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I. MORITA EQUIVALENCE 

This discusses when the module categories over two different rings A and B are equivalent. 

I.1. Hom 

When possible, we write homomorphisms f : PB −→ NB of right B-modules as acting on the left: 
p → fp. Writing homomorphisms on the left has the advantage of keeping the scalars out of the 
way. B-linearity becomes the associative law: 

f(pb) = (fp)b, and f(p1 + p2) = fp1 + fp2. 

For the same reason, we try to write homomorphisms g :A M −→ A M of left modules as acting 
on the right: m → mg. 

The set HomB (P, N) of module homomorphisms is an abelian group under addition of functions: 
[f + g]p = fp + gp. 

Composition of operators makes HomB (P, N) into a covariant functor of N and a contravariant 
functor of P : If u : N −→ N is a homomorphism, then the map HomB (P, N) −→ HomB (P, N ) 
is defined by sending f → u ◦ f , and similarly, if v : P −→ P , then HomB (P, N) ← HomB (P, N ) 
sends f to f ◦ v. 

Homomorphisms from a module PB to itself are called endomorphisms, and we denote the set 
HomB (P, P ) by End PB . It is a ring, multiplication being composition of functions. 

I.2. Bimodules 

Let A, B be rings. An A, B-bimodule is an abelian group with a structure of right B-module and 
also a structure of left A-module, such that the operations of A and B commute: 

(I.2.1) (ap)b = a(pb) 

for all a ∈ A, p ∈ P , b ∈ B. There are other ways to interpret such a structure: If we consider the 
right B-module structure PB, then left multiplication λa by an element a ∈ A, the map defined 
by λap = ap, is an endomorphism of PB. So we obtain a map A −→ End PB by sending a → λa, 
and this map is a ring homomorphism. Conversely, any ring homomorphism A −→ End PB gives 
a bimodule structure on P : 

Corollary I.2.2. An A, B-bimodule APB is given by a right module PB together with an arbitrary 
homomorphism A −→ End PB . In particular a right B-module P has a canonical E, B-bimodule 
structure, where E = End PB .  

Similarly, APB is also determined by a left module AP and a homomorphism B −→ EndA P . 
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Lemma I.2.3. (i) If APB is a bimodule, then HomB (P, N) is a right A-module by the rule [fa]p = 
f(ap). 
(ii) If RNB is a bimodule then HomB (P, N) is a left R-module, with the operation defined by 
[rf ]p = r(fp). 
(iii) HomB(P, − ) is a left exact functor on Mod B. More precisely, sequence 

0 −→ N1 −→ N2 −→ N3 

is exact if and only if 

0 −→ HomB (P, N1) −→ HomB (P, N2) −→ HomB (P, N3) 

is exact for all P ∈ Mod B. 
(iv) HomB(− , N) is a right exact contravariant functor on Mod B. A sequence 

P1 −→ P2 −→ P3 −→ 0 

is exact if and only if 

0 −→ HomB (P1, N) −→ HomB (P2, N) −→ HomB (P3, N) 

is exact for all N ∈ Mod B.  

Remark I.2.4: Let A be a commutative ring. By central A-module we mean the A, A-bimodule 
obtained from a right A-module by decreeing that the left and right actions are the same: am = ma. 
In commutative algebra, it is customary to move scalars from left to right informally, i.e., to work 
with this bimodule, calling it a module. This is not a good idea when A isn’t commutative, because 
the associative law for scalar multiplication screws things up: If we declare that am = ma for all 
a ∈ A and m ∈ M , then for a, a ∈ A, (aa )m = m(aa ). But the associative law requires that 
(aa )m = a(a m) = a(ma ) = (ma )a = m(a a). Thus right multiplication by aa and by a a are 
forced to be equal, which means that the actions of A on M factor through a commutative quotient 
ring of A. 

I.3. Projective modules 

A right B-module P is called projecive if it satisfies any one of the conditions of the proposition 
below. For example, a free module 

 
B is projective. 

Proposition I.3.1. The following conditions on a right B-module P are equivalent: 

(i) Let N 
v −→ N be a surjective map of right B-modules, and let P 

φ −→ N be any map. There exists 

a lifting of φ to N , a map P 
φ 

−→ N such that φ = v ◦ φ . 

(ii) Every surjective map Q 
f −→ P of right B-modules splits, i.e., there is a map Q 

s ←− P such that 
f ◦ s = idP . 
(iii) P is a summand of a free module F , i.e., F ≈ P ⊕ P for some module P . 
(iv) The functor HomB (P, − ) is exact: If 0 −→ N1 −→ N2 −→ N3 −→ 0 is an exact sequence, 
then 

0 −→ HomB (P, N1) −→ HomB (P, N2) −→ HomB (P, N3) −→ 0 



5 

is also exact.  

I.4. Tensor products 

If MA and AP are right and left A-modules, we can form the tensor product M ⊗ A P . It is defined 
as the abelian group generated by elements m ⊗ p, with the relations 

(m1 + m2) ⊗ p = m1 ⊗ p + m2 ⊗ p, m ⊗ (p1 + p2) = m ⊗ p1 + m ⊗ p2, and ma ⊗ p = m ⊗ ap. 

There is no structure of A-module on this tensor product: the actions of A have been used up in 
the middle. 

Lemma I.4.1. (i) The tensor product is functorial in M and in P . 
(ii) If APB is a bimodule, then M ⊗ A P becomes a right B-module. 
(iii) The functor − ⊗ A P is right exact: If 

M1 −→ M2 −→ M3 −→ 0 

is an exact sequence of right A-modules, then 

M1 ⊗A P −→ M2 ⊗A P −→ M3 ⊗A P −→ 0 

is also exact. Similarly, if 
P1 −→ P2 −→ P3 −→ 0 

is exact, then so is 
M ⊗A P1 −→ M ⊗ A P2 −→ M ⊗ A P3 −→ 0 

 

I.5. Functors 

We are interested in additive functors Mod A 
F −→ Mod B, but most considerations carry over to 

abelian categories. So let’s write the functor neutrally as 

C F −→ D. 

Recall that a functor associates to every object X ∈ C an image F X ∈ D , and for every pair 
X1, X2 of objects in C , a map HomC (X1, X2) −→ HomD(F X1, F X2), these maps on Hom being 
compatible with composition of morphisms in C . 
The adjective “additive” means that the maps on morphisms are homomorphisms of abelian groups, 
which is a mild restriction. A functor is additive if and only if F (X1) ⊕ F (X2) ≈ F (X1 ⊕ X2) (see 
[McL]). But never mind: Let’s just assume it. 

On the other hand, an additive functor needn’t be compatible with infinite direct sums. Given an 
indexed family Mi ∈ Mod A for i ∈ I, there is a canonical map 

 
F (Mi) −→ F ( 


Mi), but when 
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I is infinite it may not be an isomorphism. If this map is an isomorphism for all indexed families 
Mi, we say that F is compatible with direct sums. 

Exercise: Give an example of a functor which is not compatible with direct sums. 

A functor C F −→ D is fully faithful if the map HomC(M1, M2) −→ HomD(F M1, F M2) is bijective 
for all M1, M2 ∈ C , and F is essentially surjective if every N ∈ D is isomorphic to F M for some 
M ∈ C. 

A quasi-inverse of a functor F is a functor C G← − D such that F G ≈ idD and GF ≈ idC, where the 
symbols ≈ stand for isomorphisms of functors. The usual proof of uniqueness of inverses shows 
that a quasi-inverse is unique up to isomoprhism of functors. A functor which has a quasi-inverse 
is called an equivalence of categories. 

Example I.5.1: Let A be a commutative ring, and let L be an invertible A-module, or an invertible 
central bimodule. This means that there is an inverse module L−1 , such that L ⊗ A L

−1 ≈ L−1 ⊗ A 

L ≈ A. Then F = − ⊗ A L is an equivalence of categories Mod A −→ Mod A, an autoequivalence 
of Mod A, with quasi-inverse G = − ⊗ A L

−1 . Note that GF is not the identity functor, because 
M ⊗ A L ⊗ A L

−1 is not the same module as M . However, it is canonically isomorphic to M , and 
this canonical isomorphism yields the isomorphism of functors GF ≈ id. 

Proposition I.5.2. (i) A functor F between small categories is an equivalence if and only if it is 
fully faithful and essentially surjective. 
(ii) An equivalence of categories is an exact functor, and it commutes with direct sums. 

We will sketch the proof of the most interesting part, which is that a fully faithful, essentially 
surjective functor F is an equivalence. To prove this, we have to define a quasi-inverse G. Let 

N ∈ D . We choose an arbitrary isomorphism F M 
φ −→ N , where M is an object of C , and we 

set GN = M . This defines G on objects. To define G on maps, let N1 
f −→ N2 be given. Then 

φ−1 
2 ◦ f ◦ φ1 is a map F M1 −→ F M2. Since F is fully faithful, there is a unique map M1 

g −→ M2 

such that F (g) = φ −1 
2 fφ1. We set G(f) = g. 

I.6. Direct limits 

By abstract diagram I we mean a category whose objects form a (small) set. For example, a 
directed graph, a collection of vertices and of arrows connecting vertices, gives rise to a diagram if 
one adds identity maps and compositions of arrows. By diagram in a category C we mean a functor 
X : I −→ C from an abstract diagram to C . Given such a diagram in C and an object i ∈ I, we 
may write Xi for the image of i. So a diagram in C may be viewed as a collection of objects Xi 

and of maps between them, identities and compositions of maps being included. 

A map X 
Φ −→ N from a diagram in C to an object N of C is by definition a collection of maps 

Xi 
φi −→ N which are compatible with all maps in the diagram. More precisely, if i 

u −→ j is a map in 
I, then Xi maps to Xj by u (strictly speaking, by Xu), and we require that φj = φi ◦ u. This is 
to be true for all arrows u in I. 
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The direct limit X = lim −→ I X of a diagram X in C is the universal object for maps from X to objects 
of C . So it is defined by the rule 

HomC(X, N) ≈ { mapsX −→ N} . 

It is not hard to construct this direct limit for an arbitrary diagram. We start with the direct sum 
U = 

 
I Xi. Then a map U −→ N corresponds to an arbitrary collection of maps from the Xi to 

N : 
HomC(U, N) ≈ Πi∈I HomC(Xi, N). 

The direct limit is a quotient of U , which is obtained by introducing the compatibility conditions: 
Let i u −→ j in I. Then Xi 

u −→ Xj . Let K denote the kernel of the map (u, − 1) : Xi ⊕ Xj −→ Xj . If 
C is a module category, then K consists of pairs (x, − ux) with x ∈ Xi. To make the two maps φi, 
φj compatible with u requires killing K. So X is obtained from U by killing all of these subobjects 
K. 

Corollary I.6.1. Let F : C −→ D be a right exact functor which is compatible with direct sums. 
Then F is compatible with arbitrary direct limits. In other words, if X : I −→ C is a diagram in C 
and if F X denotes the composed diagram F ◦ X in D , then lim −→ F X ≈ F (lim−→ X). 

Proof. This follows from the fact that lim −→ X is constructed as a cokernel of a direct sum, and that 
F is compatible with cokernels and direct sums.  

Exercise: Describe lim −→ X when I has two objects. 

I.7. Adjoint functors 

Most functors F : C −→ D are not equivalences. For one thing, if we are given an object Y ∈ D , 
there is no reason to suppose that an object X ∈ C such that F X ≈ Y exists. But we may still 
ask for a best approximation to such an object. So among objects X ∈ C such that F X maps to 
Y , we may look for a universal one. 

Let IY denote the category whose objects are pairs (X, φ), where X ∈ C and φ : F X −→ Y is a 
map in D . A morphism (X1, φ1) −→ (X2, φ2) in IY is defined to be a morphism X1 

u −→ X2 in C 
which is compatible with φi, i.e., such that φ2 = φ1 ◦ F u. 

By the defining property of direct limits, lim −→ (X,φ)∈IY 
F X maps to Y , provided that the limit exists. 

Suppose that F is compatible with direct limits. Then we obtain a map F X ≈ lim −→ IY F X −→ Y , 

call it φ. This map is the universal one we are looking for. 

We can define a functor G : C ← D by setting GY = X. Morphisms can be defined in a natural 

way, using the fact that if a map Y1 
v −→ Y2 in D is given, then any map F X 

φ −→ Y1 yields a map 

F X 
vφ −→ Y2 by composition. 

Notice the following property for the functor G constructed in this way: Given a map F X −→ Y 
in D , there is a canonical map X −→ X = GY , and conversely. In other words, we have a bijection 

HomC(F X, Y ) −→ HomD(X, GY ). 
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Two functors C F −→ D and C G← − D are said to be adjoint if there is a natural bijection 

HomC (FX, Y ) 
θ−→ HomD(X, GY ), 

for X ∈ C and Y ∈ D . (The word “natural” means that θ is compatible with maps in both 
variables.) Then F is called a left adjoint of G and G is a right adjoint of F . The above consruction 
leads to the adjoint functor theorem of Kan and Freyd (see [McL], p. 125), which is quoted below. 
For the statement, we need to know one more definition: A generator for a category C is an object 
U such that every object is a quotient of a direct sum of copies of U . For example, the module AA 

is a generator for the category Mod A. 

