Lecture 21: Goldie Rank and Goldie Theorem

21 April 27 - Goldie rank and Goldie theorem

21.1 More on essential modules

Corollary 21.1: A module M has no proper essential submodules iff it is semisimple.

Proof. We proved that a module M is semisimple iff every submodule N has a direct complement. So if $N \subset M$, we know it has an essential complement N' such that $N \oplus N'$ is essential. If M has no proper essential submodules, then $N \oplus N' = M$ and M is semisimple. If M is semisimple, every submodule's direct complement doesn't intersect it, so there are no proper essential submodules.

Lemma 21.2:

- a) If $M \supset N \supset P$ with N essential in M and P essential in N, then P is essential in M.
- b) The preimage of an essential submodule is essential.
- c) If $N_1 \subset M_1, N_2 \subset M_2$ are essential, then $N_1 \oplus N_2 \subset M_1 \oplus M_2$ is essential.
- *Proof.* a) If $S \subset M$ has nonzero intersection with N (use that $N \subset M$ is essential), then $S \cap N \subset N$ has nonzero intersection with P (use that $P \subset N$ is essential).
 - b) Let $\varphi: M \to N$ and $E \subset N$ essential. Suppose $V \subset M$ is a nonzero submodule. Then either $V \subset \ker(\varphi)$ or $\varphi(V)$ is nonzero. If $V \subset \ker(\varphi), V \subset \varphi^{-1}(E)$. If $\varphi(V) \neq 0$, then $\varphi(V) \cap E \neq 0$, so $V \cap \varphi^{-1}(E) \neq 0$.
 - c) By a), it's enough to consider $M_1 = N_1$. Then $M_1 \oplus N_2$ is the preimage of N_2 under the projection $M_1 \oplus M_2 \twoheadrightarrow M_2$, so it is essential by b).

21.2 Goldie rank

Definition 21.3: A module *M* has *finite Goldie rank* if it does not contain an infinite sum of nonzero submodules.

Example 21.4: If *M* is Noetherian, it has a finite Goldie rank. In fact, one can restate the finite Goldie rank condition as the condition that split increasing chains of submodules should stabilize, where a chain of submodules M_i splits if M_i has a direct complement in M_{i+1} for all *i*.

Proposition 21.5: A finite Goldie rank module contains an essential submodule which is a finite sum of uniform submodules.

Proof. Suppose for contradiction that M does not contain such an essential submodule. Then M is not uniform, so it has a nonessential submodule N_1 with essential complement C_0 . Then if both N_1, C_0 contain essential submodules E_1, E_2 respectively, then $E_1 \oplus E_2$ is essential in M. So WLOG suppose C_0 does not contain an essential submodule. Then repeat the same argument for C_0 ; we get two submodules N_2, C_1 where $N_2 \oplus C_1 \subset C_0$ and C_1 does not contain an essential submodule. Thus by induction we get C_1, C_2, \ldots where $C_i \supset N_i \oplus C_{i+1}$. Hence $N \supset N_1 \oplus N_2 \oplus \cdots$, contradicting the assumption.

Theorem 21.6: Suppose *M* has finite Goldie rank and contains $E = \bigoplus_{i=1}^{m} U_i$ an essential sum of uniform submodules. If $M \supset N = \bigoplus_{i=1}^{n} N_i$ with $N_i \neq 0$, then $n \leq m$. If m = n, then *N* is essential and each N_i is uniform.

Proof. First, $N' := \bigoplus_{i=2}^{n} N_i$ is not essential. then we claim that $N' \cap U_i = 0$ for some *i*. Otherwise, $N' \cap U_i \neq 0$ is essential in U_i , so by the lemma $\bigoplus_{i=1}^{m} (N' \cap U_i)$ is essential in *M* and *N'* is essential in *M*.

WLOG say that $N' \cap U_1 = 0$. Then $U_1 \oplus N_2 \oplus \cdots \oplus N_n \subset M$. Continuing inductively, with possible reindexing, $U_1 \oplus \cdots \oplus U_i \oplus N_{n-i} \oplus \cdots \oplus N_n \subset M$. Therefore, $n \leq m$.

If m = n, then N is essential. If not, we'd have an essential complement N' and $N \oplus N'$ would be a sum of n + 1 nonzero submodules, contradiction. Likewise, each N_i is uniform: otherwise, it would have a nonessential submodule N'_i with essential complement N''_i , so we would again get a direct sum of n + 1 submodules.

Corollary 21.7: If *M* has finite Goldie rank *n*, then every submodule in *M* with the same Goldie rank *n* is essential.

Corollary 21.8: The Goldie rank can also be defined as the maximal number of $M_i \neq 0 \subset M$ such that $\bigoplus_i M_i \subset M$.

Example 21.9: For semisimple modules, the Goldie rank is the number of simple summands.

21.3 Regular elements in essential ideals

Remark 21.10: Suppose $S \subset R$ consists only of regular elements. Then the localization of an essential (resp. uniform) ideal at *S* is essential (resp. uniform).

Theorem 21.11: An essential right ideal in a semi-prime, right Noetherian ring contains a regular element.

This will imply the first statement in Goldie's theorem: let *S* be the regular elements. Given $s \in S$, $sR \cong R$ so it has the same Goldie rank as *R* (as a right module over itself) and is essential in *R* (use Corollary 21.7). Hence, for any $a \in R$, the preimage of *sR* under the map $x \mapsto ax$ is an essential right ideal (Lemma 21.2) and contains a regular element *t*. Thus $aS \cap sR \neq \emptyset$, which implies O1; O2 is vacuous for regular elements.

To prove the theorem, we first start with a weaker claim.

Lemma 21.12: Let R be a right Noetherian, semi-prime ring and $I \subset R$ an essential right ideal. Then the left annihilator of I is zero.

Proof. Let *J* be the left annihilator of *I*. We know $J^2 \neq 0$ because *R* is semi-prime (if $I^2 = 0$, then $(JR)^2 = 0$ for the two-sided ideal *JR*). Replace *I* by rAnn(*J*); WLOG we can assume that *I* is maximal among right annihilators using the Noetherian property.

Since $J^2 \neq 0$, pick $x, y \in J$ such that $xy \neq 0$. Then $yR \cap I \neq 0$ since *I* is essential, so there exists *r* with $yr = z \in I$ and xyr = 0. Then

$$r \notin rAnn(I), r \in rAnn(xy) \Rightarrow rAnn(xy) \supseteq rAnn(y) \supset I$$

which contradicts the maximality of *I*.

Proposition 21.13: Any right ideal *I* contains an element *x* with $rAnn(x) \cap I = 0$.

This proposition implies Theorem 21.11. Let *I* be an essential ideal. Then we can find $r \in I$ with $rAnn(x) \cap I = 0$. Since *I* is essential, this means rAnn(r) = 0 and rR is free. In particular, it has the same Goldie rank as *R*, so rR is essential in *R*. Then by the lemma, lAnn(rR) = lAnn(r) = 0. So *r* is regular.

18.706 Noncommutative Algebra Spring 2023

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.