
25 May 16 - Final class: noncommutative geometry

Recall that commutative algebra is closely related to algebraic geometry. A commutative ring 𝑅 corresponds to the
affine scheme Spec𝑅, and modules over 𝑅 correspond to sheaves on Spec𝑅. In algebraic geometry these concepts
are extended to more general non-affine schemes, while also creating powerful geometric intuition and techniques
that have had a strong impact on commutative algebra.

Noncommutative geometry is an area that grew out of attempts to tie noncommutative algebra to geometry in a
similar way. This has not led to as comprehensive a theory as exists in the commutative case. However, it did lead
to emergence of a number of different directions, some leading to impressive results.

In this lecture we will briefly survey some of these directions. Our list is by no means complete; for example we don’t
discuss the direction involving tools from functional analysis (𝐶∗-algebras) developed by A. Connes et al.

25.1 Representation varieties

Let 𝑅 be a finitely generated commutative ring over 𝑘 = 𝑘 . Then 𝑘-points of Spec(𝑅) correspond to the homomor-
phisms of 𝑘-algebras Hom(𝑅, 𝑘) i.e. to one-dimensional representations of the algebra 𝑅.

Note that every simple module over a finitely generated commutative algebra 𝑅 is one-dimensional (Hilbert’s Null-
stellensatz). If 𝑅 is instead a finitely generated noncommutative algebra over 𝑘 , it is natural to consider the space of
all finite-dimensional representations of 𝑅. Let us describe this space (to be denoted Rep(𝑅)).

First of all note that Rep(𝑅) = ⊔
𝑛∈Z⩾0 Rep𝑛 (𝑅), where Rep𝑛 (𝑅) is the space of 𝑛-dimensional representations of

𝑅.

Every element of Rep𝑛 (𝑅) corresponds to a homomorphism 𝜑 : 𝑅 → Mat𝑛 (𝑘) i.e. 𝜑 ∈ Hom(𝑅,Mat𝑛 (𝑘)). Two
homomorphisms 𝜑1, 𝜑2 define isomorphic representations iff they lie in the same orbit of GL𝑛 , acting naturally on
the space Hom(𝑅,Mat𝑛 (𝑘)) (via its action on Mat𝑛 (𝑘)). Since 𝑅 is finitely generated, 𝑅 = 𝑘 ⟨𝑥1, . . . , 𝑥𝑚⟩/𝐼 , and

Hom(𝑅,Mat𝑛 (𝑘)) ⊂ (Mat𝑛)𝑚 = 𝑘𝑛
2𝑚 = A𝑛

2𝑚

is a subset of the affine variety (Mat𝑛)𝑚 cut out by polynomial equations. We can consider this subset as an alge-
braic subvariety of A𝑛2𝑚 . We see that Rep𝑛 (𝑅) = Hom(𝑅,Mat𝑛 (𝑘))/GL𝑛 (𝑘) is the quotient of the algebraic variety
Hom(𝑅,Mat𝑛 (𝑘)) by the action of the algebraic group GL𝑛 (𝑘). Space Rep𝑛 (𝑅) is an example of an algebraic stack.
This is a replacement for Spec(𝑅).

Preprojective algebras are examples of explicit algebras with interesting representation varieties Rep𝑅.

Let 𝑄 be an oriented quiver and let 𝑄 be the corresponding double quiver. For an edge 𝑒 of 𝑄 we will denote by 𝑒+,
𝑒− the corresponding edges of 𝑄 . Let 𝑃 (𝑄) be the quiver algebra of 𝑄 modulo the relation∑︁

𝑒

𝑒−𝑒+ −
∑︁
𝑒

𝑒+𝑒− = 0. (3)
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For example, let𝑄 be a cyclic quiver consisting of 𝑛 vertices labeled by the elements of Z/𝑛Z (vertices [𝑖], [𝑖 + 1] are
connected by the edge). Quiver𝑄 has vertices labeled by Z/𝑛Z, edges of this quiver are [𝑖] ← [𝑖+1] and [𝑖+1] ← [𝑖],
[𝑖] ∈ Z/𝑛Z.