Theorem I.7.1. Let C , D be abelian categories with exact direct limits. Suppose that C has a set 
of generators. Then a functor F : C −→ D has a right adjoint if and only if it is right exact and 
compatible with direct sums.  

Exercise: State the theorem for existence of left adjoints, and describe their construction by 
reversing arrows appropriately in the above discussion. 

Proposition I.7.2. The functors − ⊗ A P and HomB (P, − ) are adjoint. In other words, for 
M ∈ Mod A and N ∈ Mod B, there are natural bijections 

HomB (M ⊗A P, N) 
θ −→ HomA(M, HomB (P, N)). 

Example I.7.3: (extension and restriction of scalars) Suppose we are given a ring homomorphism 
φ : A −→ B. A right B-module NB can be made into a right A-module N | A by restriction of 
scalars, which means that A acts via the homomorphism φ: na = n(φa). Similarly, we can restrict 
scalars in a left module, so we can make B BB into an A, B bimodule ABB by restricting the 
left action. Then the right A-module HomB(ABB , NB ) is just N | A. So, setting P =A BB , the 
adjointness formula reads 

HomB (M ⊗A B, N) ≈ HomA(M, NA). 

Here − ⊗ A B is the extension of scalars from A to B: Extension and restriction are adjoint functors. 

Proof of Proposition I.7.4. We already know that − ⊗ A P is right exact and compatible with direct 
sums, and that Mod A has a generator. So a right adjoint exists. Unfortunately this fact is not of 
much help in identifying the adjoint. 

We have to find a functorial bijection between the two sets HomB (M⊗ AP, N) and HomA(M, HomB (P, N)). 
There is a general method to verify such a formula in three steps: Case 1: M = AA. Case 2: M 
is a free module, a direct sum of copies of A. Case 3: The general case. 

Suppose that M = A. Since A ⊗ A P ≈ P and HomA(A, X) ≈ X, the two sets are canonically 
equivalent, as required. 

Next, suppose that M = 
 

I A is free. Since tensor product commutes with direct sums, ( 
 
A) ⊗ 

P ≈ 
 

(A ⊗ P ) ≈ 
 
P . Also, by the defining property of direct sums, HomA( 

 
X, Y ) ≈ 



9 

ΠI HomA(X, Y ). Combining these two facts and setting H = HomB (P, N), we obtain HomB (M ⊗ 
P, N) ≈ ΠH, and HomA(M, H) = Π HomA(A, H) ≈ ΠH, as required. 

Finally, for arbitrary M , choose a presentation of M by free modules, say 

M := M1 −→ M2 −→ M3 −→ 0, 

where M1, M2 are free and M3 = M . Then M ⊗A P is exact, hence HomB (M ⊗A P, N) is left exact. 
Also, setting H = HomB (P, N) as before, HomA(M , H) is left exact. So we have a commutative 
diagram 

0 −−−−→ Hom B (M3 ⊗ A P, N) −−−−→ Hom B (M2 ⊗ A P, N) −−−−→ Hom B (M3 ⊗A P, N) 
⏐⏐ 

⏐⏐ 
⏐⏐ 

0 −−−−→ HomA(M3, H) −−−−→ HomA(M2, H) −−−−→ HomA(M1, H) 

in which the second and third vertical arrows are isomorphisms. It follows that the left hand 
vertical arrow is also an isomorphism. 

This argument isn’t complete, because it isn’t clear that the bijections described for free modules 
are functorial (i.e. compatible with maps). Without that, we don’t know that the right hand square 
is commmutative. So to complete this argument, we will have to prove functorality. Functorality 
is “easy to see”. (When you see “easy to see” in mathematics, it usually means either “I’m too 
lazy to think this through, but I think it is true”, or else “This is too grungy to write down”. It 
rarely means easy to see in the literal sense. If someting were truly easy to see, then the author 
would probably have told us how to see it, or else wouldn’t have thought it necessary to emphasize 
the point.) 

An alternative method of proof is to write the bijection down in a functorial way at the start. 
This approach is less elementary, and it replaces one “easy to see” with another one. Here is the 
description of the functorial map θ. Given a B-map φ : M ⊗ A P −→ N , we have to exhibit its 
image, an A-map ψ : M −→ H. So given φ and an element m ∈ M , we need to define ψm ∈ H. 
We set ψm(p) = φ(m ⊗ p). This formula also defines the inverse of θ. The notation has become 
cumbersome, and there are many points to check, but all the verification is straightforward. This 
method is perhaps better. The first approach as a good heuristic argument.  

Lemma I.7.5. (i) Two right adjoints G1, G2 of a functor F are isomorphic functors. 
(ii) If F is an equivalence and G is a quasi-inverse of F , then G is a left and also a right adjoint 
of F . 

Proof. (i) This follows from the fact that an object Z in a category C is determined by the functor 
HomC (− , Z), up to canonical isomorphism (the Yoneda Lemma [McL]). The adjoint property 
determines the functor HomC (−, GiY ).  

Proposition I.7.6. The following are equivalent for a functor F : Mod A −→ Mod B. 
(i) There is an A, B-bimodule APB and an isomorphism of functors − ⊗ A P ≈ F . 
(ii) F has a right adjoint. 
(iii) F is right exact and compatible with direct sums. 
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Proof. (ii) ⇔ (iii) follows from the adjoint functor theorem. (i) ⇒ (ii) is the exactness property of 
− ⊗A P . 

(ii) ⇒ (i): Let G be a right adjoint of F . Then for N ∈ Mod B, 

GN ≈ HomA(A, GN) ≈ HomB (FA, N) = HomB (P, N). 

So G ≈ HomB(P, − ). Since the left adjoint of HomB (P, − ) is − ⊗ A P , the functors F and − ⊗ A P 
are isomorphic.  

I.8. Morita equivalence 

Proposition I.8.1. A functor F : Mod A −→ Mod B is an equivalence of categories if and only 
if there are bimodules APB and B QA such that 
(i) F ≈ − ⊗A P , and 
(ii) P ⊗ B Q is isomorphic as bimodule to AAA and also Q ⊗ A P is isomorphic to B BB . 
If these conditions hold, then − ⊗ B Q is a quasi-inverse of − ⊗ A P . 

It follows that A, B, P, Q describes a Morita context: 

 
A P 
Q B 

 

. 

Proof. Suppose that F is an equivalence. Then F is exact and compatible with direct sums, so it 
has the form − ⊗ A P . Similarly, the quasi-inverse G of F has the form − ⊗ B Q. The isomorphism 
GF ≈ idMod A gives us an isomorphism Q ⊗ B P ≈ A ⊗ A P ⊗ B Q ≈ AA which is functorial, hence 
compatible with left multiplication, i.e. a bimodule isomorphism. Similarly, FG ≈ idMod B yields 
B BB ≈ Q ⊗A P . 

Conversely, suppose that conditions (i) and (ii) are satisfied. Then using the isomorphisms M ≈ 
M ⊗ A P ⊗ B Q and N ≈ N ⊗ B Q ⊗ A P one shows that F is fully faithful and essentially surjective, 
hence an equivalence. Then the isomorphisms (ii) show that − ⊗ B Q is a quasi-inverse of − ⊗ A P . 
 

Proposition I.8.2. (the main example) The category of right modules over a ring B is equivalent 
to the category of right modules over the algebra Mn(B) of n × n matrices with entries in B. 

Proof. Let F = Bn be the right module of n-dimensional row vectors with entries in the ring B, 
let F ∗ = Bn = HomB (F, B) the the left module of n-dimensional column vectors, and let A = 
Mn(B) = End FB be the matrix algebra. So BFA and AF ∗ 

B are bimodules. Matrix multiplication 

defines an obvious bijection F ∗ ⊗ B F 
η −→ A, and also a surjective map F ⊗ A F ∗ θ −→ B. These maps 

define a Morita context  
B F 
F ∗ A 

 

. 

Since θ is surjective, it is bijective (see Proposition I.8.4 below). Therefore the previous proposition 
applies.  
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Proposition I.8.3. Let P, Q be as in proposition I.8.1. Then 
(i) For N ∈ Mod B, there are natural isomorphisms N ⊗ B Q ≈ HomB (P, N). 
(ii) Q ≈ HomB(P, B) is the dual module of PB, 
(iii) A ≈ HomB (P, P ) = End PB , 
(iiv) PB is a projective B-module, 
(v) PB is a generator for Mod B, and 
(vi) PB is a finitely generated B-module. 

Proof. (i) Both functors in question are right adjoints of − ⊗ A P . 

(ii) Set N = B in (i), to obtain Q ≈ B ⊗ B Q ≈ HomB (P, B). 

(iii) Set N = P in (i), to obtain A ≈ P ⊗ B Q ≈ HomB (P, P ). 

(iv,v) These assertions follow F is an equivalence of categories, AA is a projective generator of 
Mod A, and P = FA. 

(vi) This is the only tricky part of the proposition. We’ll use the non-obvious part of the description 
of Morita context A, B, P, Q, which is that the two ways of contracting P ⊗ B Q ⊗ A P −→ P are 

equal. Let’s label the isomorphisms I.8.1(ii), say P ⊗ B Q 
θ −→ A and Q ⊗ A P 

η −→ B. On tensors 
p⊗ q ⊗ p , the equality of the two contractions reads ap = pb, where a = θ(p⊗ q) and b = η(q ⊗ p ). 
(Note: for these contractions to be equal, θ and η have to be chosen compatibly.) 

First, since P ⊗ B Q ≈ A, we can find finite sets pi ∈ P and qi ∈ Q such that θ(Σpi ⊗ qi) = 1A. 
We claim that the set { pi} generates PB. To see this, let p ∈ P . Then p = 1p = Σθ(pi ⊗ qi)p = 
Σpiη(qi ⊗ p ) = Σpibi, as required.  

The reasoning used above also shows the following 

Proposition I.8.4. Let A, B, P, Q be a Morita context. If the canonical map θ : P ⊗ B Q −→ A 
is surjective, then it is bijective. 

Proof. As above, we use surjectivity to write θ(Σpi ⊗ qi) = 1A. Suppose that x is in the kernel 
of θ, and say x = Σuj ⊗ vj , with uj ∈ P and vj ∈ Q. So θ(Σuj ⊗ vj ) = 0. We look at the 
element z = Σpi ⊗ qi ⊗ uj ⊗ vj in the four fold tensor product P ⊗ B Q ⊗ A P ⊗ B Q. We have 
1 ⊗ 1 ⊗ θ = 1 ⊗ η ⊗ 1 = θ ⊗ 1 ⊗ 1. Evaluating the left map on z yields 0, while the right map yields 
x. Thus x = 0.  

Proposition I.8.1 identifies the bimodules P which define equivalences of categories as invertible 
bimodules. The following theorem gives another characterization of such bimodules. 

Theorem I.8.5. Let PB be a finitely generated projective generator of Mod B, and let Q = 
HomB (P, B) and A = End PB . Then P is an A, B-bimodule, and the functor F := − ⊗ A P 
is an equivalence of categories. 

Proof. Note that the previous proposition is essentially the converse to this theorem. The first 
step is 
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Lemma I.8.6. Let PB be an arbitrary right B-module, let Q = HomB (P, B) and A = EndP B. 
There is a canonical Morita context  

A P 
Q B 

 

. 

Proof. The fact that APB and B QA are bimodules follows from our discussion of the functor Hom. 

We need to define the maps P ⊗ B Q 
θ −→ A and Q ⊗ A P 

η −→ B. We can evaluate an element 
q ∈ Q = HomB (P, B) on p ∈ P . Let us denote the result by  q, p . Then our map Q ⊗ A P 

η −→ B 

is defined on a tensor q ⊗ p by η(q ⊗ p) =  q, p . Next the map P ⊗ B Q 
θ −→ A is defined as follows: 

Given a tensor p ⊗ q, we have to exhibit an element of A, i.e., an endomorphism of PB. The rule 
is θ(p ⊗ q)p = p q, p  . These maps obviously satisfy the requirement that the two contractions 
P ⊗ B Q ⊗ A P −→ P are equal. For the two contractions of a tensor q ⊗ p ⊗ q , we note that the 
results are elements of Q, which are determined by their actions on elements p ∈ P . To evaluate 
on p means to contract the four-fold tensor q ⊗ p ⊗ q ⊗ p to an element of B. Starting with 
η ⊗ 1 ⊗ 1 leads to  q, p q , p  , and the second contraction is 

q ⊗ (p ⊗ q ) ⊗ p → q ⊗ θ(p ⊗ q ) ⊗ p = q ⊗ p q , p  →  q, p q , p  . 

So the two are equal, as required.  

Next, we use the fact that PB is a generator. 

Lemma I.8.7. With the above notation, the map Q ⊗ A P 
η −→ B is bijective. 

