrow S$ such that A_S splits. However, in the ring setting, we can lose information from the base change map; for example, $R = S_1 \times S_2 \rightarrow S = S_1$. So we need an additional condition on *S*.

One that works well is that *S* is **faithfully flat** over *R*.

Definition 18.8: A ring S is *flat* over R if the functor $M \mapsto M_S$, R-Mod \rightarrow S-Mod is exact. It is *faithfully flat* over R if it is conservative, i.e., $M \rightarrow N$ is an isomorphism iff $M_S \rightarrow N_S$ is an isomorphism.

Remark 18.9: If *S* is flat, the conservativity condition is equivalent to $M_S \neq 0$ for $M \neq 0$.

Definition 18.10: Let M be an R-module. The **descent data** for M is a module $N = M_S$ over S, and an isomorphism ι between the base changes of N to $S \otimes_R S$ such that the three base changes to $S \otimes_R S \otimes_R S$ form a commutative diagram.

Proposition 18.11: If $R \to S$ is faithfully flat, the functor sending M to its descent data is an equivalence.

Remark 18.12: There is a parallel algebraic geometry statement. Notice that $S_1 \otimes_R S_2$ is the coproduct in the category of commutative rings, and Aff = Comm^{op} (affine schemes) where *R* corresponds to Spec(*R*), so Spec($S_1 \otimes_R S_2$) = Spec(S_1) ×_{Spec(*R*)} Spec(S_2), the fiber product.

The descent data is parallel to how to define a vector bundle or sheaf on *X* by gluing the corresponding data for an open covering $X = \bigcup U_i$. Replace Spec(*R*) by *X*, Spec(*S*) by $U = \bigsqcup U_i$, and $S \otimes_R S$ is replaced by the disjoint union of $U_i \cap U_j$. The compatibility condition for base changes to $S \otimes_R S \otimes_R S$ correspond to checking that the data for $U_i \cap U_j \cap U_k$ makes sense.

Noetherian rings have a faithful flatness criterion.

Definition 18.13: A homomorphism of commutative rings $R \to S$ is **formally smooth** if for every commutative ring $T = \tilde{T}/I$ with $I^2 = 0$ and compatible maps $R \to \tilde{T}$, $S \to T$, you can lift to $S \to \tilde{T}$.

Example 18.14: Suppose *R*, *S* are finitely generated *k*-algebras with *k* a field, T = k, $\tilde{T} = k[t]/t^2$. Then I = (t). We have maps $R \to k[t]/t^2$ and $S \to k$, and so also a map $R \to k$, so we have maximal ideals $\mathfrak{m}_S \subset S$, $\mathfrak{m}_R \subset R$ with residue field *k*. Extending a map $R \to k$ to a homomorphism to $k[t]/t^2$ is equivalent to specifying a vector in $(\mathfrak{m}_R/\mathfrak{m}_P^2)^*$, i.e. the **tangent vector** to Spec(*R*) at the corresponding point.

So formal smoothness implies that the map on tangent spaces induced by $R \rightarrow S$ is onto, a condition appearing in the definition of submersion in differential geometry.

Now suppose that *R* is Noetherian and *S* is finitely generated over *S*. If *S* is formally smooth over *R*, then it is flat over *R*. Moreover, if the map on *k*-points $Hom(S, k) \rightarrow Hom(R, k)$ is onto for every algebraically closed field *k*, then *S* is faithfully flat.

18.4 Universal splitting

Let *A* be an Azumaya algebra over *R* of constant rank d^2 . Then we can construct an example of a faithfully flat ring *S* splitting *R*.

Theorem 18.15:

- a) Consider the functor F sending a commutative R-ring S to the set of isomorphisms $A_S \cong \text{Mat}_d(S)$. This functor is representable and is represented by a ring S_{univ} finitely generated over R.
- b) S_{univ} is formally smooth over R. If R is Noetherian, it is faithfully flat over R.

Proof. Recall that *A* is a projective module over *R* (of rank d^2). So $A \cong e(\mathbb{R}^N)$ as an *R*-module where $e \in Mat_N(\mathbb{R})$ is an idempotent.

First consider the functor sending *S* to the *S*-module isomorphisms $A_S \cong S^{d^2}$. If $A \cong e(\mathbb{R}^N)$; then such an isomorphism is equivalent to producing two matrices $i \in \operatorname{Mat}_{d^2,N}(S)$, $j \in \operatorname{Mat}_{N,d^2}(S)$ such that $ij = I_{d^2}$ and ji = e. These are degree 2 equations in the entries of *i*, *j*, while the requirement that the isomorphism is compatible with the algebra structure on $\operatorname{Mat}_d(S)$ is another collection of degree 2 equations on the matrix entries of *i*. So we can define S_{univ} as the quotient of the polynomial ring in $2Nd^2$ variables over *S* by the ideal generated by these degree 2 equations.

To check that S_{univ} is formally smooth over R, we show that if $A_T \cong \text{Mat}_n(T)$, then $A_{\tilde{T}} \cong \text{Mat}_n(\tilde{T})$ where $T = \tilde{T}/I, I^2 = 0$, since that's what it means to be able to lift to a map $S_{\text{univ}} \to \tilde{T}$. Consider a rank 1 idempotent $e \in \text{Mat}_n(T)$ (without loosing the generality we can assume that $e = e_{11}$). We will use the same notation for the corresponding element on A_T . So A_T maps isomorphically to $\text{End}_T(A_T e)$. We can lift e to $\tilde{e} \in A_{\tilde{T}}$ such that $\tilde{e} \mod I = e$. Then

$$A_{\tilde{T}} \to \operatorname{End}_{\tilde{T}}(A_{\tilde{T}}e)$$

is a map of free \tilde{T} -modules of rank d^2 that is an isomorphism modulo I, hence an isomorphism. Hence, S_{univ} is flat over R when R is Noetherian. To check it is faithful, we need to check that $A_k \cong \text{Mat}_d(k)$ for every algebraically closed field k, but this is one of the properties of Azumaya algebras.

18.5 Rewriting cochain complex for $H^*(G, E^{\times})$

Let's rewrite the complex used to compute $H^*(G, E^{\times})$ for a finite Galois field extension E/F, G = Gal(E/F) in a way that can be generalized to Noetherian commutative rings. Recall that the *n*th term is $C^n = \text{Map}(G^n, E^{\times}) = (\prod_{G^n} E)^{\times}$. From Galois theory, $\prod_G E \cong E \otimes_F E$ (this is an isomorphism of algebras). By induction, $\prod_{G^n} E = E \otimes_F E \otimes_F \cdots \otimes_F E$ where there are n + 1 factors in the RHS. Thus

$$C^n = (E \otimes_F \cdots \otimes_F E)^{\times}$$

where there are n + 1 factors in the RHS.

18.706 Noncommutative Algebra Spring 2023

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.