Pick 𝜁 ∈ 𝑘 of order 𝑛 and consider the action Z/𝑛Z ↷ 𝑘 [𝑥,𝑦] given by [1] · 𝑥 = 𝜁𝑥 , [1] · 𝑦 = 𝜁 −1𝑦. We have
(Z/𝑛Z)#𝑘 [𝑥,𝑦] ∼−→ 𝑃 (𝑄), the isomorphism is given by:

1 ⊗ 𝑥 ↦→
∑︁

[𝑖 ]∈Z/𝑛Z
𝑒 [𝑖+1]←[𝑖 ], 1 ⊗ 𝑦 ↦→

∑︁
[𝑖 ]∈Z/𝑛Z

𝑒 [𝑖 ]←[𝑖+1], [1] ⊗ 1 ↦→
∑︁

[𝑖 ]∈Z/𝑛Z
𝜁 𝑖𝑒 [𝑖 ] .

The isomorphism above induces the equivalence between the categories of 𝑃 (𝑄) and (Z/𝑛Z)#𝑘 [𝑥,𝑦]-modules. Let
us describe this equivalence explicitly. Module (𝑀[𝑖 ])[𝑖 ]∈Z/𝑛Z over 𝑃 (𝑄) goes to 𝑀 :=

⊕
[𝑖 ]∈Z/𝑛Z𝑀[𝑖 ] , where the

action of [1] ∈ Z/𝑛Z on 𝑀[𝑖 ] is given by 𝜁 𝑖 and the action of 𝑥 : 𝑀[𝑖 ] → 𝑀[𝑖+1] is given by 𝑒 [𝑖+1]←[𝑖 ] , the action of
𝑦 : 𝑀[𝑖+1] → 𝑀[𝑖 ] is given by 𝑒 [𝑖 ]←[𝑖+1] . The condition

∑
[𝑖 ]∈Z/𝑛Z 𝑒 [𝑖 ]←[𝑖+1]𝑒 [𝑖+1]←[𝑖 ] =

∑
[𝑖 ]∈Z/𝑛Z 𝑒 [𝑖+1]←[𝑖 ]𝑒 [𝑖 ]←[𝑖+1]

precisely corresponds to the fact that 𝑥 and 𝑦 commute.

This example can be generalized as follows. Recall that finite subgroups Γ in SL(2, 𝑘) correspond to simply laced
Dynkin graphs 𝐷 (this is known as McKay correspondence, see [15]). Let 𝐷 be the affine Dynkin graph; the vertices
of 𝐷 are in bijection with irreps of Γ (see [15]). Then (see [7])

𝑃 (𝐷) ∼ Γ#𝑘 [𝑥,𝑦]

where the ∼ is Morita equivalence. It sends a Γ#𝑘 [𝑥,𝑦]-module 𝑀 to
⊕

𝑣𝑀𝑣 , where 𝑀𝑣 = [𝑀 : 𝜌𝑣] = HomΓ (𝜌𝑣, 𝑀)
and 𝜌𝑣 is the irreducible representation of Γ corresponding to the vertex 𝑣 .

Remark 25.1: Note that the algebras 𝑃 (𝐷), Γ#𝑘 [𝑥,𝑦] are not isomorphic in general (they are isomorphic for
Γ = Z/𝑛Z).

Let us describe the representation variety of the algebra 𝑅 = 𝑃 (𝑄). Let us first of all recall that 𝑃 (𝑄) is a certain
quotient of the path algebra of the quiver 𝑄 so every representation of 𝑃 (𝑄) can be considered as a representation
of the quiver 𝑄 such that (3) holds. So, Rep(𝑃 (𝑄)) =

⊔
𝑑𝑣 ∈Z⩾0 Rep𝑑𝑣 (𝑃 (𝑄)), where Rep𝑑𝑣 (𝑃 (𝑄)) is the space of

representations (𝑀𝑣) of 𝑄 such that (3) holds and dim𝑀𝑣 = 𝑑𝑣 (considered up to an isomorphism). Explicitly,
let