Proof. Since PB generates the category Mod B, there is a surjective map 
 

I P −→ BB . In order 
for such a map to be surjective, it suffices that 1 be in its image, which will be true for a finite 
sum. So we may assume that I is finite. The map 


I P −→ B is determined by a collection of 

maps { qi : P −→ B} i∈I , a collection of elements of Q. So we can write 1B = Σ qi, pi for some 
pi ∈ P . Therefore η is surjective, and by Proposition I.8.4, it is bijective.  

Next, we use the fact that PB is a finitely generated projective module. There is a finitely generated 
free module, say F = Bn , such that F ≈ P ⊕ P . What can we deduce from proposition 8/2? 
With the notation of that proposition, F ∗ ≈ Q ⊕ Q , where Q = HomB (P , B), and, denoting 
HomB (P, P ) by (P, P ) for short, we have a Peirce decomposition 

Mn(B) ≈ 

 
(P, P ) (P, P ) 
(P , P ) (P , P ) 

 

. 

The projection P −→ F −→ P is the relevant idempotent element in Mn(B). So A = (P, P ) = 
eMn(B)e, P = eF , and Q = F ∗ e. Since F ⊗ B F

∗ ≈ Mn(B), we also have P ⊗ B Q = eF ⊗ B F
∗ e ≈ A. 

This shows that APB and B QA are inverse bimodules, and completes the proof  

Exercise: Show that if A, B are commmutative and Morita equivalent, then they are isomorphic. 

Exercise: Let A, B be rings. Prove that if their categories of right modules are equivalent, then 
so are their categories of left modules. 

Reference: 

[McL] S. MacLane, Categories for the working mathematician, Springer 1971. 
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II. LOCALIZATION and GOLDIE’S THEOREM 

This discusses the possibility of using fractions in noncommutative algebra. For example, we would 
like to embed a domain A in a skew field of fractions. 

II.1. Terminology: 

An element s ∈ A is regular if it is not a left or right zero divisor, i.e., if as = 0 implies a = 0 and 
also sa = 0 implies a = 0. If s is regular, then we can cancel: sa = sb implies that a = b and 
as = bs implies a = b. 

The right annihilator of a subset X of a module MA is the right ideal rann(X) = {a ∈ A|Xa = 0}. 
Similarly, the left annihilator of a subset X ⊂A M is the left ideal lann(X) = {a ∈ A|aX = 0}. 
Thus s ∈ A is regular element if and only if rann(s) = 0 and lann(s) = 0. (I can never remember 
whether rann(s) = 0 means that s is left regular or that it is right regular.) 

Lemma II.1.1. If a regular element s has a right inverse, then it is invertible. 

Proof. Suppose that st = 1 and that its right annihilator rann(s) is zero. Then we can cancel s 
on the left in the equation sts = s to obtain ts = 1.  

II.2. Ore Sets: 

We will work with right fractions as−1 , where a, s ∈ A. The difficulty with fractions is that the 
formal product of two right fractions has no obvious interpretation as a fraction: To interpret 
(bs−1)(at−1) as a fraction, we need to have a method to “move s−1 past a”. In other words, we 
need to be able to rewrite a left fraction s−1a as a right fraction, say as a1s

−1 
1 . 

Suppose for the moment that A is a domain. Working formally with the relation s−1a = a1s
−1 
1 , 

we multiply on left by s and on right by s1, obtaining the peculiar equation 

(II.2.1) sa1 = as1. 

In order to have a hope of success, for given a and s, there must exist elements a1, s1, with s1 = 0, 
such that (II.2.1) is true. This is called the Ore condition. 

Now in many cases one can’t solve (II.2.1) for s1, a1. For example, let k be a field and let A = kx, y 
be the free ring of noncommutative polynomials in x, y. Setting a = x, s = y, the equation (II.2.1) 
becomes yf = xg, which has no nonzero solution for f, g in A. The correct method of embedding 
A into a skew field does not use fractions. (See P.M. Cohn, Free rings and their relations) The 
next proposition exhibits the close relation between the Ore condition and free rings. 

Proposition II.2.2. (Jategoankar) Let A be a domain which is an algebra over a field k. Let 
a, s ∈ A, with s = 0. If the right Ore condition (II.2.1) fails for this pair of elements, then they 
generate a free subring of A, so A contains a free ring. 

Proof. Suppose that a, s do not generate a free ring, so that f(a, s) = 0, where f(x, y) is a nonzero, 
noncommutative polynomial with coefficients in k. We choose f of minimal degree, and write 
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f(x, y) = c + xu + yv, where c ∈ k is the constant term of f , and where u = u(x, y) and v = v(x, y) 
are noncommutative polynomials. Multiplying on the right by y, we obtain fy = cy + xuy + yvy, 
hence yq = xp in A, with p = uy and q = − (c + vy). Setting a1 = q(a, s) and s1 = p(a, s), we 
obtain the required equation sa1 = as1 in A unless s1 = 0 in A. Now if s1 = u(a, s)s = 0, in 
A, then because s = 0 and A is a domain, u(a, s) = 0. Since f has minimal degree, u(x, y) = 0, 
f = c + yv, and 0 = c + sv(a, s). If c  = 0, then s is invertible (1.1), and (II.2.1) can be solved with 
s1 = 1. If c = 0, then v(a, s) = 0, hence v(x, y) = 0. But then f = 0, which is a contradiction.  

In spite of the negative evidence, Oystein Ore in the 1930s investigated the problem of deciding 
when fractions could be used. And thanks to the work of Goldie in the 1950s, fractions have 
become a cornerstone of the theory of noncommutative noetherian rings. 

Let A be a ring. We’ll call a subset S ⊂ A a right Ore set if it has the following properties: 

(II.2.3) 
(a) S is closed under multiplication, and 1 ∈ S. 
(b) The elements of S are regular. 
(c) right Ore condition: For all a ∈ A and s ∈ S, there exist a1 ∈ A and s1 ∈ S such that 

sa1 = as1. 

The Ore condition (c) can be restated by saying 

sA ∩ aS  = ∅ . 

As in commutative algebra, the requirement that S consists of regular elements can be relaxed, 
but never mind. 

Exercise: Let A = k x, y /(yx − xy − 1) be the Weyl algebra. Show that the set S of powers of x 
is a right Ore set. 

Exercise: Let R be a ring and let φ : R −→ R be an injective ring homomorphism. Let A = R[x, φ] 
be the Ore extension, the polynomial ring in which scalars commute with x by the action of φ, i.e., 
xa = aφx. Show that the set S of powers of x is a left Ore set, and that it is a right Ore set if and 
only if φ is bijective. 

Theorem II.2.4. (Ore) Let S ⊂ A be a right Ore set. There is a ring AS−1 of right fractions 
and an injective ring homomorphism A −→ AS−1 such that 

(a) the image of every element s ∈ S is invertible in AS−1 , and 
(b) every element of AS−1 can be written as a product as−1 . 

Moreover, any homomorphism A 
f −→ R such that the images of elements of S are invertible in R 

factors uniquely through AS−1 . 

Corollary II.2.5. Suppose that S is both a left and a right Ore set. Then the rings of left fractions 
and of right fractions are isomorphic  

The next theorem is one of the most important tools for the study of noetheran rings. The proof, 
which is in sections 5 and 6, has been analyzed many times, but it still seems remarkable. It is a 
triumph of abstract ring theory. 
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Theorem II.2.6. (Goldie) Let A be a right noetherian, semiprime ring. The set S of regular 
elements in A is a right Ore set, and AS−1 is a semisimple ring, a sum of matrix algebras over a 
skew fields. 

II.3. Construction of the Ring of Fractions 

Let S be a right Ore set in a ring A. To construct the ring of fractions B = AS−1 , we use the Ore 
condition to change left fractions to right fractions. However, we must verify that this procedure 
is consistent, and the number of points which have to be checked is unpleasantly large. Moreover, 
some of the points can be confusing. So we proceed indirectly as follows: We first construct B 
as a left A-module, which is easy. Then we show that B is a ring by identifying it as the ring of 
endomorphisms E = EndA B of the module we have constructed. This step requires a bit of work, 
but the approach has benefits: For one thing, we know from the start that E is a ring. 

Lemma II.3.1. (i) Suppose that s, t are elements of a rihgt Ore set S, and that for some x ∈ A, 
sx = t. Then x is regular. 
(ii) (existence of common denominators) Let s, s ∈ S. There is a common multiple t ∈ S, i.e., 
t = sx and t = s x for some regular elements x, x ∈ A. 
(iii) (variation of the elements a1, s1 in the Ore condition) With the notation of the Ore condition, 
suppose that sa1 = as1 and also sa2 = as2, with s1, s2 ∈ S. There are regular elements x1, x2 ∈ A 
such that s1x1 = s2x2 and a1x1 = a2x2. 

Proof. (i) Because rann(t) = 0, the equation sx = t implies rann(x) = 0. To show that lann(x) = 
0 requires the Ore condition. We set s = t and a = s in the (II.2.3c), obtaining ta1 = ss1, with 
s1 ∈ S. Then sxa1 = ta1 = ss1, and we may cancel s to obtain xa1 = s1. Since lann(s1) = 0, 
lann(x) = 0 too. 

(ii) We set s = s and a = s in the Ore condition, obtaining sa1 = s s1. Since S is closed under 
multiplication, t = s s1 ∈ S. So we may take x = a1 and x = s1. The fact that x is regular follows 
from (i). 

(iii) We choose a common multiple s1x1 = s2x2 in S with xi regular. Then sa1x1 = sa2x2. Since 
s is a regular element, a1x1 = a2x2.  

Of course, the elements of the ring we are looking for are equivalence classes of fractions, not the 
fractions themselves. Two fractions as−1 and a s −1 

are defined to be equivalent if there are are 
elements x, x ∈ A such that sx ∈ S, sx = s x , and ax = a x . One has to verify that this is indeed 
an equivalence relation. I like to replace these verifications by describing the equivalence classes as 
elements of a direct limit. If you don’t want to do this, just skip ahead. 

To interpret fractions as a limit, we’ll make the set S into a category, by defining a map s −→ t 
between elements s, t ∈ S to be an element x ∈ A such that sx = t. 

Lemma II.3.2. There is at most one arrow s −→ t for s, t ∈ S, and any two elements s, s ∈ S 
admit maps to some t ∈ S. Hence the category S is filtering. 

Proof. First, given s, t ∈ S, there is at most one arrow s −→ t. Indeed, if sx = t and sy = t, then 
sx = sy, and because s is regular, x = y. Next, given s, s ∈ S, we must find an element t and 
maps s −→ t and s −→ t. We take a common multiple t = sx = s x .  
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Let As−1 denote the left A-module generated freely by an element denoted s−1 . The elements of 
As−1 are our formal fractions as−1 . So AA is canonically isomorphic to AAs−1 , by a → as−1 . We 
define a functor from S to the category of left A-modules by sending s → As−1 . If s 

x −→ t, i.e., 
t = sx, the map As−1 −→ At−1 corresponds to right multiplication by x on A. 

s As−1 s−1 

←−−−− A 

x 

⏐⏐ 
⏐⏐x 

t At−1 t−1 

←−−−− A 

. 

This reflects the heuristic computation 

as−1 = (ax)(sx)−1 = (ax)t−1 . 

We define B = lim −→ As
−1 . Elements of B are represented by formal fractions as−1 , and two fractions 

as−1 , a s −1 
represent the same element b if there is a common multiple t = sx = s x in S such 

that ax = a x , i.e., if they are equivalent fractions in the sense defined above. As is customary in 
arithmetic, we may refer to a fraction informally as an element of B. An element a ∈ A can stand 
for the fraction a1−1 and s−1 for the fraction 1s−1 . 

Lemma II.3.3. (i) B is a left A-module, the product of α ∈ A with a fraction as−1 being (αa)s−1 . 
There are canonical injective A-linear maps As−1 −→ B, in particular, there is an injective map 
AA −→ A B 
(ii) Left multiplication by s ∈ S on B is injective.  

Since B is a left A-module, there is a canonical bijection of left modules AB −→ Hom(AA,A B). 
It sends an element β ∈ B to right multiplication by β, acting on A, and its inverse evaluates a 
homomorphism A −→ B on the identity element 1A. The main point of the construction of the 
ring of fractions is the next proposition. 

Proposition II.3.4. For every β ∈ B, right multiplication by β on A extends uniquely to an 
endomorphism  β of AB. This extension provides a bijection B −→ EndA B. 

Proof. Case 1: β ∈ A. Let us rename β as α. To define  α : B −→ B, we represent an element 
b ∈ B by a fraction as−1 . Then heuristically, we want to define b α as the product as−1α. To 
get an element of B, we must “move s−1 past α”. We apply the Ore condition (II.2.3c), writing 
sα1 = αs1, and we set 

(II.3.5) bα = (aα1)s
−1 
1 . 

