
22 May 2 - Goldie Theorem, PI rings 

22.1 Finishing up Goldie Theorem 

Proof (of Proposition 21.13). First, we prove the claim when 𝐼 is uniform (see Definition 20.19). Again, 𝐼 2 ≠ 0 since
𝑅 is semi-prime, so pick 𝑥 , 𝑦 ∈ 𝐼 , 𝑥𝑦 ≠ 0. Then we claim that rAnn(𝑥 ) ∩ 𝐼 = 0. Otherwise, rAnn(𝑥 ) ∩ 𝐼 is essential 
in 𝐼 . Consider the homomorphism of (right) 𝑅 -modules 𝐿 𝑦 : 𝑅 → 𝐼 given by 𝑧 ↦→ 𝑦𝑧 . It follows from Lemma 21.2
that the preimage 𝐿 −1 

𝑦 (rAnn(𝑥 ) ∩ 𝐼 ) is essential in 𝑅 . So {𝑧 ∈ 𝑅 | 𝑦𝑧 ∈ rAnn(𝑥 ) } is essential in 𝑅 . But then its left
annihilator is zero by the above lemma, but 𝑥 ≠ 0 is in the annihilator, contradiction. 
In general, choose a maximal subideal 𝐽 ⊂ 𝐼 such that there exists 𝑣 ∈ 𝐽 with rAnn(𝑣 ) ∩ 𝐽 = 0 (via the right 
Noetherian property). If rAnn(𝑣 ) ∩ 𝐼 ≠ 0, pick a uniform ideal 𝑈 ⊂ rAnn(𝑣 ) ∩ 𝐼 . There exists 𝑢 ∈ 𝑈 with 
rAnn(𝑢 ) ∩ 𝑈 = 0. Set 𝑥 = 𝑢 + 𝑣 . 
Since 𝑈 ⊂ rAnn(𝑣 ), 𝑈 ∩ 𝐽 = 0. So if 𝑥 ∈ rAnn(𝑢 + 𝑣 ), then 𝑥 ∈ rAnn(𝑢 ) ∩ rAnn(𝑣 ). Suppose 𝑥 = 𝑢 ′ + 𝑣 ′ ∈ 𝑈 ⊕ 𝐽 . 
Then 𝑢𝑢 ′ + 𝑢 𝑣 ′ = 0, 𝑣 𝑢 ′ + 𝑣 𝑣 ′ = 0. But 𝑣 𝑢 ′ = 0 since 𝑈 ⊂ rAnn(𝑣 ), so 𝑣 𝑣 ′ = 0 ⇒ 𝑣 ′ = 0. So 𝑢𝑢 ′ = 0 and 𝑢 ′ = 0 by 
assumption on 𝑢 . Thus, 𝐽 ⊕ 𝑈 is a larger subideal in 𝐼 containing an element 𝑢 + 𝑣 whose right annihilator has zero 
intersection with the ideal, contradicting the maximality of 𝐽 . □

Proof (of Theorem 20.17). To finish proving the Goldie theorem, we need to show that 𝑅𝑆 is Artinian semisimple.
This is equivalent to 𝑅𝑆 being semisimple as a right module over itself, which is equivalent to saying that 𝑅𝑆 has
no proper essential ideals. Suppose that 𝐼 ⊂ 𝑅𝑆 is essential. Then 𝐼 ∩ 𝑅 is essential in 𝑅 : 𝑅 ↩→ 𝑅𝑆 because 𝑆 consists
of regular elements, so the preimage of 𝐼 ⊂ 𝑅𝑆 , which is 𝐼 ∩ 𝑅 is essential.
Then 𝐼 ∩ 𝑅 contains a regular element (Theorem 21.11), i.e., 𝑅 ∩ 𝐼 ∩ 𝑆 is nonempty, so 𝐼 = 𝑅𝑆 . □
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22.2 Goldie rings 
The statement of Goldie’s theorem required 𝑅 to be semi-prime right Noetherian. However, the proof only uses the 
fact that 𝑅 has 1) finite Goldie rank as a right module over itself (split ascending chains of right ideals stabilize) and 
2) chains of right annihilators stabilize. 