R̃ep𝑑𝑣 (𝑃 (𝑄)) ⊂
∏

𝑒 : 𝑣→𝑣′
Mat𝑑𝑣 ,𝑑𝑣′ ×Mat𝑑𝑣′ ,𝑑𝑣 (4)

be the subvariety consisting of collections of maps such that (3) holds. Then

Rep𝑑𝑣 (𝑃 (𝑄)) = R̃ep𝑑𝑣 (𝑃 (𝑄))/
∏
𝑣

GL(𝑑𝑣).

Note now that the RHS of (4) is a symplectic vector space (we identify Mat𝑑𝑣 ,𝑑𝑣′ ×Mat𝑑𝑣′ ,𝑑𝑣 with 𝑇 ∗Mat𝑑𝑣 ,𝑑𝑣′ via the
trace form), and 𝐺 =

∏
GL(𝑑𝑣) acts on it preserving the symplectic structure; the equations (3) are zeroes of the

moment map 𝜇 :
∏
𝑒 : 𝑣→𝑣′ 𝑇

∗Mat𝑑𝑣 ,𝑑𝑣′ →
∏
𝑣 Mat𝑑𝑣 for the

∏
𝑣 GL𝑑𝑣 action. So, Rep𝑑𝑣 (𝑃 (𝑄)) is obtained from the

RHS by Hamiltonian reduction i.e.
Rep𝑑𝑣 (𝑃 (𝑄)) = 𝜇

−1 (0)/
∏
𝑣

GL𝑑𝑣

is the Hamiltonian reduction of the symplectic vector space
∏
𝑒 : 𝑣→𝑣′ 𝑇

∗Mat𝑑𝑣 ,𝑑𝑣′ by
∏
𝑣 GL𝑑𝑣 .
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Remark 25.2:
Ginzburg introduced a notion of a quiver with potential (see [8, Section 4.2]). Potential is an element of the
vector subspace 𝐹cyc of the quiver algebra 𝐹 = 𝑘𝑄 of a quiver 𝑄 generated by cyclic paths.
For any edge 𝑒 ∈ 𝐷 there exists a map 𝜕

𝜕𝑒
: 𝐹cyc → 𝐹 defined as follows: given a cyclic path Φ = 𝑒𝑖1𝑒𝑖2 . . . 𝑒𝑖𝑟 , we

put
𝜕Φ

𝜕𝑒
:=

∑︁
{𝑠 | 𝑒𝑖𝑠 =𝑒 }

𝑒𝑖𝑠+1𝑒𝑖𝑠+2 . . . 𝑒𝑖𝑟 𝑒𝑖1𝑒𝑖2 . . . 𝑒𝑖𝑠−1 .

One can then consider the quotient algebra 𝔄(𝑄,Φ) := 𝐹/( 𝜕Φ
𝜕𝑒
)𝑒∈𝑄 , where ( 𝜕Φ

𝜕𝑒
)𝑒∈𝐷 is the two-sided ideal gen-

erated by the elements 𝜕Φ
𝜕𝑒
∈ 𝐹 (see [8, Equation (4.2.1)]).

The variety R̃ep𝑑𝑣𝔄(𝑄,Φ) can be described as follows. Consider the space R̃ep𝑑𝑣 (𝐹 ) (that is just a vector space),
element Φ defines a map Φ̂ : R̃ep𝑑𝑣 (𝐹 ) →

∏
𝑣 Mat𝑑𝑣 sending a representation 𝜌 to 𝜌 (Φ) (recall that Φ ∈ 𝐹cyc).