We must show that this is well-defined by verifying independence of the two choices made: 
a) the choice of α1, s1 in the Ore condition, and 
b) the choice of the fraction as−1 representing b. 

a) We may assume that a second choice sα2 = αs2 has the form α2 = α1x, s2 = s1x (see II.3.1). 
Our procedure yields (aα2)(s2)

−1 = (aα1x)(s1x)
−1 , which is a fraction equivalent with (II.3.5). 
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b) Because of the existence of common multiples, it suffices to treat the case that a second fraction 
representing b has the form a s −1 

where a = ax and s = sx. Our procedure tells us to write 
s α2 = αs2 and to use the fraction (a α2)s2 

−1 . Taking common multiples again, we may assume 
that s2 = s1, where s1 is as in (II.3.5). This is allowable because a) has been verified. Then 
αs1 = sα1 and also αs1 = s α2 = sxα2. Since s is regular, sα1 = sxα2 implies that α1 = xα2. So 
(a α2)s

−1 
2 = (axα2)s

−1 
1 = (aα1)s

−1 
1 , as required. 

To show that the map  β we have constructed is A-linear, we may represent a pair of elements 
b, b ∈ B by fractions using a common denominator. Then linearity is clear from the formula 
(II.3.5). 

Case 2: β = σ−1 . This case does not require the Ore condition: With notation as above, we simply 
identify the formal product as−1σ−1 in the obvious way, as the fraction a(σs)−1 . Independence of 
the choice of fraction representing b and A-linearity of  β are easy to check. 

Case 3: β ∈ B is arbitrary. We represent β by a fraction ασ−1 . Then right multiplication by β 

on A is the composition of the two maps A 
α −→ A 

σ−1 

−−→ B. This composition extends to B in two 
steps: 

(II.3.6) 

A 
α −−−−→ A 

σ−1 

−−−−→ B 
⏐⏐ 

⏐⏐ 
⏐⏐ 

A 
α −−−−→ B 

gσ−1 −−−−→ B 
⏐⏐ 

⏐⏐ 
⏐⏐ 

B 
eα −−−−→ B 

gσ−1 −−−−→ B 

To complete the discussion, we must check that  β is the only A-linear extension of A 
β −→ B. This 

follows from the next lemma. 

Lemma II.3.7. An endomorphism φ of AB is determined uniquely by the element β := 1φ. 

Proof. Let b = as−1 be an element of B, and let x = s−1φ. Since φ is A-linear, bφ = ax. We have 
sx = s(s−1φ) = (ss−1)φ = β. Since s is a regular element, sx determines x for every x ∈ B. Thus 
x is determined uniquely by β, and so is bφ.  

Proof of Theorem II.2.4. Since E = EndA B is a ring, the bijection B ≈ E sending β →  β defines 
a ring structure on B. By definition, multiplication in B corresponds to composition of operators 
in E. We verify the assertions of the theorem: 

(i) The bijection is an isomorphism of the (previously defined) left module structures AB −→ A E. 

Let β3 = α1β1 + α2β2 in B. To show that β3 = α1
β1 + α2

 β2, it suffices to show that these two 
operators take the same values on the element 1, which is true. 

(ii) The canonical map A −→ B (II.3.3) is a ring homomorphism. 
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This follows from (i). 

(iii) The elements of S are invertible in the ring B , and every element of B is a product as−1 , 
where a ∈ A and s ∈ S. 

Clear, I think. 

(iv) Multiplication in B is the unique associative law which agrees with left multiplication by A 
on AB. 

Let ∗ denote such a law. Agreement with the left multiplication by A means that a ∗ b = ab for 
a ∈ A and b ∈ B. Then s(s−1 ∗ (a s −1

)) = s ∗ s−1 ∗ a ∗ s −1 
= a ∗ s −1 

= a s −1 
, and also 

s(s−1a s −1
) = a s −1 

. Cancelling s, s−1 ∗ (a s −1
) = s−1a s −1 

. Then to show that b ∗ b = bb , we 
represent by fractions: b ∗ b = (as−1) ∗ (a s −1

), and apply what has been shown. 

(v) A ring homomorphism φ : A −→ R such that the images of elements of S are invertible extends 
to B. 

We’ll omit the verification of this statement.  

II.4. Modules of Fractions 

Let S be a right Ore set in A, and let M be a right A-module. We may form a module of fractions 
MS−1 in two ways: First, as a direct limit M1 = lim −→ Ms−1 analogous to the construction of AS−1 . 
But note that since M has no left A-module structure, neither does Ms−1 . So M1 is, a priori, 
only an abelian group. Also, right multiplication by s ∈ S need not be injective on M , so the 
canonical maps Ms−1 −→ M1 may not be injective. However, M1 has the advantage of being an 
exact functor of M , because lim −→ is exact. 

The second way to construct a module of fractions is as the tensor product M2 = M ⊗ A AS
−1 . 

This yields a right AS−1-module, but a priori, tensor product is only right exact. 

Proposition II.4.1. (i) There is a canonical bijection of abelian groups M1 −→ M2, sending 
ms −1 → m ⊗ s −1 . 
(ii) AS−1 is flat over A, i.e., − ⊗ A AS

−1 is an exact functor. 

Proof. (i) Independence of the fraction representing an element of M1, and linearity of the map 
are easy and similar to verification done in the previous section. It is clear that every element of 
M ⊗ A AS

−1 can be represented by a tensor m ⊗ s−1 , so the map is surjective. To show that it 
is bijective, we note that both constructions are right exact and compatible with direct sums, and 
that the map is bijective when M = AA. Hence it is bijective in general. (ii) follows from (i).  

II.5. Essential Submodules and Goldie Rank 

A submodule E of a right A-module M is essential if for every nonzero submodule X of M , 
X ∩ E  = 0. 

Exercise: In a prime ring A, every nonzero two-sided ideal I is an essential right ideal. 
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Proposition II.5.1. (i) Let M1 ⊂ M2 ⊂ M3 be modules. If M1 is essential in M2 and M2 is 
essential in M3, then M1 is essential in M3. 
(ii) Let f : M −→ M be a homomorphism of right A-modules. If W is an essential submodule of 
M , then W := f−1(W ) is essential in M . 
(iii) If Ei is an essential submodule of a right module Mi for i = 1, ..., n, then E1 ⊕ · · · ⊕ En is an 
essential submodule of M1 ⊕ · · · ⊕ Mn.  

Proof. Assertion (i) is clear. 

(ii) Let X be a nonzero submodule of M . Then f(X ) is a submodule of M . If f(X ) = 0, then 
f(X ) ∩ W = 0, and f(X ) ∩ W = f(X ∩ W ). If f(X ) = 0, then X ⊂ W . In either case, 
X ∩ W = 0. 

(iii) By (ii), if E is essential in M , then E ⊕ N is essential in M ⊕ N for every N . Hence we may 
replace one Ei at a time by Mi in the direct sum E1 ⊕ · · · ⊕ En, and apply (i).  

Proposition II.5.2. Let M1 be any submodule of a module M . There exists a complementary 
submodule M2 of M , one such that M1 ∩ M2 = 0 and M1 ⊕ M2 is essential. 

Proof. (i) By Zorn, we may take for M2 a maximal submodule such that M1 ∩ M2 = 0. Then 
M1 ⊕ M2 is essential.  

Corollary II.5.3. A module M has no proper essential submodule if and only if it is semisimple. 

Proof. This follows from (II.5.2) and from the characterization of semisimple modules by the 
splitting of submodules.  

A module M is uniform if it is not zero and if every nonzero submodule of M is essential. For 
example, if A is a commutative domain with field of fractions K, then a torsion-free module M 
is uniform if and only if M ⊗ A K has dimension 1 over K. Also, M = k[t]/(tn) is an essential 
k[t]-module. This definition seems a bit arbitrary from the point of view of commutative algebra, 
but it works well. 

Exercise: Verify the above assertions, and describe all uniform modules over a commutative ring 
A. 

Exercise: A right module U is uniform if and only if for every pair of nonzero elements u1, u2 ∈ U , 
there exist a1, a2 ∈ A such that u1a1 and u2a2 are equal and nonzero. 

Lemma II.5.4. A nonzero module M which not uniform contains a direct sum of nonzero sub-
modules. 

Proof. This follows from (II.5.2).  

A module MA has finite Goldie rank if it does not contain an infinite direct sum of nonzero 
submodules. A noetherian module has finite Goldie rank. 

Theorem II.5.5. (Goldie) Let M be a module of finite Goldie rank. 
(i) If M is not zero, then it contains a uniform submodule. 
(ii) M contains an essential submodule which is a direct sum of uniform submodules. 
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(iii) Let E be an essential submodule of M which is a direct sum of uniform submodules U1, ..., Ur , 
and suppose given another submodule which is a direct sum of nonzero submodules N1, ..., Ns . Then 
r ≥ s. Hence the number r, called the Goldie rank goldie(M), depends only on M . 
(iv) Let M be a submodule of M . Then the goldie(M ) ≤ goldie(M), with equality if and only if 
M is an essential submodule of M 
(v) goldie(M) = 0 if and only if M = 0. 

Goldie rank is also called uniform dimension. 

Exercise: Determine the Goldie rank of AA when A is a matrix algebra over a skew field. 

Exercise: Let A be a commutative domain with field of fractions K, and let M be a torsion-free 
A-module. Show that goldie(M) = dimK (A ⊗A K). 

Proof of the theorem. (i),(ii) If M is not uniform, it contains an essential direct sum of nonzero 
submodules (II.5.4). If one of these submodules is not uniform, it contains an essential direct sum, 
etc... Since M does not contain an infinite direct sum, the process of replacing a non-uniform 
module by an essential direct sum stops. 

(iii) Let W be a submodule of M , and Wi = W ∩ Ui. If Wi = 0 for i = 1, ..., n, then Wi is essential 
in Ui, hence (II.5.1) W1 ⊕ · · · ⊕ Wr is essential in E, and W is essential in M . 

We may assume that s > 0. Then W = N2 ⊕ · · · ⊕ Ns is not essential in M , hence W ∩ Ui = 0 for 
some i, say for i = 1. This allows us to replace N1 by U1 without changing s. Continuing, we may 
replace every Nj by an appropriate Ui, which implies that s ≤ r. 

(iv) This follows from (iii). 

(v) This follows from (i).  

II.6. Goldie’s Theorem 

Throughout this section, we assume that A is a right noetherian, semiprime ring. We recall the 
statement of (II.2.6). 

Theorem II.6.1. (Goldie) Let A be a semiprime, right noetherian ring. The set S of regular 
elements in A is a right Ore set, and Q = AS−1 is a semisimple ring. 

The main part of the proof is to show that the set S of regular elements of A is an Ore set. 
Conditions (a) and (b) of the definition (II.2.3) hold, so we need only verify the Ore condition (c). 
This is done by the sequence of lemmas below. 

Lemma II.6.2. The left annihilator of an essential right ideal is zero. 

Proof. Suppose the contrary. Turning the statement around, there is a nonzero left ideal L whose 
right annihilator R is essential. We choose L = 0 such that the right annihilator R is essential and 
maximal among right annihilators of nonzero left ideals, and we obtain a contradiction by showing 
that L = 0. 

Since A is semiprime, it suffices to show that L2 = 0. If L2 = 0, there are elements x, y ∈ L such 
that xy = 0. Then yA is a nonzero right ideal and since R is essential, yA ∩ R = 0: There is 
an element a ∈ A such that xya = 0 but ya = 0. This implies that rann(xy) > rann(y). But 
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rann(y) = rann(Ay) ⊃ R. Because R was chosen to be maximal, rann(xy) = A, and so xy = 0, 
which is a contradiction.  

Exercise: Show that if N is an essential right ideal of a right noetherian ring A, then the left 
annihilator of N is nilpotent. 

Lemma II.6.3. Let s ∈ A. If rann(s) = 0, then s is a regular element and sA is an essential 
right ideal. 

Proof. If rann(s) = 0, then sA is isomorphic to A as right module, and so the Goldie ranks of A 
and sA are equal. By (II.5.8 iv), this implies that sA is an essential right ideal. Therefore (II.6.2) 
lann(sA) = lann(s) = 0, and s is regular.  

Lemma II.6.4. Every right ideal N of A contains an element x such that rann(x) ∩ N = 0. 

Proof. Case 1: N is uniform. Since A is semiprime, N 2  = 0, and we may choose x, y ∈ N such 
that xy  = 0. We claim that then W := rann(x) ∩ N = 0. Else, if W  = 0, then because N is 
uniform, W is essential in N . Consider the homomorphism λy : AA −→ NA sending α → yα. By 
(II.5.1ii), W = λ−1

y (W ) is an essential right ideal. But yW ⊂ W , hence xyW = 0. Since xy  = 0, 
the left annihilator of W is not zero. This contradicts (II.6.2). 

Case 2: The general case. We look at submodules V ⊂ N which contain elements v with rann(v)∩ 
V = 0, and we choose V maximal among such submodules. We’ll show that V = N by showing 
that rann(v)∩ N = 0. Else, if rann(v)∩ N  = 0, we choose a uniform submodule U ⊂ rann(v)∩ N . 
By what has been shown, there exists an element u ∈ U such that rann(u) ∩ U = 0. We set 
x = u + v, and we claim that rann(x) ∩ (U + V ) = 0. Since U + V > V , this will provide the 
contradiction that we are after. 

