Lecture 21: Goldie Rank and Goldie Theorem

21 April 27 - Goldie rank and Goldie theorem

21.1 More on essential modules
Corollary 21.1: A module M has no proper essential submodules iff it is semisimple.

Proof. We proved that a module M is semisimple iff every submodule N has a direct complement. Soif N ¢ M, we
know it has an essential complement N’ such that N @ N’ is essential. If M has no proper essential submodules,
then N@® N’ = M and M is semisimple. If M is semisimple, every submodule’s direct complement doesn’t intersect
it, so there are no proper essential submodules. O
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Lemma 21.2:
a) If M > N D P with N essential in M and P essential in N, then P is essential in M.
b) The preimage of an essential submodule is essential.
c) If Ny € My, N, C M, are essential, then Ny & Ny C M; @ M, is essential.

Proof.  a) If S ¢ M has nonzero intersection with N (use that N C M is essential), then SN N C N has nonzero
intersection with P (use that P C N is essential).
b) Let p: M — N and E C N essential. Suppose V C M is a nonzero submodule. Then either V' C ker(¢) or
¢(V) is nonzero. If V C ker(p), V C ¢ ' (E). If p(V) # 0, then (V) NE # 0,50 VN @~ (E) # 0.
¢) By a), it’s enough to consider M; = Nj. Then M; & N;, is the preimage of N, under the projection M; & M, —»
M,, so it is essential by b).
O

21.2 Goldie rank

Definition 21.3: A module M has finite Goldie rank if it does not contain an infinite sum of nonzero submodules.

Example 21.4: If M is Noetherian, it has a finite Goldie rank. In fact, one can restate the finite Goldie rank con-
dition as the condition that split increasing chains of submodules should stabilize, where a chain of submodules
M,; splits if M; has a direct complement in M, for all i.

Proposition 21.5: A finite Goldie rank module contains an essential submodule which is a finite sum of uniform
submodules.

Proof. Suppose for contradiction that M does not contain such an essential submodule. Then M is not uniform, so it
has a nonessential submodule N; with essential complement Cy. Then if both Nj, Cy contain essential submodules
E,, E; respectively, then E; @ E; is essential in M. So WLOG suppose Cy does not contain an essential submodule.
Then repeat the same argument for Cy; we get two submodules N;, C; where N; & C; € Cy and C; does not contain
an essential submodule. Thus by induction we get C;,Cs, ... where C; D N; @ Ciy;. Hence N D Ny & N, @ - - -,
contradicting the assumption. O

Theorem 21.6: Suppose M has finite Goldie rank and contains E = @Zl U; an essential sum of uniform submod-
ules. IfM > N = (D)., N; with N; # 0, thenn < m. If m = n, then N is essential and each N; is uniform.

Proof. First, N’ := @?:2 N; is not essential. then we claim that N’ N U; = 0 for some i. Otherwise, N’ N U; # 0 is
essential in Uj, so by the lemma @:Zl (N’ NUj;) is essential in M and N’ is essential in M.

WLOG say that N’ N U; = 0. Then U; ® N; @ --- @ N, € M. Continuing inductively, with possible reindexing,
Uy ®U®N,_;®---®N, C M. Therefore, n < m.

If m = n, then N is essential. If not, we’d have an essential complement N’ and N & N’ would be a sum of
n + 1 nonzero submodules, contradiction. Likewise, each N; is uniform: otherwise, it would have a nonessential
submodule N; with essential complement N;’, so we would again get a direct sum of n + 1 submodules. O

Corollary 21.7: If M has finite Goldie rank n, then every submodule in M with the same Goldie rank n is essential.
Corollary 21.8: The Goldie rank can also be defined as the maximal number of M; # 0 C M such that ), M; C M.

Example 21.9: For semisimple modules, the Goldie rank is the number of simple summands.
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21.3 Regular elements in essential ideals

Remark 21.10: Suppose S C R consists only of regular elements. Then the localization of an essential (resp.
uniform) ideal at S is essential (resp. uniform).

I Theorem 21.11: An essential right ideal in a semi-prime, right Noetherian ring contains a regular element.

This will imply the first statement in Goldie’s theorem: let S be the regular elements. Given s € S, sR = R so it has
the same Goldie rank as R (as a right module over itself) and is essential in R (use Corollary [21.7). Hence, for any
a € R, the preimage of sR under the map x — ax is an essential right ideal (Lemma [21.2) and contains a regular
element t. Thus aS N sR # @, which implies O1; O2 is vacuous for regular elements.

To prove the theorem, we first start with a weaker claim.

Lemma 21.12: Let R be a right Noetherian, semi-prime ring and I C R an essential right ideal. Then the left
annihilator of I is zero.

Proof. Let ] be the left annihilator of I. We know J? # 0 because R is semi-prime (if > = 0, then (JR)? = 0 for
the two-sided ideal JR). Replace I by rAnn(J); WLOG we can assume that I is maximal among right annihilators
using the Noetherian property.
Since J? # 0, pick x,y € J such that xy # 0. Then yR N I # 0 since I is essential, so there exists r withyr =z € I
and xyr = 0. Then

r ¢ tAnn(I),r € rAnn(xy) = rAnn(xy) 2 rAnn(y) D I

which contradicts the maximality of I. O

Proposition 21.13: Any right ideal I contains an element x with rAnn(x) NI = 0.

This proposition implies Theorem [21.11] Let I be an essential ideal. Then we can find r € I with rAnn(x) NI = 0.
Since I is essential, this means rAnn(r) = 0 and rR is free. In particular, it has the same Goldie rank as R, so rR is
essential in R. Then by the lemma, lAnn(rR) = lAnn(r) = 0. So r is regular.
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