We obtain a functional 𝜙 := tr Φ̂ : R̃ep𝑑𝑣 (𝐹 ) → C. One can show that the variety R̃ep𝑑𝑣𝔄(𝑄,Φ) is the critical
locus of tr Φ̂ (cf. [8, Section 2.3]).
Let us describe how to obtain preprojective algebras via algebras with potentials (see [8, Example 4.3.3]). Con-
sider the quiver 𝑄 loop obtained from 𝑄 by attaching an additional edge loop, 𝑡𝑣 , for every vertex 𝑣 . We can
identify the quiver algebra 𝑘𝑄 loop with 𝑘𝑄 ∗ 𝑘 [𝑡], where ∗ corresponds to the free product of associative 𝑘-
algebras (this isomorphism sends 𝑡 to

∑
𝑣 𝑡𝑣). Consider the potential

Φ :=
∑︁
𝑣

𝑡𝑣 ·
∑︁
𝑒

(𝑒+𝑒− − 𝑒−𝑒+) = 𝑡
∑︁
𝑒

(𝑒+𝑒− − 𝑒−𝑒+).

We then have 𝔄(𝑘𝑄 loop
,Φ) = 𝑃 (𝑄) [𝑡] (see [8, Equation (4.3.4)]), so R̃ep𝑑𝑣𝔄(𝑘𝑄

loop
,Φ) = 𝑅𝑒𝑝𝑑𝑣 (𝑃 (𝑄)) ×∏

𝑣 Mat𝑑𝑣 . The potential 𝜙 that we construct above is given by the formula:∏
𝑒 : 𝑣→𝑣′

𝑇 ∗Mat𝑑𝑣 ,𝑑𝑣′ ×
∏
𝑣

Mat𝑑𝑣 ∋ (𝑣, 𝜉) ↦→ tr(𝜇 (𝑣)𝜉) ∈ C

in this case.

25.2 Weyl algebra and deformations
Many interesting algebras have no nonzero finite-dimensional representations (in particular, Rep𝑅 = {0} is not
interesting in this case). For example, the Weyl algebra𝑊 = C⟨𝑥,𝑦⟩/⟨𝑥𝑦−𝑦𝑥 −1⟩ doesn’t. You can see this by noting
that tr(𝑥𝑦 − 𝑦𝑥) = 0 (on every finite-dimensional representation), while tr(1𝑛) = 𝑛.

We can study noncommutative geometry by deforming from the commutative case, this procedure is also called
deformation quantization. Consider

𝑊ℏ = C[ℏ]⟨𝑥,𝑦⟩/⟨𝑥𝑦 − 𝑦𝑥 − ℏ⟩.
When we take ℏ = 1, we recover𝑊 , and when we take ℏ = 0, we get C[𝑥,𝑦], which is commutative.

Other examples of deformations:

If𝑋 is a smooth affine algebraic variety over a field 𝑘 , we can consider Diffℏ (𝑋 ), the asymptotic differential operators.
This is𝑊 when 𝑋 = A1. If ℏ = 0, we get O(𝑇 ∗𝑋 ) = SymO(𝑋 ) (Der(O(𝑋 ))).

If 𝔤 is a Lie algebra, let𝑈ℏ (𝔤) = 𝑘 ⟨𝔤⟩/𝑥𝑦 − 𝑦𝑥 = ℏ𝑥 . If 𝔤 = 𝔤𝔩𝑛 , then define

𝑈ℏ (𝔤) = 𝑈ℏ ⊗𝑍 (𝑈ℏ (𝔤) ) 𝑘 [ℏ]

so
𝑈0 = O(N)

where N is the nilpotent matrices.

There’s also the spherical rational double affine Hecke algebra (DAHA) 𝐴ℏ, also called rational Cherednik algebra,
where 𝐴0 = O((A2)𝑛/𝑆𝑛).
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How can we define deformations for non-affine varieties? Previously we deformed the algebra of functions on 𝑋 ,
now we need to deform the structure sheaf of 𝑋 . There is no obvious way to make a deformation into a sheaf. Here
are some ways:

a) We can work with a formal parameter. If 𝐴 is flat over 𝑘 [[ℏ]] and complete in the ℏ-topology, let 𝐴0 = 𝐴/ℏ,
which is commutative. Exercise: a) if 𝑎 = 𝑎 (mod ℏ) is invertible, then so is 𝑎. b) If𝑈 ⊂ Spec(𝐴) is open, then
{𝑎 ∈ 𝐴|𝑎 |𝑈 is invertible} is a localizing class. c) Localizations form a Zariski sheaf on Spec(𝐴).