We note that U ∩ V ⊂ rann(v) ∩ V = 0. So the sum U + V is a direct sum. Suppose that 
x ∈ rann(x) ∩ (U ⊕ V ). So xx = 0 and x = u + v . Because the sum U ⊕ V is direct, ux = 0 
and vx = 0, or uu + uv = 0 and vu + vv = 0. We know that vu = 0 because U ⊂ rann(v). 
Hence vv = 0, and because rann(v) ∩ V = 0, this implies that v = 0. Then uu = 0, which for an 
analogous reason implies that u = 0, i.e., x = 0, as required.  

Lemma II.6.5. Every essential right ideal E contains a regular element. 

Proof. Let x ∈ E be as in Lemma (II.6.4): rann(x) ∩ E = 0. Then because E is essential, 
rann(x) = 0 (II.6.2), which implies that x is regular (II.6.3).  

We now verify that the right Ore condition sA ∩ aS  = ∅ holds for the set S of regular elements in 
a right noetherian, semiprime ring A. If s is regular, then sA is an essential right ideal (II.6.3). 
Consider the map λa : AA −→ AA which sends α → aα. By (II.5.1 ii), λ−1

a (sA) is also an essential 
right ideal, so it contains a regular element, say s1. Then as1 ∈ sA, as required. 

To complete the proof of Goldie’s Theorem, we must show that the ring of fractions Q = AS−1 is 
semisimple. 

Lemma II.6.6. Let S be a right Ore set in a ring A, and let Q = AS−1 . 
(i) A is an essential submodule of QA = AS−1 

A . 
(ii) If N is an essential right ideal of Q, then N ∩ A is an essential right ideal of A. 
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Proof. (i) Since the inclusion A −→ Q is a ring homomorphism, AA is a submodule of QA. Let 
XA be a nonzero submodule of QA, and let q = as−1 ∈ X be nonzero. Then a = qs ∈ X ∩ A, and 
a = 0. 

(ii) Let X be a nonzero right ideal of A. Then XS−1 is a nonzero right ideal of Q, hence XS−1∩ N  = 
0. Clearing denominators shows that X ∩ N  = 0, and X ∩ N = X ∩ (N ∩ A).  

To show that Q is semisimple, we show that Q has no proper essential right ideal (II.5.3). Let NQ 

be an essential right ideal of Q. By (II.5.1 ii), N ∩ A is an essential right ideal of A, so it contains 
a regular element s (II.6.5). Then s is a unit in Q, hence N contains a unit, so N = Q.  

Analysis of the above proof shows that one can weaken the noetherian hypothesis on A slightly. 
A ring A is called a right Goldie ring if it has finite Goldie rank, and also has the ascending chain 
condition on right annihilators, meaning that that any ascending chain R1 ⊂ R2 ⊂ · · · of right 
ideals, each of which is the right annihilator of a subset Xi, is eventually constant. 

Theorem II.6.7. (Goldie). A semiprime right Goldie ring A has a semisimple right ring of 
fractions. 
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III. CENTRAL SIMPLE ALGEBRAS and the BRAUER GROUP 

III.1. Tensor product algebras 

If A and B are algebras over a commutative ring R, then the tensor product A ⊗ B (we are writing 
⊗ for ⊗ R here) is made into a ring by the rule (a ⊗ b)(a ⊗ b ) = (aa ) ⊗ (bb ). There are canonical 
ring homomorphisms A −→ A ⊗ B sending a → a ⊗ 1, and B −→ A ⊗ B sending b → 1 ⊗ b. These 
maps are often injective - for example they are injective if R is a field and A, B are not zero. If so, 
we may speak informally of A and B as subrings of A ⊗ B, using the notation a for the element 
a ⊗ 1 and b for 1 ⊗ b. By definition of multplication in A ⊗ B, the images of A and B commute: 
(a ⊗ 1)(1 ⊗ b) = a ⊗ b = (1 ⊗ b)(a ⊗ 1). 

The first part of the next lemma shows that tensor product makes the set of isomorphism classes 
of R-algebras into a commutative semigroup, and that the class of R is the identity element. 

Lemma III.1.1. Let R be a commutative ring, and let A, B, C be R algebras. 
(i) A ⊗ B ≈ B ⊗ A, A ⊗ (B ⊗ C) ≈ (A ⊗ B) ⊗ C, and R ⊗ A ≈ A ≈ A ⊗ R. 
(ii) Let Mn(A) denote the matrix algebra over A. Then Mn(A) ⊗ B ≈ Mn(A ⊗ B).  

There are many games with tensor product algebras, and we are going to need quite a few of 
them in the next pages. The first is to turn an an (A, B)-bimodule AMB into a right module over 
a tensor product algebra. When A and B are given as algebras over a commutative ring R, an 
(A, B)-bimodule gets a structure of (R, R)-bimodule by restriction of scalars. In this situation, it 
is customary to assume tacitly that the left and right actions of the commutative ring R are the 
same: rm = mr. Then, since the operations of A and B on a bimodule commute, we could view 
the bimodule as a module over the tensor product except for one problem: A operates on the left 
and B on the right. If λa denotes left multiplication of a ∈ A on M and if a, a ∈ A, then λaλa 

means first a , then a. To move this operation to the right side requires reversing the order of 
multiplication. 

The opposite ring Ao of a ring A is defined to be the ring whose underlying set is in bijective 
correspondence with A, but whose multiplication is reversed: If x ∈ A, we’ll write x◦ for the 
corresponding element of Ao . The multiplication rule in Ao is x◦y◦ = (yx)◦ . 

Lemma III.1.2. (i) Let A be a ring. A right A-module M is also a left Ao-module by the rule 
a◦m := ma. Similarly, a left A-module is a right Ao-module. 
(ii) Let A, B be R-algebras. A bimodule AMB is the same thing as a right module over the tensor 
product algebra Ao ⊗ B. The two scalar actions are related by the formula m(a◦ ⊗ b) = amb.  

A special case is that of an (A, A)-bimodule AMA. Such a bimodule is a right module over the 
ring E = Ao ⊗ A. For instance, A is a right module over E. The ring E is called the enveloping 
algebra of the algebra A. 

Let S be a subalgebra of an R-algebra A. The centralizer of S in A is defined to be the set S of 
elements of A which commute with all elements of S: 

S = {a ∈ A | as = sa for all s ∈ S} . 
The center Z(A) of A is the set of elements which commute with every element of A. We could 
also say, pedantically, that Z(A) is the centralizer of A in A. 
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Proposition III.1.3. Let A, B be algebras over a field K. 
(i) The center Z(A ⊗ B) is the tensor product of the centers Z(A) ⊗ Z(B). 
(ii) Let S ⊂ A be a subalgebra, with centralizer S in A. The centralizer of S ≈ S ⊗ R in A ⊗ B is 
S ⊗ B. 

Proof. (i) Let x ∈ A ⊗ B. We can write 

(III.1.4) x = Σn 
1 ai ⊗ bi, 

where bi are K-independent elements of B (i.e., are linearly independent over K). In this expres-
sion, the elements ai are uniquely determined in terms of x and the K-independent set { bi} . 
An element x ∈ A⊗ B is in the center if and only if it commutes with all elements of the forms α⊗ 1 
and 1⊗ β. Suppose x is expressed as in (III.1.4). Then [α⊗ 1, x] = αx− xα = Σ[α, ai]⊗ bi. Because 
the expression (III.1.4) is uniquely determined by the set { bi} , [α, x] = 0 if and only if [α, ai] = 0 
for all i. If x is contained in the center, then this is true for all α ∈ A, hence ai ∈ Z(A) for all i. 
This shows that Z(A ⊗ B) is in the center of Z(A) ⊗ B. Similarly, Z(Z(A) ⊗ B) ⊂ Z(A) ⊗ Z(B). 
Combining these two inclusions, Z(A ⊗ B) ⊂ Z(A) ⊗ Z(B). The opposite inclusion is clear. 

The proof of (ii) is analogous.  

Corollary III.1.5. (i) If R is the center of an algebra A and if S is a commutative R-algebra, 
then Z(A ⊗ S) = S. 
(ii) If Z(A) = R and Z(B) = R, then Z(A ⊗ B) = R.  

Proposition III.1.6. Let A be a simple algebra whose center is a field K, and let B be any K-
algebra. Every ideal of of A ⊗ B has the form A ⊗ J , where J is an ideal of B. In fact, taking into 
account the canonical injection B −→ A ⊗ B, we can identify J as I ∩ B. 

Lemma III.1.7. Let I be an ideal of A⊗ B, where A, B are as in Proposition III.1.6. Let b1, ..., bn 

be K-independent in B, and let x = Σai ⊗ bi ∈ I with a1  = 0. There is an element x = Σai ⊗ bi 

in I such that a 1 = 1.

Proof. Because A is a simple ring, 1 is in the ideal generated by a1, i.e., 1 = Σuν a1vν , with 
uν , vν ∈ A. Then x = Σuν xvν = 1 ⊗ b1 + Σn

2ai ⊗ bi is in I, where ai = Σuν aivν .  

Proof of the proposition. Let I be an ideal of A ⊗ B, and let I0 denote the ideal of A ⊗ B generated 
by I ∩ B. Let x ∈ I. To show that x ∈ I0, we write x = Σn

1ai ⊗ bi, where { bi} are K-independent, 
and we use induction on n. We may assume that a1 is not zero. Let x be as in the lemma. If 
ai ∈ K for all i, then x ∈ I0. In that case it suffices to show that x − a1x , is in I0, which is true 
by induction because the terms a1 ⊗ b1 cancel. Else if, say a2 ∈ K, there is an element w ∈ A such 
that [w, a2] = wa2 − a2w  = 0. Then y = [w, x ] = Σn

2 ci ⊗ bi is in I, with ci = [w, ai]. The element 
y has fewer than n terms, and c2  = 0. Lemma III.1.7 shows that there is an element y = Σn

2 ci ⊗ bi 

in I with c2 = 1. By induction, y ∈ I0. Then x − a2y is in I0 by induction too.  

Corollary III.1.8. If A, B are simple algebras over a field K and if Z(A) = K, then A ⊗ B is 
simple.  
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III.2. Central simple algebras 

Let’s agree that when we say informally that a ring is a matrix algebra over a ring R, we mean 
that it is isomorphic to a matrix algebra over R. 

Let K be a field. A K-algebra is called central simple if it is a finite algebra over K, is a simple 
ring, and if Z(A) = K. By Wedderburn’s theorem, a central simple K algebra A is a matrix 
algebra over a division ring D, where D is finite over K. It is easily seen that Z(D) = K as well, 
so D will also be a central simple K-algebra. 

Lemma III.2.1. A central simple K-algebra A is semisimple, and all simple right A-modules are 
isomorphic. If A ≈ Mn(D), then Dn is a simple A-module.  

Lemma III.2.2. Let D be a division ring which is a finite algebra over a field K. Any element 
x ∈ D generates a commutative subfield L = K[x]. 

Proof. K[x] is commutative because it is a quotient of a polynomial ring. It is a field because it is 
a domain of finite dimension over K.  

Proposition III.2.3. Let A be a K-algebra. 
(i) Let L be a field extension of K. Then AL = A ⊗ L is a central simple L-algebra if and only if 
A is a central simple K-algebra. 
(ii) Let K be the algebraic closure of K. If A is a central simple K-algebra, then AK = A ⊗ K is 
a matrix algebra over K. 

Proof. (i) Corollaries III.1.5 and III.1.8. 

(ii) Since AK is a central simple K-algebra, it is a matrix algebra over a division ring D finite over 
K. Lemma III.2.2 shows that the only such division ring is K itself.  

Example III.2.4. Cyclic algebras. Let n be an integer not divisible by the characteristic of K, 
and suppose that K contains a primitive n-th root of unity ζ. Let a, b ∈ K. The K-algebra A 
generated by two elements x, y, with the relations 

x n = a , y n = b , yx = ζxy 

is central simple, and of rank n2 over K. To show this, Proposition III.2.3(i) allows us to replace 
K by a field extension. So we may assume that b has an n-th root β in K. In that case, A is 
isomorphic to the matrix algebra Mn(K). The isomorphism is illustrated here for n = 3: 

x = 

⎛ 

⎝
0 1 0 
0 0 1
a 0 0 

⎞ 

⎠ , y = β 

⎛ 

⎝
1 0 0 
0 ζ 0
0 0 ζ2 

⎞ 

⎠ . (III.2.5) 

If the n-th roots of unity are not in K, then deciding whether or not this algebra is a matrix algebra 
can be tricky. 

Exercise: Let a, b be variables, and let K be the field of rational functions k(a, b). Prove that the 
cyclic algebra (III.2.4) is a division ring. 