This is because even though we invoked the Noetherian property to find a maximal ideal 𝐽 ⊂ 𝐼 with 𝑣 ∈ 𝐽 such that 
rAnn(𝑣 ) ∩ 𝐽 = 0, the proof found an ideal of the form 𝐽 ⊕ 𝑈 , so it suffices to use that split chains terminate. 

Definition 22.1: If 𝑅 has finite Goldie rank as a right module over itself and chains of right annihilators stabilize, 
we say that 𝑅 is a (right) Goldie ring. 

Example 22.2: Not every right Goldie ring is right Noetherian. For example, every commutative domain where 
every annihilator of a nonzero element is zero and every nonzero ideal is essential is a right Goldie ring but not 
necessarily right Noetherian. 

22.3 Applications of Goldie’s Theorem 

Proposition 22.3: Let 𝑅 be a semi-prime Goldie ring and 𝑆 the set of its regular elements. Then if 𝐼 ⊂ 𝐽 is an 
essential subideal, the localizations 𝐼𝑆 and 𝐽𝑆 coincide. Also, if 𝐼 is uniform then 𝐼𝑆 is irreducible. 

Proof (Sketch). Essential embeddings and uniformity survive after localization. Over semi-simple Artinian rings, 
uniform modules are irreducible and essential embeddings are isomorphisms. □ 

Hence, Goldie rank is a measure of the size of an infinite-dimensional algebra (say, for algebras over a field) and it’s 
an interesting question to understand it better and compare it with other measures. 

Example 22.4: What is the Goldie rank of 𝑅 as a module over itself ? For example, if 𝑅 is prime (in particular, 
if it is primitive), then 𝑅𝑆  Mat𝑛 (𝐷 ), and the Goldie rank will be 𝑛 . 

A very interesting story is related to the study of this invariant for 𝑅 = 𝑈 (𝔤)/𝐼 where 𝔤 is a complex simple finite-
dimensional Lie algebra (e.g. 𝔰𝔩 (𝑛 )) and 𝐼 is a primitive ideal. Then the answer is given by the “Goldie rank polyno-
mial”; the classification of ideals involves a parameter 𝜆 on which the answer depends polynomially. This is largely 
understood due to the work of various authors, including David Vogan, George Lusztig, Tony Joseph, and, more 
recently, Ivan Losev. 

Another famous question related to noncommutative localization and Lie theory is the Gelfand-Kirillov conjecture. 
This states that for a large class of Lie algebras, including those mentioned above, the fraction field of 𝑈 (𝔤) (a domain 
of polynomial growth, hence an Ore domain) is isomorphic to the fraction field of a ring of the form 𝑊𝑛 [𝑥 1, . . . , 𝑥 𝑟 ] 
where 𝑊𝑛 is the Weyl algebra. This turned out to be false in general, but true for 𝔤 = 𝔰𝔩 (𝑛 ). However, if ¯ 𝑈 = 
𝑈 (𝔤)/𝔪𝑈 (𝔤), where 𝔪 is a maximal ideal in the center of 𝑈 (𝔤), then the fraction field of ¯ 𝑈 is indeed isomorphic to 
the fraction field of 𝑊𝑛 for every simple complex Lie algebra. 