b) Diff (𝑋 ) can be made into a sheaf on𝑇 ∗𝑋 with conical topology (𝑈 ⊂ Spec(𝑇 ∗𝑋 ) is open in a conical topology
if it is open in Zariski topology and invariant under dilation).

c) In characteristic 𝑝 , for𝑊 = 𝑘 ⟨𝑥,𝑦⟩/𝑥𝑦 − 𝑦𝑥 = 1 has 𝑥𝑝 , 𝑦𝑝 ∈ 𝑍 (𝑊 ). Hence,𝑊 is a sheaf on Spec𝑘 [𝑥𝑝 , 𝑦𝑝 ].

25.3 Coh(𝑋 ) and 𝐷♭(Coh(𝑋 ))
The previous two subsections described approaches closely tied to the usual commutative algebraic geometry. The
next relies on it as a source of motivation for conjectures rather than trying to relate a noncommutative structure to
a specific commutative ring or variety.

An algebraic variety 𝑋 can be studied via the category Coh(𝑋 ) on 𝐷♭ (Coh(𝑋 )).

If𝑋 = Spec(𝑅) is affine, then Coh(𝑋 ) = 𝑅-mod. If𝑌 is projective over 𝑘 and𝑌 = Proj(𝐴),𝐴 =
⊕

𝑛≥0𝐴𝑛, 𝐴0 = 𝑘 , then
Coh(𝑌 ) is the Serre quotient of graded finitely generated𝐴-modules by graded finite-dimensional𝐴-modules.

Theorem 25.3 (Serre): Let 𝑋 be an algebraic variety over a field 𝑘 . Then 𝑋 is smooth iff Coh(𝑋 ) has finite
homological dimension, i.e. Ext𝑛 (𝐹,𝐺) = 0 for all 𝑛 > 𝑑 and all 𝐹,𝐺 ∈ Coh(𝑋 ).

It is also known that 𝑋 is projective iff Ext𝑛 (𝐹,𝐺) is finite-dimensional for all 𝑛, 𝐹,𝐺 ∈ Coh(𝑋 ).

Let𝑋 be a smooth affine variety. Then Ω𝑖
𝑋

, the 𝑖-forms, is HH𝑖 (O(𝑋 )). Recall that HH𝑖 and HH𝑖 are Morita invariant.
They can also be defined starting from a category: HH𝑖 = Ext𝑖 (Id, Id) where Id is the identity functor, while HH𝑖

relates to the tensor of bimodules.

For 𝑋 smooth and projective,
HH𝑖 (Coh(𝑋 )) =

⊕
𝑞−𝑝=𝑖

𝐻𝑝 (𝑋,Ω𝑝 ) ≃ 𝐻 𝑖dR (𝑋 )

where the last equivalence is from the Hodge theorem, and the first one is known as the Hochschild-Kostant-
Rosenberg isomorphism.

To recover 𝐻 ∗dR for nonprojective 𝑋 , we can use cyclic homology. The bar complex for HH∗ has cyclic symme-
try:

𝐶 : 𝑎0 ⊗ · · ·𝑎𝑛 → (−1)𝑛𝑎𝑛 ⊗ 𝑎0 · · · ⊗ 𝑎𝑛−1.

Then Bar/(𝐶 − Id)Bar inherits the differential from the bar complex. Its cohomology is

HC𝑛 (𝐴) = Ω𝑛/𝑑Ω𝑛−1 ⊕
⊕
𝑖≥1

𝐻𝑛−2𝑖
dR (𝑋 )

and

HCper
𝑛 = lim

→
HC𝑛+2𝑖 =

∞⊕
𝑖=−∞

𝐻𝑛+2𝑖dR (𝑋 ).