We will use the notation 

(III.2.6) [A : K] = dim K A. 
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Proposition III.2.7. (i) The K-dimension of a central simple K-algebra is a square. In partic-
ular, the dimension of a division ring with center K and finite over K is a square. 
(ii) Suppose that dimK A = n2 . The dimension of a nonzero right A-module is at least n, and A 
is a matrix algebra over K if and only if there is a module of K-dimension n. 

Proof. (i) dimK A = dim K A K . 

(ii) If A ≈ Mr(D) and dimK D = d2 , then n2 = d2r2 . The simple right A-modules are isomorphic 
to Dr , which has dimension d2r. This number is larger than n unless d = 1.  

Proposition III.2.8. Let A, B be central simple K-algebras. 
(i) A ⊗ B is central simple. 
(ii) E = Ao ⊗ A is a matrix algebra over K. 

Proof. (i) Proposition III.1.3 and Corollary III.1.8. 

(ii) E is a central simple algebra, and it has K-dimension n4 . Moreover, A is a right E-module, 
and dimKA = n2 . Proposition III.2.7 shows that E is a matrix algebra over K.  

Lemma III.2.9. Let A, B be central simple algebras over K. The following are equivalent: 
(a) A and B are matrix algebras over the same division ring D. 
(b) There are integers r, s such that the matrix algebras Mr(A) and Ms(B) are isomorphic. 

Proof. A matrix algebra A = Mn(D) over a division ring D determines D up to isomorphism 
because one can identify D as the ring End VA, where V is a simple module. The assertion follows 
from this and from the fact that Mr(Ms(A)) ≈ Mrs(A).  

We are now in position to define the Brauer group Br K of a field K. the elements of Br K, called 
Brauer classes, can be thought of in two equivalent ways: 

(a) K-isomorphism classes [D] of division rings with center K and finite over K, or 

(b) Equivalence classes [A] of central simple algebras over K, where two algebras A, A are called 
equivalent if they are matrix algebras over the same division ring D, or equivalently, if there are 
are integers r, s such that the matrix algebras Mr(A) and Ms(A ) are K-isomorphic. 

The first of these is perhaps more appealing, but the second is a little easier to work with. With 
the definition (b), the product [A][B] of two elements of the Brauer group is defined to be the class 
[A⊗B] of the tensor product. The fact that this is independent of the choice of the representatives 
A, B in the Brauer classes follows easily from Lemma III.1.1. 

The law of composition is associative and commutative and has a unit element [K] (III.1.1), and 
(III.2.8) shows that [Ao] = [A]−1 , hence that Br K is an abelian group. 

Proposition III.2.10. (i) The Brauer group of an algebraically closed field is the trivial group. 
(ii) The Brauer group of the field R of real numbers is cyclic of order 2. A division algebra of finite 
dimension over its center R is isomorphic either to R or to the algebra of quaternions H. 

Proof. (ii) There are many proofs of this fact. The following one is due to Palais. Let D be a 
division ring finite over R and different from R. Let x ∈ D be an element not in R. The field 
L := R[x] is commutative because x commutes with R and with itself. The only possibility is that 
L is isomorphic to the field of complex numbers. So L contains a square root of −1, call it i. 
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Let φ denote the operator of conjugation by i on D, i.e., φ(y) = iyi−1 . Because i commutes with 
elements of L, φ is an L-linear operator on the right L-module DL. Then φ2 is conjugation by 
i2 = − 1. Because − 1 is in the center R, φ2 is the identity, and φ is a diagonalizable operator with 
eigenvalues ± 1. Let D+ and D− denote the two eigenspaces of φ, so that D ≈ D+ ⊕ D−. Note 
that D+ = L. The reason is that since L is algebraically closed, there is no larger commutative 
subfield of D. If y ∈ D+, then y commutes with i, and hence it commutes with every element of 
L, so L[y] is commutative. Since L is maximal, L[y] = L, i.e., y ∈ L. 

Next, left multiplication by i defines a bijection D+ −→ D−, so the dimensions of D+ and D− are 
equal. It follows that [D : R] = 4. 

Let z ∈ D− and let s = z2 . Then s ∈ D+ = L. The commutative field L = R[z] is also 
isomorphic to C, and for dimension reasons, L ∩ L = R. Therefore s ∈ R but its square root is 
not real. So s < 0. We normalize z so that s = − 1, and we rename z = j. Then ij = − ji, and 
D = R + Ri + Rj + Rij is the algebra of quaternions  

The next theorem is one of the main results in the theory of the Brauer group. Unfortunately 
it would take too long to prove here. 

Theorem III.2.11. (Merkuriev-Suslin) Suppose that K is a field of characteristic zero whihc 
contains all roots of unity. Then the Brauer group Br K is generated by the classes of cyclic 
algebras (III.2.4). 

III.3. Skolem-Noether theorem 

Theorem III.3.1. Let A be a central simple K algebra, and let θ : B −→ B an isomorphism 
between subalgebras of A which are simple rings. Then θ is induced by an inner automorphism of 
A, i.e, there is an invertible element u ∈ A such that θ is conjugation by u. In particular, any two 
isomorphic simple subalgebras of A are conjugate. 

Proof. Let’s write bθ for θ(b). We can make A into a right B-module in two ways: First, we can 
simply restrict scalars to B. We’ll denote this module by AB . The second way is to let B act 
through θ. Let’s write this operation as ∗ , and denote the module thus obtained by A∗

B . So the 
action of b ∈ B on A∗ is given by 

(III.3.2) x ∗ b = xb θ . 

Both structures are compatible with the operation of left multiplication by A, so we have two 
(A, B)-bimodules, AAB and AA∗

B . We can view them as right modules over the ring T := Ao ⊗ B. 
Proposition III.1.3 and Corollary III.1.8 show that T is a central simple L-algebra, where L is the 
center of B. 

Since T is central simple over L, there is one isomorphism class V of simple right T -modules. 
By semisimplicity, AT is isomorphic to 

 
r V for some integer r, and A∗ 

T is isomorphic to 
 

s V 
for some s. Since dim K A = dim K A

∗ , r = s. So AT and A∗ 
T are isomorphic modules. Let 

φ : A −→ A∗ denote an isomorphism between them. The T -linearity of φ means linearity with 
respect to left multiplication by A and right multiplication by B. So for x ∈ A, φ(ax) = aφ(x), 
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while φ(xb) = φ(x) ∗ b = φ(x)bθ . Let u = φ(1). Then for b ∈ B ⊂ A, φ(1b) = φ(1) ∗ b = ubθ . But 
because B is a subring of A, we also have φ(b1) = bφ(1) = bu. Thus 

ub θ = bu, 

or bθ = u−1bu. Since this is true for all b ∈ B, θ is conjugation by u, as required.  

Exercise: Fill the gap in the above proof by showing that u is an invertible element of A. 

Theorem III.3.3. (Skolem-Noether) Every automorphism of a central simple K-algebra A is 
inner. 

Proof. This follows by setting B = B = A in Theorem III.3.1.  

III.4. Commutative subfields of central simple algebras 

Let A be a central simple K-algebra. 

Lemma III.4.1. (i) Let A be any K-algebra, and let x ∈ A. The subalgebra K[x] of A generated 
by x is commutative. 
(ii) Let L be a commutative subalgebra of a K-algebra A, and let L denote its centralizer in 
A. Then L ⊂ L . If x ∈ L , then L[x] is a commutative subring of A. Hence L is a maximal 
commutative subalgebra if and only if L = L.  

Theorem III.4.2. Let A be a central simple algebra of rank n2 over K, and let L be a commutative 
subalgebra of A which is a field. Then [L : K] ≤ n. Moreover, L is a maximal commutative 
subalgebra of A if and only if [L : K] = n. 

Proof. Say that [L : K] = r. The operation of (left) multiplication on itself embeds L as a 
subalgebra of the matrix algebra B = End LK ≈ Mr(K). Let  L ⊂ B denote its image, and let 
T = A⊗B. Then L embeds in two ways as a subalgebra of T , namely using the embeddings L ⊂ A 
and L ≈  L ⊂ B. Let’s denote the images of these two embeddings by L1, L2 respectively. 

The algebra T is central simple. Because L is a field, it is a simple ring. Theorem III.3.1 shows 
that L1 and L2 are conjugate. 

We have four centralizers: the centralizer L of L in A, the centralizer  L of  L in B, and the two 
centralizers Li of Li in T . 

Lemma III.4.3. With the above notation,  L =  L . 

Proof. First, because  L is commutative,  L ⊂  L . Second,  L is a ( L,  L )-bimodule, hence  L ⊂ 
Ende L

 L =  L. To check that  L is a bimodule as claimed, let b ∈  L and a ∈  L. Then for x ∈  L, 
(ax)b = (xa)b = x(ab) = x(ba) = (xb)a = a(xb).  

Proposition III.1.3(ii) tells us that L1 = L ⊗ B and L2 = A ⊗ L = A ⊗ L. So [L1 : K] = [L : K]r 2 

and [L2 : K] = n2r. Because Li are conjugate, so are their centralizers. Therefore [L : K]r2 = n2r. 
Because L ⊂ L , this implies that r ≤ n, and that if r < n, then L < L . The theorem follows from 
III.4.1(iii).  
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Theorem III.4.4. (Wedderburn) A finite division ring is a field, i.e., it is commutative. 

Proof. Let D be a finite division ring with center K. Say that [D : K] = n2 and that | K| = q. 
Every commutative subalgebra of D is a field, and according to Theorem III.4.2, every maximal 
commutative subalgebra has order qn . Let L be one of these maximal subfields. Since all fields of 
order qn are isomorphic, Theorem III.3.1 applies. It shows that the maximal commutative subfields 
are all conjugate to L. Because every element x of D must be contained in at least one maximal 
commutative subfield, the conjugates of L cover D completely. An elementary fact about finite 
groups allows us to conclude that L = D, hence that D is commutative. 

Lemma III.4.5. If H is a proper subgroup of a finite group G, the conjugates of H do not cover 
G. 

Proof. The number of conjugate subgroups is the index [G : N ], where N is the normalizer of H 
(the stabilizer of H for the operation of conjugation). Moreover, H ⊂ N . Therefore the number of 
conjugate subgroups is at most equal to the index [G : H]. This index is also equal to the number 
of left cosets of H in G. The cosets cover G without overlap, while the conjugates of H do overlap, 
because they contain 1. So the conjugates can not cover the group.  

To apply this lemma to our situation, we let G and H be the groups obtained by deleting 0 from 
D and L respectively.  

For example, this theorem shows that if K is a finite field which contains a primitive n-th root of 
unity ζ, where p does not divide n, then the cyclic algebra III.2.4 is a matrix algebra over K. This 
is not obvious at all. 

III.5. Faithful flatness 

Let R be a ring. A left R-module N is called flat if the functor −⊗ R N is exact, i.e., if for any exact 
sequence M1 −→ M2 −→ M3 of right R-modules, the sequence M1 ⊗ N −→ M2 ⊗ N −→ M3 ⊗ N 
is also exact. The analogous definitions are made for left modules and left flat ring extensions S. 

The functor − ⊗ R N is always right exact. It is exact if and only if M1 ⊗ R N −→ M2 ⊗ R N is 
injective whenever M1 −→ M2 is injective. 

A left module N is called faithfully flat if it is flat and if M ⊗ N = 0 implies that M = 0. 

Lemma III.5.1. A flat left R-module N is faithfully flat if and only if the following condition is 
satisfied: A sequence M1 −→ M2 −→ M3 of right R-modules is exact if and only if the sequence 
M1 ⊗ N −→ M2 ⊗ N −→ M3 ⊗ N is exact.  

If R is commutative and M is a right R-module, then it can also be viewed as a left module, and 
MR is flat if and only if RM is flat. This applies in particular tothe case of a homomorphism of 
commutative rings R −→ S: SR is flat if and only if RS is flat. 

We omit the proof of the next proposition. 

Proposition III.5.2. Let R −→ S be a homomorphism of commutative rings such that S is flat 
over R. Then S is faithfully flat if and only if the map Spec S −→ Spec R is surjective . 

Exercises: (1) If R is a field, then any nonzero module MR is right faithfully flat. 
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(2) Let Σ be a right Ore set in R and S = RΣ−1 . Then RS is flat. 
(3) Let R be a commutative ring and let s1, ..., sn ∈ R. Let S be the direct sum of the localizations 
Ri = R[s−1

i ]. then S is faithfully flat over R if and only if the ideal (s1, ..., sn)R is the unit ideal. 
(4) Suppose that RN is faithfully flat. If φ : M −→ M is a homomorphism of R-modules such 
that M ⊗ N −→ M ⊗ N is an isomorphism, then φ is an isomorphism. 

III.6. The Amitsur complex 

The Amitsur complex A (S/R) is a cosimplicial complex associated to an arbitrary ring homomor-
phism θ : R −→ S. A cosimplicial complex A consists of a set A n for n = 0, 1, 2, ..., the set of 
“cosimplices” of dimension n, together with certain maps between them called face and degereracy 
maps. (The word “cosimplicial” means that the arrows go in the opposite direction from those in 
a simplicial complex.) 