22.4 PI rings 

Definition 22.5: A ring 𝑅 is a polynomial identity (PI) ring if there exists a nonzero element in the free algebra 
𝑃 ∈ Z⟨𝑥 1, . . . , 𝑥 𝑛 ⟩ such that 𝑃 (𝑟 1, . . . , 𝑟𝑛 ) = 0 for all 𝑟 1, . . . , 𝑟𝑛 ∈ 𝑅 (i.e., there is a polynomial identity that all 
elements satisfy). 
Likewise, if 𝐴 is an algebra over a field (or commutative ring) 𝑘 , it is a polynomial identity (PI) algebra if there 
exists a nonzero 𝑃 ∈ 𝑘 ⟨𝑥 1, . . . , 𝑥 𝑛 ⟩ such that any evaluation of 𝑃 in 𝐴 vanishes. 

Example 22.6: Commutative rings are PI rings: take 𝑃 (𝑥 , 𝑦 ) = 𝑥𝑦 − 𝑦𝑥 . 

Example 22.7: Boolean rings (rings where every element is idempotent) are also PI rings with 𝑃 (𝑥 ) = 𝑥 2 − 𝑥 . 
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Example 22.8: Let 
𝑆𝑛 (𝑥 1, . . . , 𝑥𝑛 ) = 

∑︁ 

𝜎 ∈𝑆𝑛 

(−1) |𝜎 |𝑥 𝜎 (1) · · · 𝑥 𝜎 (𝑛 ) . 

We claim that this holds in every finite-dimensional algebra 𝐴 over a field 𝑘 of char 𝑘 ≠ 2 when 𝑛 > dim𝑘 (𝐴). 
This is because evaluation of 𝑆𝑛 is a skew-symmetric multilinear functional, hence is a map Λ𝑛 (𝐴) → 𝐴. But if 
𝑛 > dim𝑘 (𝐴), then Λ𝑛 (𝐴) = 0. 

22.5 Amitsur-Levitzki Theorem 

Theorem 22.9 (Amitsur-Levitzki): The identity 𝑆 2𝑛 holds in the ring Mat𝑛 (𝑅 ) for any commutative ring 𝑅 . More-
over, no (nonzero) homogeneous identity of smaller degree holds (assuming 𝑅 ≠ 0). 

The second part of the theorem is easier and follows from the next two lemmas. 

Lemma 22.10 (Staircase Lemma): Mat𝑛 (𝑅 ) does not satisfy a multilinear identity of degree 𝑑 < 2𝑛 . 

Proof. Consider the following 2𝑛 − 1 elementary matrices: 

𝑒11, 𝑒 12, 𝑒 21, 𝑒 22, . . . , 𝑒𝑛 −1,𝑛 −1, 𝑒𝑛 −1,𝑛 , 𝑒𝑛,𝑛 

Their product in this order is an elementary matrix, namely 𝑒 1𝑛 , but their product in any other order vanishes. The 
first 𝑟 matrices in that list for 𝑟 < 2𝑛 − 1 satisfy the same property. 
A multilinear polynomial is a linear combination of multi-homogeneous monomials with coefficients in 𝑅 . If a 
degree 𝑟 monomial 𝑥 1 · · · 𝑥𝑟 is in the polynomial, substitute the above elementary matrices for 𝑥𝑖 and zero for the 
other variables (if any). Then our sum has exactly one nonzero summand, so the sum is nonzero. □ 

Lemma 22.11: 
a) If a ring satisfies an identity 𝑃 of degree 𝑑 , then it satisfies a multilinear identity of the same degree. 
b) If an algebra 𝐴 over an infinite field 𝑘 satisfies a polynomial identity 𝑃 = 

 
𝑃𝑑 where 𝑃𝑑 is homogeneous of 

degree 𝑑 , then each 𝑃𝑑 is also an identity satisfied by 𝐴 . 

Proof. a) Let 𝑃 = 𝑃 (𝑥 1, . . . , 𝑥𝑛 ) be a degree 𝑑 identity. We do double induction on the top degree of 𝑃 in each 
variable and the number of variables in which it has that degree. Suppose 𝑟 > 1 is the top degree and WLOG 
that 𝑃 has degree 𝑟 in 𝑥 1. Then consider 

𝑄 (𝑥 0, . . . , 𝑥𝑛 ) = 𝑃 (𝑥 0 + 𝑥 1, 𝑥 2, . . . , 𝑥 𝑛 ) − 𝑃 (𝑥 0, 𝑥 2, . . . , 𝑥𝑛 ) − 𝑃 (𝑥 1, . . . , 𝑥 𝑛 ). 