For a smooth projective dimension 𝑛 variety 𝑋 we have Serre duality:

Ext𝑖 (𝐹,𝐺) ≃ Ext𝑛−𝑖 (𝐺, 𝐹 ⊗ 𝐾×)∗.
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Definition 25.4 (Bondal-Kapranov): Let C be a finite type 𝑘-linear triangualated category. (Finite type means
dim𝑘 Ext∗ (𝐴, 𝐵) < ∞∀𝐴, 𝐵.) For example, C = 𝐷♭ (𝐴-mod) where𝐴 is finite-dimensional and of finite homological
dimension.
A Serre functor is a functor 𝑆 : C → C and an isomorphism Hom(𝐴, 𝐵) ≃ Hom(𝐵, 𝑆 (𝐴))∗. The Yoneda lemma
implies that if 𝑆 exists, it is unique.

Example 25.5: For C = 𝐷♭ (Coh(𝑋 )), 𝑆 : 𝐹 ↦→ 𝐹 ⊗ 𝐾𝑥 [𝑛] is a Serre functor.

The Hodge theorem can be restated as a claim that a spectral sequence HH∗ (Coh(𝑋 )) =⇒ HCper
∗ (Coh(𝑋 )) degen-

erates for smooth projective 𝑋 . The following striking generalization was proposed (in a slightly different form) by
Kontsevich and Soibelman (see [11]).

Conjecture 25.6: The above spectral sequence degenerates for any dg-category of finite type over 𝑘 .

This was partly proved by Dmitry Kaledin and Akhil Mathew, see [10], [14].

25.4 Artin-Schelter regular algebras and noncommutative projective geometry
A projective variety 𝑋 ⊂ P𝑛

𝑘
is determined by its homogeneous coordinate ring 𝐴, a graded commutative ring such

that 𝑋 = 𝑃𝑟𝑜 𝑗 (𝐴). An important invariant of 𝑋 is the abelian category 𝐶𝑜ℎ(𝑋 ) of coherent sheaves on 𝑋 . It can
be realized as a Serre quotient 𝐴 −𝑚𝑜𝑑𝑔𝑟

𝑓 𝑔
/𝐴 −𝑚𝑜𝑑𝑔𝑟

𝑓 𝑑
where 𝐴 −𝑚𝑜𝑑𝑔𝑟

𝑓 𝑔
is the category of finitely generated graded

𝐴-modules and 𝐴 −𝑚𝑜𝑑𝑔𝑟
𝑓 𝑑

is the Serre subcategory of finite dimensional graded modules.

One can study noncommutative graded ring that share basic features with commutative ones, thinking of them as
homogeneous coordinate rings of (yet to be defined) noncommutative projective varieties. Some beautiful results in
that direction were obtained by Artin, Schelter and others in 1990’s.

So consider a nonnegatively graded algebras over a field 𝐴 = ⊕𝐴𝑛 , 𝐴0 = 𝑘 . Assuming 𝐴 is Noetherian, the category
𝐴 −𝑚𝑜𝑑𝑔𝑟

𝑓 𝑔
is abelian, so one can consider 𝐴 −𝑚𝑜𝑑𝑔𝑟

𝑓 𝑔
/𝐴 −𝑚𝑜𝑑𝑔𝑟

𝑓 𝑑
, the category of coherent sheaves on the purported

noncommutative 𝑃𝑟𝑜 𝑗 of 𝐴.

One defines a point module over 𝐴 as a cyclic graded module with Poincare series 1/(1 − 𝑡). In the case when 𝐴 is
commutative and generated by 𝐴1 point modules are in bijection with points of 𝑋 = 𝑃𝑟𝑜 𝑗 (𝐴).

Several important classification results are achieved by considering point modules and a usual (commutative) alge-
braic variety arising as the moduli space of point modules.

We briefly mention a sample classification problem. Recall that a commutative 𝐴 as above has finite homological
dimension (equivalently, is regular) iff it is a polynomial algebra. Assuming it is generated by 𝐴1, we get the ho-
mogeneous coordinate ring of 𝑋 = P𝑛

𝑘
. Generalization of this simplest projective variety leads to the following

definition.