We now define the complex A : In dimension n, A n is the (S, S)-bimodule S ⊗ · · · ⊗ S = S⊗n+1 
. 

The face maps are maps di : A n −→ A n+1 for i = 0, ..., n + 1. They are defined by inserting a 1 in 
the ith position of a tensor: 

(III.6.1) x0 ⊗ · · · · · · ⊗ xn → x0 ⊗ · · · ⊗ xi ⊗ 1 ⊗ xi+1 ⊗ · · · ⊗ xn. 

The degeneracies si , defined for i = 0, ..., n − 1, are maps A n −→ A n−1 which multiply the ith and 
(i + 1)th entries in a tensor: 

(III.6.2) x0 ⊗ · · · · · · ⊗ xn → x0 ⊗ · · · ⊗ xixi+1 ⊗ · · · ⊗ xn. 

It is customary to suppress the index n in these operators. So there is a map di for each n ≥ i − 1. 
These maps satisfy certain standard identities which tell us when compositions of two face or 
degeneracy operators are equal, and when such a composition is the identity. No one can remember 
for more than a day what these identities are, and exactly how they come out depends on whether 
the operations are written on the left or on the right. However, they are “trivial”. In order to 
put composition of functions in the natural order, we will write operators on the right. So, for 
example, we write (x0 ⊗ x1)d

2s0 = (x0 ⊗ x1 ⊗ 1)s0 = x0x1 ⊗ 1. Some of the standard identities are: 

d2 s 0 = s 1 d 1 , d1 s 0 = id , d1 d 2 = d 1 d 1 , s2 s 0 = s 0 s 1 . 

Exercise: Write down the standard identities which generalize the above formulas to other indices. 

The face and degeneracy maps are S-bimodule homomorphisms, except for d0 and dn : A n −→ 
A n+1. On the left, d0 is only R-linear, and similarly, dn is only R-linear on the right. 

If R and S are commutative rings, then A n are rings and the face and degeneracy maps are ring 
homomorphisms. 

The map θ : R −→ S is called an augmentation of the Amitsur complex. The composed maps are 
equal: 

(III.6.3) θd 0 = θd 1 . 



31 

We will use the shorthand notation S ⊗ S = SS and S ⊗ S ⊗ S = SSS. Similarly, if M is a 
left R-module, we may write S ⊗ M = SM , etc. With this notation, the face operators in the 
augmented Amitsur complex look like this: 

(III.6.4) R −→ S−→ −→ SS 
−→ −→ −→ SSS · · · . 

This cosimplicial complex yields a complex of R-modules 

(III.6.5) 0 −→ R 
θ −→ S 

δ 0 

−→ SS 
δ 1 

−→ SSS · · · , 
where δn = d0 − d1 + · · · ± dn+1 . We’ll denote this complex by A too. 

Exercise: Prove that this sequence is a complex using the standard identities. 

Theorem III.6.6. (Grothendieck) Let θ : R −→ S be ring homomorphism such that SR isa 
faitfully flat. Then the Amitsur complex A is a resolution of R, i.e., III.6.5 is exact. Moreover, 
this complex remains exact when tensored on the right by an arbitrary left R-module M : 

0 −→ M −→ SM −→ SSM −→ · · · . 

The analogous theorem is true when RS is faithfully flat: If M is a right R-module, then 

0 −→ M −→ MS −→ MSS −→ · · · 
is exact. 

Proof of the theorem. Grothendieck’s trick is to note that III.6.5 is a sequence of left R-modules. 
To prove it exact, it suffices to show that the sequence obtained by tensoring on the left with SR 

is exact. When we tensor III.6.5 with SR, we obtain the Amitsur complex again, except that the 
face d0 and degeneracy s0 are missing, i ⊗ θ = d1 , and all indices in the remaining face maps are 
increased by 1. Let’s denote the maps in the complex S ⊗ A by δ: 

δ 
n 

:= i ⊗ δ n−1 = d 1 − d 2 + · · · ± dn+1 : S ⊗ S ⊗n −→ S ⊗ S ⊗n+1 . 

This new complex is homotopically trivial, the homotopy being given by the missing degeneracy: 
h = s0 , applied in each degree n. In other words, hδ + δh = identity. The existence of such a 
homotopy shows that the sequence is exact. Namely, if x ∈ ker δ, i.e., xδ = 0, then 

x = x(hδ + δh) = xhδ, 

so x is in the image of δ. 

The fact that h = s0 is a homotopy is checked directly: 

(y ⊗ x0 ⊗ · · · ⊗ xn)s 0δ = (yx0 ⊗ x1 ⊗ · · · ⊗ xn)(d1 − d2 + · · · ) 
= yx0 ⊗ 1 ⊗ x1 ⊗ · · · − yx0 ⊗ x1 ⊗ 1 ⊗ x2 ⊗ · · · + · · · , 

while 
(y ⊗ x0 ⊗ · · · ⊗ xn)δs0 = (y ⊗ 1 ⊗ x0 ⊗ x1 ⊗ · · · − y ⊗ x0 ⊗ 1 ⊗ x1 ⊗ · · · + · · · )s 0 

= y ⊗ x0 ⊗ x1 ⊗ · · · − yx0 ⊗ 1 ⊗ x1 ⊗ · · · + · · · . 
This shows that III.6.5 is exact, and if we tensor on the right by an arbitrary left R-module M , 
the same proof shows that the resulting sequence is exact. 

The analogous proof works for a left faithfully flat homomorphism, except for a slight notation 
complication coming from the fact that the “last” face and dengeneracy operators have varying 
indices.  
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Corollary III.6.7. (descent for elements of a module) Assume that RS is faithfully flat. Let M 
be a right R-module, let M = M ⊗ S, and let M  = M ⊗ S ⊗ S. Then d0 and d1 are maps 
M −→ −→ M . An element x ∈ M has the form x = 1 ⊗ y for some unique y ∈ M if and only if 
xd0 = xd1 . 

This corollary restates the exactness of the augmented Amitsur complex at the first two terms. It 
is usually stated this way: 

(III.6.8) An element x of N lies in M if and only if xd0 = xd1 . 

To show that this is not an automatic requirement, we’ll write the condition out in terms of tensors. 
Say that x = 

 
ν aν ⊗ mν ∈ SM . Then xd0 = xd1 reads 

ν 

1 ⊗ aν ⊗ mν = 
ν 

aν ⊗ 1 ⊗ mν . 

Because of this descent principle, Grothendieck was led to define exactness for a diagram 

(III.6.9) X −→ Y −→ −→ Z 

of arbitrary sets. The kernel of a pair of maps of sets Y −→ −→ Z is the set of elements y ∈ Y whose
images under the two maps are equal. The diagram (III.6.9) is exact if the arrow X −→ Y maps X 
bijectively onto the kernel of the pair of maps Y −→ −→ Z. Thus the first three terms of the Amitsur 
complex III.6.4 form an exact sequence, provided that RS or SR is faithfully flat. 

There are many applications of the descent principle to situations in which an element x is uniquely 
determined by certain properties. If x is uniquely determined, and if we can apply this fact to its 
images xd0 and xd1 in M ⊗ S ⊗ S, it will (hopefully) show that these images are equal. When S is 
commutative, S ⊗ S is also a commutative ring, and then M ⊗ S ⊗ S is the module obtained from 
M by extension of scalars R −→ S ⊗ S. We have a good chance of interpreting the properties in 
that case. The principle is harder to apply when S is not commutative, because then S ⊗ S is only 
a bimodule. I don’t know a simple interpretation of M ⊗ S ⊗ S in the general case. 

Exercise: Let S be a commutative, faithfully flat R-algebra, and let A be any R-algebra, not 
necessarily associative or with unit element. Prove that A is associative, or commutative, or has 
an identity element if and only if the same is true for A ⊗ S. Prove that if A has an identity 
element, then an element a invertible in A if and only if a ⊗ 1 is invertible in A ⊗ S. 

III.7. Interlude: Analogy with bundles 

Let A be a central simple algebra over the field K, and let K be the algebraic closure of K. We 
want to explain why the fact that A = A ⊗ K is a matrix algebra is analogous to the concept of a 
bundle in topology. 

Let V denote the vector space Cn . Roughly speaking, a complex vector bundle of dimension n over 
a space X is a map π : E −→ X of topological spaces, all of whose fibres π−1(x) are vector spaces 
isomorphic to V . There are some topological conditions which we will suppress. The trivial bundle 
over X is E = X × V , and we call any bundle isomorphic to the trivial bundle trivial too. Every 
vector bundle is locally trivial, which means that there is an open covering { Ui} of X such that 
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the restriction of E to each Ui is the trivial bundle Ui × V . If we let Y denote the disjoint union 
of the Ui, then we have a surjective map Y −→ X such that the pullback of E to Y is trivial. 

In algebra, the arrows are reversed by imagining a commutative ring as a ring of functions on the 
space Spec R. The analogue of vector bundle over a commutative ring R is a projective R-module 
E of constant rank n, and the analogue of the trivial bundle is the free bundle of rank n. It is 
a fact that every such projective module is locally free: There are elements s1, ..., sn in R which 
generate the unit ideal, such that the localization Esi of E is a free module over Rsi = R[s−1 

i ]. 
Passing to spectra, Ui = Spec Rsi is an open set in X = Spec R, and because the si generate the 
unit ideal, the open sets cover X. The analogy with the topological notion is perfect. 

However, the concept of bundle in topology also allows the fibres π−1(x) to have a structure other 
than that of a vector space. One may consider bundles of matrix algebras: all fibres are algebras 
over C which are isomorphic to A = Mn(C). With the correct topological hypotheses, any such 
bundle will be locally isomorphic to X × Mn(C), i.e., will be locally trivial. 

Here the algebraic analogue is more complicated, because for any central simple algebra A over a 
field K, A ⊗ K K is a matrix algebra. This shows that one should broaden the concept of local 
triviality in algebra, and include not only localizations (the adjunction of inverses), but also field 
extensions such as K −→ K. The Amitsur complex provides a formalism which allows one to 
recover information from such a generalized notion of localization. 

III.8. Characteristic polynomial for central simple algebras 

The characteristic polynomial is one of the main invariants of a matrix. We now use descent to show 
that the characteristic polynomial is defined for elements of an arbitrary central simple algebra A, 
hence, in particular, that the trace and determinant of any element a ∈ A are defined, and that 
they are elements of K. Usually trace(a) is referred to as the reduced trace, and det(a) the reduced 
norm of a. I prefer the words trace and determinant, though they are somewhat ambiguous. 

In order to focus attention, let’s concentrate on the determinant. The same reasoning will work 
for all of the coefficients of the characteristic polynomial. 

Let A be a central simple K-algebra. So A ⊗ K is a matrix algebra which, as we know, means that 
it has a set of matrix units { eij } . To find these matrix units, it is not necessary to go all the way 
to the algebraic closure. They will already be in A ⊗ L for some subfield L of K which is a finite 
extension of K. So we consider a finite extension L such that A ⊗ L is a matrix algebra Mn(L). 
Of course L is a faithfully flat extension of K. Let’s drop the tensor symbol, writing AL for A ⊗ L, 
LL for L ⊗ L, etc. 

Lemma III.8.1. (i) Let R be a commutative ring, and let A 
φ −→ Mn(R) be an isomorphism of A 

with a matrix algebra. Then det(aφ) is independent of φ. Hence there is a uniquely defined map 
det : A −→ R. 
(ii) Let R 

f −→ S be a homomorphism of commutative rings. Then Mn(R) ⊗ R S ≈ Mn(S). 

(iii) Let R 
f −→ S be a homomorphism of commutative rings, and let us denote the induced homo-

morphism Mn(R) −→ Mn(S) by f too. Then det(f(a)) = f(det(a)) for all matrices a ∈ Mn(R). 
Hence det is invariant under extension of scalars.  
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(Sorry: This lemma is out of order. Logically, It should come after Theorem 11.2.) 

Now let A be a central simple K-algebra. We choose a finite field extension L such that AL is 
isomorphic to a matrix algebra over L, and we define det(a) for an element a ∈ A as 

(III.8.2) det(a) = det(a ⊗ 1), 

where a ⊗ 1 is the image of a in AL = A ⊗ L. Lemma III.8.1(iii) shows that this is independent of 
the choice of L. 

Proposition III.8.3. The function det on A takes its values in K. Hence there is a uniquely 
defined map det : A −→ K. 

Proof. We have an exact diagram 
K −→ L−→ −→ LL, 

and x = det(a) ∈ L. To show that x is in K, it suffices to show that its two images xd0 and xd1 

in LL are equal. We note that ALL is obtained from AL by extension of scalars using either of 

the two maps L 
di 

−→ LL, namely ALL ≈ A ⊗ K L ⊗ L LL. Since AL is a matrix algebra over K, 
ALL is a matrix algebra over LL. Therefore det : ALL −→ LL is defined uniquely. Then since 
(a ⊗ 1)di = a ⊗ 1 ⊗ 1 is true for i = 0, 1, III.8.1(iii) shows that 

xd i = det((a ⊗ 1)d i) = det(a ⊗ 1 ⊗ 1), 

i.e., xd0 = xd1 as required.  

