Lecture 19: Brauer Group of a Ring Continued, Localization

19 April 20 - Brauer group of a ring cont., localization

19.1 Amitsur cohomology

Let F: Comm — Ab be a functor. We can generalize the complex from the previous lecture to F, though we will
mostly use R — G,,(R) = R*. Given a homomorphism R — S we can form the Amitsur complex as follows:

Write Sp" = S ®g - - - ® S with n factors in the RHS. Set

n+l1

C" = F(SE™), d,, = Z(—l)kF(ik): cr —
k=0

where i : S2"*! — §%7*2 5 the insertion map that puts a 1 in the kth place, i.e.
R R p p p
H® @Sy 5H® B ®I® - ® sy

We denote its cohomology by Hé/R(F).
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Example 19.1: Let R = F, S = E with E/F a finite Galois extension and let the functor be G,,. Recall that there
is an isomorphism

(E?nﬂ)x N

1_[ E) = Map(G™, EX).

Gn

Choosing the isomorphism amounts to defining pairwise distinct homomorphisms

hg,...g, (X0 ® X1 ® -+ ® Xp) = x0g1(x1)g192(x2) * - g1 * * * Gn ()

where hy, ..., : E?”“ — E. This commutes with i since if you let xx = 1, you skip the (k + 1)th factor and you
get
hgl...gn (xo X1 Qx(-1 Q1 QX(11 ®--- ® Xn) = hgl,.~,gi-z,gi-1gi,gi+1,m,gn (X() ®: - xn).

Hence the Amitsur complex is the standard complex computing H* (G, EX).

Remark 19.2: The algebraic geometry interpretation: Since Comm® = Aff, F can also be interpreted as a
contravariant functor Aff — Ab. Then S — R corresponds to Spec(R) — Spec(S); consider the analogous
construction where you replace an affine scheme by a topological space, so we can instead consider morphisms
U — X where U is the disjoint union | | U; of open subsets in an affine covering of X. If the assignment of an
abelian group to each U; — X comes from a sheaf ¥ on X, we recover the Cech complex for H* (X, 7).

19.2 Relationship between Brauer group and Amitsur cohomology

We sketch how to correspond Azumaya algebras with a class in the second cohomology. Let A be an Azumaya al-
gebra over R and choose an isomorphism Ag = Mat, (S). Then we have two isomorphisms AS}?Z =~ Mat, (S?Z), and
again, their ratio will be an Amitsur 1-cocycle ¢ with nonabelian coefficients that is independent of the choice of iso-
morphism up to scaling. Hence it gives an element in H; IR (PGL,), where PGL,, is the functor R — PGL,(R) (again,

these will be nonabelian groups). Notice that PGL,, (R) = Aut(Mat,(R)) is an algebraic group and the homomorphism
GL,(R)/R* — PGL,(R) may not be surjective (unlike in the field case).

Let’s just assume that we can lift ¢ to GL,,, e.g. the map GL,(S ®r S) — PGL,(S ®r S) is surjective, so c lifts to
¢ € GL,(S ®r S). Then we can get a cocycle in Hg/R(Gm) by the same procedure as in the field case: consider the
differential of ¢, which takes values in E*, giving the desired cocycle.

Remark 19.3: In fact, one can find a faithfully flat S for which a lift ¢ exists, but the proof is beyond the scope
of the lecture. Then you can define Hf’1 4(R.Gp) (A for Amitsur) as colimg Hé /R where the colimit is over all

faithfully flat S. Restricting to étale S, you get H, ét 4(R,Gp), and this coincides with the étale cohomology of
Spec(R).
We have injective maps from Br(R) into H; , (R, G,) and HZ, , (R, Gp,).

19.3 Final remarks on Brauer group

First, we describe how to generalize separable splittings to rings. It turns out that for an Azumaya algebra A over R,
we can always find an étale, faithfully flat homomorphism R — S such that Ag splits.

Definition 19.4: A ring homomorphism R — S is etale if for every commutative ring T = T/I with I? = 0 and
compatible maps R — T, S — T, there exists a unique compatible map S — T.

Exercise : A finite field extension is étale iff it is separable.

Theorem 19.5: Let R be a (formally) smooth finitely generated commutative domain over an algebraically closed
field and F = Frac(R). Then Br(R) < Br(F).
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Proof (Sketch). The proof involves an object called the Brauer-Severi variety (to be denoted by B). We need the
notion of a line bundle (a locally free coherent sheaf of rank 1) and the fact that for a smooth variety X over a
field and U C X an open subvariety, every line bundle on U can be extended to one on X. This follows from the
correspondence between line bundles and divisors and the fact that the closure of a divisor on U is a divisor on X.
We also need the concept of an algebraic group action on an algebraic variety and the quotient by such an action.
Let A be an Azumaya algebra on X = Spec(R) and S = Syniv be the universal splitting ring. Then G = PGL,, acts
on Y = Spec(S) so that Y/G = X. Recall that G also acts on P*~!. Set

B:=P"'xY)/G.

Thus B — X and every geometric fiber of this map is isomorphic to P*~!. Then one can check that A is split iff
there exists a line bundle L on B whose restriction to a geometric fiber is isomorphic to the line bundle O(1) on
P"~1 If Af splits then there exists a nonempty open U C X such that Ay splits, so A splits. O

19.4 Localization

Let R be a ring and S a multiplicatively closed subset,ie. 1 € Sand a,b € S = ab € S.

Definition 19.6: The localization Rs of R at S is the universal ring receiving a homomorphism from R sending S
to invertible elements. That is,

Hom(Rs, T) = {f: R — T| f(s) is invertible Vs € S} .
The Yoneda Lemma shows that Rg is unique up to unique isomorphism if it exists.

Lemma 19.7: Rg = R{ts)ses/(tss = stg = 1).

19.5 Ore conditions

Unlike in the commutative ring case, it is hard to say much about Rs from this construction; for example, we don’t
even know if Rs is the zero ring. We can impose additional conditions on S to give Rs an explicit description.

Definition 19.8: Let S C R be a multiplicative subset. The (right) Ore conditions are

e (O1)Foralla € R,s € S, thenaS N sR + @.
« (O2)Foralla e R s €S, ifsa=0, then there existst € S such that at = 0.

If S satisfies O1, it is called a right Ore set. If S satisfies O1 and O2, it is called a right reversible or right
denominator set. There are analogous definitions for left everything.

Remark 19.9: O1 allows us to pull denominators of fractions to the right: if aS N sR # @, then at = sb for
t € S,b € R. So using formal inverses, s"'a = bt~ 1.

Using O1 and 02, then Rs will consist of pairs (g, s) € Rx S modulo the equivalence that (a,s) ~ (a’,s’) if there exist
u,u’ € R such that
au=du,su=s'u €8S.
That is,
as7! = (au)(su) ™t = (du)(s'u) L =d' (s) L

This has a ring structure where a — (a, 1) is a ring homomorphism.

Remark 19.10: Localization of a ring or a module can also be presented as a filtered colimit. We can create a
diagram category D where the objects are S and Hom(s, t) = {u | su = t} and composition is given by v ou = uw.
Then if O1 and O2 both hold, then D is filtered. Moreover, Rs is the filtered colimit limp R. This shows that
localization is exact because filtered colimits are (for abelian groups); also, it comes with the forgetful functor.
We will prove this next lecture.
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