An algebra 𝐴 as above is called Artin-Schelter regular if it has finite homological dimension 𝑑 , a finite GK dimension
and 𝐸𝑥𝑡𝑖

𝐴
(𝑘,𝐴) = 0 for 𝑖 ≠ 𝑑 , while 𝐸𝑥𝑡𝑑

𝐴
(𝑘,𝐴) is one dimensional.

The work of Artin-Schelter and Artin-Tate-van den Bergh achieved classification of AS regular algebras of dimensions
two and three (noncommutative projective lines and planes). We will not present the answer, but mention that it
involves beautiful and rather elementary algebro-geometric data, such as an elliptic curve with an automorphism
(see [17] and references therein), arising in the process of classification of point modules over 𝐴.
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Artin-Wedderburn Theorem, 43
ascending chain condition, 9
associated graded, 11
Azumaya algebra, 52
Azumaya-Nakayama, 40

Berele Theorem, 73
Bergman gap Theorem, 72
Brauer group, 39

index of an element, 47
Brauer group of a ring, 52

Capelli polynomial, 68
Cartan matrix, 30
categorical product, 21
category

abelian, 28
additive, 27
filtered, 28
Grothendieck, 28

Cayley-Hamilton Theorem, 66
central simple algebra, 39

period, 47
Chevalley-Warning Theorem, 49
compact object, 28
composition series, 10
coproduct, 21
cosocle filtration, 12
cross-product algebra, 45
cross-product extension, 45

deformation
formal, 38
nth order, 38
polynomial, 38

delta functor, 29
universal, 29

denominator set, 56
Density Theorem, 9
descending chain condition, 9
distributive lattice of subspaces, 34

essential surjection, 17

formally smooth ring homomorphism, 53
functor

adjoint, 26
equivalence of categories, 20
essentially surjective, 20
faithful, 20
fully faithful, 20

generator, 28
Goldie’s theorem, 59
Grothendieck group, 11

ideal
left, 5
right, 5
two-sided, 5

invariant basis number property, 5
isotypic component, 8

Jordan-Hölder Theorem, 11

Kaplansky’s Theorem, 66
Koszul complex, 33
Krull-Schmidt Theorem, 14

matrix algebra, 4
module, 4

Artinian, 10
bi-, 5
descent data, 53
essential, 60
essential complement, 60
free, 5

rank of a, 5
Gelfand-Kirillov dimension, 73
Goldie rank, 60, 61
indecomposable, 13
injective dimension, 30
irreducible, 6
length of a, 10
Noetherian, 10
projective, 17
projective cover of a, 17
projective dimension, 30
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semisimple, 6
simple, 6
uniform, 60

Morita context, 24
Morita equivalence, 19
Morita context

derived, 24

Ore conditions, 56
Ore domain, 58
Ore set, 56

Poincare series, 36
Polishchuk-Positselski Conjecture, 75
Posner’s Theorem, 67
projective generator, 19

Razmyslov polynomial, 68
reduced trace, 48
reduced norm, 48
regular element, 57
ring, 4

étale homomorphism, 55
Artinian, 9
center of a, 22
cocenter of a, 22
division, 4
faithfully flat, 53
flat, 53
Goldie, 63
homological dimension, 30
Jacobson radical of a, 11

local, 13
localization at multiplicative subset, 56
Noetherian, 9
opposite, 4
polynomial identity, 63
prime, 59
primitive, 15
quotient, 5
semi-prime, 59
semi-primitive, 15
simple, 9
unital, 4

Rowen’s Theorem, 67

Schur’s Lemma, 6
Serre subcategory, 25
Skolem-Noether Theorem, 42
Smoktunowicz Theorem, 73
socle, 7
socle filtration, 12
Stephenson-Zhang Theorem, 74

trace map, 23
universal abelian group for a, 23

Tsen’s Theorem, 49

Ufnarovskii graph, 73

Warfield’s Theorem, 71
Wedderburn’s Theorem, 9

Yoneda Lemma, 21
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