𝑄 holds in our ring and has degree less than 𝑟 in both 𝑥 0, 𝑥 1. For the other variables, their degree is most that 
of 𝑃 . Note that 𝑄 is not identically zero: this is because for monomials 𝑀 of degree 𝑑 , the noncommutative 
polynomials 

𝑀 ′ = 𝑀 (𝑥 0 + 𝑥 1, 𝑥 2, . . . , 𝑥𝑛 ) − 𝑀 (𝑥 0, 𝑥 2, . . . , 𝑥 𝑛 ) − 𝑀 (𝑥 1, . . . , 𝑥𝑛 ) 

are linearly independent over 𝑅 . This is because the monomials in 𝑀 ′ which are linear in 𝑥 0 will enter 𝑀 ′ 

with multiplicity 1, and we can reconstruct 𝑀 from such a monomial by replacing 𝑥 0 by 𝑥 1. 
Therefore, by induction we can find an identity 𝑃 which has degree one in each variable. Suppose there is a 
variable 𝑥𝑖 appearing in 𝑃 in which 𝑃 is not linear (so 𝑥𝑖 appears in some monomials but not in others). Then 

𝑃 (𝑥 1, . . . , 𝑥𝑖 , . . . , 𝑥𝑛 ) − 𝑃 (𝑥 1, . . . , 𝑥 𝑖 −1, 0, 𝑥𝑖 +1, . . . , 𝑥𝑛 ) 

is also an identity and is nonzero and linear in 𝑥𝑖 . Repeating this inductively, we get a multilinear identity 
of the same total degree. 

b) For 𝜆 ∈ 𝑘 , 𝑃 𝜆 = 

𝜆𝑑 𝑃 𝑑 is also a polynomial identity. Choosing distinct 𝜆 1, . . . , 𝜆𝑛 with 𝑛 > deg(𝑃 ), the linear 

span of 𝑃 𝜆𝑖 will contain 𝑃𝑑 because the Vandermonde determinant doesn’t vanish. 
□ 
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This furnishes a proof of the second part of the theorem. 

22.6 Amitsur-Levitzki Theorem and the cohomology of 𝔤𝔩 (𝑛 ) 
We will sketch the proof of the Amitsur-Levitzki Theorem via this Lie algebra cohomology story. To simplify notation, 
we work over C. 

Notice that the identity 𝑆 2𝑛 holding in Mat𝑛 (𝑘 ) is equivalent to

Tr(𝑆 2𝑛 +1 (𝑥 1, . . . , 𝑥 2𝑛 +1)) = 0

for all 𝑥 1, . . . , 𝑥 2𝑛 +1 ∈ Mat𝑛 (𝑘 ). To see this, note that trace is cyclically invariant (tr(𝑎𝑏𝑐 ) = tr(𝑐 𝑎𝑏 ), etc.), so for
each monomial in 𝑆 2𝑛 +1, we can cyclically permute the variables until 𝑥 1 is at the left. Factoring 𝑥 1 out, we obtain
Tr(𝑥 1𝑆 2𝑛 (𝑥 2, . . . , 𝑥 2𝑛 +1)) = 0. Since the trace pairing is nondegenerate, this implies that 𝑆 2𝑛 (𝑥 2, . . . , 𝑥 2𝑛+1) = 0.

Now view Mat𝑛 (C) as a Lie algebra, so 𝔤𝔩𝑛 (C). The multilinear functional

(𝑥 1, . . . , 𝑥 2𝑖 −1) ↦→ Tr(𝑆 2𝑖 −1 (𝑥 1, . . . , 𝑥 2𝑖 −1))

defines an element 
𝜎𝑖 = 𝜎𝑖 ,𝑛 ∈ Λ 2𝑖 −1 𝔤 ∗

invariant under conjugation by 𝐺 = GL𝑛 (C), so 𝜎𝑖 ∈ (Λ2𝑖 −1𝔤∗)𝐺 . For 𝐺 = GL𝑛 (C) and other complex reductive
groups, there are isomorphisms 

(Λ•𝔤∗ )𝐺  𝐻 • (𝔤)  𝐻 •(𝐺 , C)  𝐻 •(𝐾 , C). 

Here 𝐻 •(𝔤) is the Lie algebra cohomology, i.e. Ext• 
𝑈 (𝔤) (C, C) (parallel to the definition of group cohomology).

𝐻 • (𝐺 , C) is the cohomology of 𝐺 viewed as a topological space, while 𝐾 ⊂ 𝐺 is a maximal compact subgroup and 
𝐻 • (𝐾 , C) is the cohomology for 𝐾 viewed as a topological space. For 𝐺 = GL𝑛 (C), the maximal compact subgroup
𝐾 is the group 𝑈 (𝑛 ) of unitary matrices, and 

𝐻 ∗ (𝑈 (𝑛 ), 𝑘 ) = Λ[𝑐 1,𝑛 , 𝑐 2,𝑛 , . . . , 𝑐 𝑛,𝑛 ], deg(𝑐𝑖 ,𝑛 ) = 2𝑖 − 1.

This is graded and skew-commutative so 𝑐 2𝑖 = 0. This follows from induction and the fact that 𝑈 (𝑛 )/𝑈 (𝑛 − 1) = 𝑆 2𝑛 −1

(the (2𝑛 − 1)-dimensional sphere). The restriction map 

𝐻 •(𝔤𝔩 (𝑛 )) → 𝐻 •(𝔤𝔩 (𝑛 − 1)) 

sends 𝑐𝑖 ,𝑛 ↦→ 𝑐 𝑖 ,𝑛 −1 when 𝑖 ⩽ 𝑛 − 1 and 𝑐 𝑛,𝑛 ↦→ 0.

This gives a proof of the Amitsur-Levitski Theorem as follows: 

We want to show that 𝜎𝑖 ,𝑛 = 0 for 𝑖 > 𝑛 . We induct on 𝑛 , so assume 𝜎𝑖 ,𝑛 −1 = 0 for 𝑖 > 𝑛 − 1. So in particular

𝜎𝑛 +1,𝑛 ∈ ker(𝐻 2𝑛+1 (𝔤𝔩 (𝑛 )) → 𝐻 2𝑛 +1 (𝔤𝔩 (𝑛 − 1))) .

We claim this map is injective: the kernel of the restriction map 𝐻 • (𝔤𝔩 (𝑛 )) → 𝐻 •(𝔤𝔩 (𝑛 − 1)) is generated by an 
element of degree 2𝑛 − 1 and 𝐻 2 (𝔤𝔩 (𝑛 )) = 0, so there is nothing in the kernel in degree 2𝑛 + 1. So 𝜎𝑛 +1,𝑛 = 0.

It remains to show that 𝜎𝑖 ,𝑛 = 0 for 𝑖 > 𝑛 + 1. The vanishing of 𝜎𝑖 ,𝑛 is equivalent to 𝑆 2𝑖 being an identity in Mat𝑛 (C).
But if the identity 𝑆𝑚 holds, so does 𝑆𝑝 for 𝑝 > 𝑚 because one can sum over the symmetric group Σ𝑝 by first summing
over the Σ𝑚 -cosets in Σ𝑝 . This completes the induction.

Remark 22.12: 𝐻 •(𝔤𝔩 (𝑛 )) is in fact freely generated by 𝜎 1,𝑛 , . . . , 𝜎𝑛,𝑛, .
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