We now make a slight improvement in the above result, by showing that the determinant on a 
central simple algebra can be obtained by evaluating a polynomial with coefficients in K. 

Let’s choose a basis for the central simple algebra A as K-vector space, say { u1, ..., un2 } , where 
n2 = [A : K]. Also, let eij denote the matrix units in AK = Mn(K). Of course {uα} is also a basis 
for AK , so the two bases are related by a linear change of variable, say 

(III.8.4) uα = Σpαij eij , 

with pαij ∈ K. 

Working in K for the moment, we write an undetermined element a of AK as a matrix with 
variable entries yij , i.e., as a linear combination a = Σyij eij . Then of course det(a) is the standard 
homogeneous polynomial of degree n 

(III.8.5) Σ(−1) σ yσ(1) 1 · · · yσ(n) n. 

If we also write a as linear combination a = Σxαuα, then the coefficients xα are obtained from 
the yij by a linear change of variable using the formula III.8.4. So there is also a homogeneous 
polynomial Δ of degree n with coefficients in K, such that 

(III.8.6) det(a) = Δ(x1, ..., xn 2 ). 
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Proposition III.8.7. The polynomial Δ(x) has coefficients in K. Thus det(a) can be obtained by 
evaluating a homogeneous polynomial with coefficients in K, and which, over K, is obtained from 
the standard polynomial for det(a) by a linear change of variable. 

Proof. It is clear that this is true if A is a matrix algebra over K, because then the whole compu-
tation can be made over K. In view of this, Wedderburn’s Theorem III.4.4 takes care of the case 
that K is a finite field, and we may assume that K is infinite. In that case, the result follows from 
Lemma III.8.9 below. 

Let x1, ..., xr be variables. Every polynomial f(x1, ..., xr ) ∈ K[x1, ..., xr ] defines a function Kr −→ 
K by “evaluation”. If we denote the ring of all functions Kr −→ K by F , then evaluation yields 
a homomorphism K[x1, ..., xr ] −→ F . 

Lemma III.8.8. If K is an infinite field, the homomorphism K[x1, ..., xr ] −→ F is injective. 

Lemma III.8.9. Let K be an infinite field, and let f(x1, ..., xr ) be a polynomial with coefficients 
in a field extension L of K. If f(a1, ..., ar ) ∈ K for all a1, ..., ar in K, then the coefficients of f lie 
in K, i.e., f ∈ K[x1, ..., xr ]. 

Exercise: Prove Lemmas III.8.8 and III.8.9. 

III.9. Separable splitting fields 

A splitting field for a central simple algebra A over K is a field extension L such that AL is a 
matrix algebra. 

Theorem III.9.1. Every central simple algebra A has a splitting field L which is a finite separable 
extension of K. 

Instead of basing a proof of this fact on special properties of central simple algebras, we will deduce 
it using the fact that the determinant is obtained by evaluating a polynomial. Wedderburn’s 
theorem allows us to assume that K is infinite. 

Let’s review the concept of separability. A polynomial f(y) ∈ K[y] is separable if it has distinct 
roots in the algebraic closure K. 

Proposition III.9.2. Let L be a finite ring extension of K. 
(i) The following two conditions are equivalent, and L is called a separable extension of K they 
hold: 

(a) Every element of L is the root of a separable polynomial with coefficients in K, or 
(b) L ⊗ K K is a direct sum of finitely many copies of K. 

(ii) Let f(y) ∈ K[y] be a polynomial in one variable. Assume that f and its derivative f are 
relatively prime. Then L = K[y]/(f) is a separable extension of K. 
(iii) A separable ring extension of K is a direct sum of finitely many separable field extensions.  

Proof of Theorem III.9.1. We use induction on [A : K]. We know that A is isomorphic to a matrix 
algebra over a division ring D, which is also central simple over K, so to split A it suffices to split 
D. This lowers the degree [A : K] unless A is itself a division ring. So we are done by induction 
unless A is a division ring. 
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If A is a division ring, then the determinant of every nonzero element a ∈ A is nonzero, because 
a is invertible in A and in the matrix algebra AK . We will look for a finite separable extension L 
of K such that AL contains an element α with determinant zero. Then AL is not a division ring, 
and the induction hypothesis will complete the proof, because a composition of finite separable 
extensions is separable. 

Let Δ(x) be the polynomial (III.8.6) which computes the determinant. A nonzero element of AL 

with zero determinant corresponds to a solution of the polynomial equation Δ(x) = 0 for x1, ..., xn2 

in L, with xα not all zero. We compute the partial derivative of the standard polynomial (III.8.5) 
with respect to the variable y11, to check that it is not identically zero. Therefore the partial 
derivatives of Δ are not all identically zero. The next Proposition completes the proof.  

Proposition III.9.3. Let K be a field, and let Let f(x) and g(x) be polynomials in K[x1, ..., xn ]. 
Assume that f and g have no common factor, and that the partial derivatives ∂f/∂xi are not all 
identically zero. There exists a finite separable field extension L of K and elements a1, ..., an in L 
such that f(a) = 0 but g(a) = 0. 

Proof. If K is finite, then every finite field extension is separable. The theorem is easy to prove in 
that case, so we assume that K is infinite. 

We may assume that f is irreducible, and that it does not divide g or ∂f/∂xn. Let’s rename xn to 
y, and write f for ∂f/∂xn. Let K be the fraction field K(x1, ..., xn−1 ). In the polynomial ring K[y], 
the greatest common divisor of f and g is 1, and also the gcd of f and f is 1. Writing these gcd’s 
as linear combinations and clearing denominators yields expressions of the form p1f + q1g = u1 

and p2f + q2f = u2, where pi, qi are polynomials in x1, ..., xn−1 , y and ui are polynomials in 
x1, ..., xn−1 . 

We may choose a1, ..., an−1 ∈ K so that ui(a) = 0. Then f(a, y) is relatively prime to g(a, y) and 
to f (a, y). It follows that L = K[y]/(f(a, y)) is a separable ring extension of K, and that the 
residue of g(a, y) is invertible in L.  

III.10. Structure constants: 

Let R be a commutative ring, and let A be an R-algebra which is a free R-module, say of rank n. 
Let u1, ..., un be an R-basis for A. We don’t need to make any assumptions about A here. 

The multiplication table for A, with respect to this basis, is obtained by writing the products uiuj 

in terms of the basis, say 

(III.10.1) uiuj = Σcijkuk, 

where the structure constants cijk are elements of R. Every element of A is a linear combination 
a = Σriui, with ri ∈ R, and multiplication in A can be carried out using the table. 

If S is a commutative R-algebra and AS = A ⊗ S, then the same set u1, ..., un is an S-basis for 
AS , provided that we identify ui with ui ⊗ 1. The multiplication table for AS is also given by 
(III.10.1), if we interpret the structure constants as elements of S by taking their images. So every 
elmeent of AS is a linear combination with coefficients in S, and multiplication is carried out the 
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same way. The only change in passing from A to AS is that the coefficients in a linear combination 
come from a different ring. 

Exercise: What if S is a noncommutative R-algebra? 

III.11. Smooth maps and idempotents 

Let’s work for the moment over the field of complex numbers. Consider a commutative C-algebra 
U which is defined by a single polynomial relation: U = C[x1, ..., xn]/(f). Let X denote the locus 
of zeros of f(x) in the Cn . The locus X , or the algebra U , is called smooth if at every point p of 
X , at least one partial derivative fxi = ∂f/∂xi is not zero. Saying the same thing, X is smooth if 
the polynomials f, fx1 , ..., fxn have no common zeros in Cn . The Nullstellensatz tells us that this 
is equivalent to saying that these polynomials generate the unit ideal. 

This definition is borrowed from analysis. When X is smooth, the implicit function theorem can be 
applied to conclude that X is a manifold of complex dimension n − 1, i.e., is locally homeomorphic 
to Cn−1 . Since the implicit function theorem is not available in polynomial algebra, we state the 
definition of smoothness in terms of partial derivatives. 

By analogy, we define the concept of smoothness for any algebra of the form U = R[x1, ..., xn]/(f), 
where R is a noetherian commutative ring and f is a polynomial: U is a smooth R-algebra if 
f, fx1 , ..., xxn generates the unit ideal. 

Example III.11.1: Idempotents in R. The relevant polynomial is f(x) = x2 − x, f = df/dx = 
2x − 1. It is easy to see that f and f generate the unit ideal over the ring of integers, hence over 
any ring R. In fact, f 2 − 4f = 1. 

Going back to the case R = C, suppose that we are given two defining relations for a commutative 
C-algebra: U = C[x1, ..., xn]/(f1, f2), and let X be the locus of solutions of the system of equations 
f1(x) = f2(x) = 0 in Cn . The implicit function theorem again provides a condition under which 
X is a manifold of complex dimension n − 2. It is that at any point of X , some 2 × 2 minor M 
of the jacobian matrix J = ∂fi/∂xj must be invertible. So the condition becomes that f together 
with all determinants detM of the 2 × 2-minors M of the jacobian, should generate the unit ideal. 

The generalization to more equations seems pretty clear at first glance. However, closer inspection 
reveals that there are serious problems: In almost every case 

(a) the equations defining the locus are redundant, and to make matters worse, 
(b) we don’t know the dimension of X , so we don’t know what size minors of J to inspect. 

Example III.11.2: Idempotents in a finite algebra. We’ll set this example up with an arbitrary 
commutative ring of scalars R for future reference, and then look at the case that R = C. Let A be 
an R-algebra which is a free module with basis u1, ..., un. We write a variable element of A in the 
form a = Σxiui, where xi are indeterminates. The equation for an idempotent, a2 = a, becomes 
Σij xixj uiuj = Σxkuk, and using the multiplicaton table (III.10.1), this expands to 

(III.11.3) Σ ijkcijkxixj uk = Σkxkuk. 

Since {uk} is a basis, this equation holds if and only if the n equations in n unknowns 

(III.11.4) Σ ij cijkxixj − xk = 0 
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hold, for k = 1, ..., n. We will see below that the locus X of zeros of this system of polynomial 
equations is always smooth. But its dimension depends on the structure of the algebra A, and X 
may have different dimensions at different points. 

Let’s go back to the case R = C, and look at the locus when A is the matrix algebra Mr(C). So 
n = r2 . We have several sorts of idempotents, e11 and e11 + e22 for instance. The operation of 
the general linear group by conjugation moves them around. The centralizer of e11 is the set of 
invertible matrices of the form (illustrated for r = 3) 

p = 

⎛ 

⎝
∗ 0 0 
0 ∗ ∗
0 ∗ ∗ 

⎞ 

⎠ . 

The centralizer has codimension 2r − 2 in GLr, so this is also the dimension of the orbit of e11. 
This orbit is one component of the locus X of zeros of III.11.3. The idempotent e11 + e22 lies 
on a different component which has dimension 4r − 8. For the matrix algebra, X is a smooth 
locus consisting of several disconnected pieces of varying dimensions. The thought of using partial 
derivatives to prove smoothness is discouraging. 

Fortunately, Grothendieck gave an alternative definition of smoothness which is much easier to 
handle in such cases. To explain it, we need the concept of points with values in a commutative 
algebra. 

Let R be a noetherian commutative ring, and let U be a finitely generated commutative R-algebra. 
So there is some presentation of U , of the form U = R[x1, ..., xn]/(f1, ..., fr ). Let X = Spec U . 
This scheme is analogous to the locus of zeros of a polynomial in Cn , and it will play mainly an 
intuitive role. 

Let S be a commutative R-algebra. A point p of X (or of U) with values in S is a homomorphism 
of algebras U 

p −→ S. 

The affine space An 
R over R is the spectrum of the polynomial ring U = R[x1, ..., xn]. A point of 

An 
R with values in S is given by an arbitrary collection of elements a1, ..., an in S, i.e., by a “point” 

(a1, ..., an) whose coordinates are in S. The map U 
p −→ S sends xi → ai. So the points of An with 

values in S form a free S-module of rank n. 

If U is presented as above, U = R[x1, ..., xn]/(f1, ..., fr ), then a point of X with values in S is given 
by a solution of the system of equations f(x) = 0 in S, a collection of elements a1, ..., an ∈ S such 
that f1(a) = · · · = fr(a) = 0. So a point of X is a “point” (a1, ..., an) in affine space at which the 
polynomials fν (x) take the value zero. 

Note that if S −→ S is a homomorphism of R-algebras and if p is a point of X with values in S, 
then we obtain a point with values in S by composition. In terms of coordinates, if our point is 
(a1, ..., an) with ai ∈ S, then the coordinates of the image point (a1, ..., an) are the images of the 
ai in S . 

The data necessary for Grothendieck’s definition is 

(III.11.5) N ⊂ S −→ S , 
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where S is a commutative R-algebra, N ⊂ S is an ideal with N 2 = 0, and S = S/N . We say that 
U has the lifting property for this data if every point p of U with values in S is induced by a point 
p with values in S, in other words, every diagram 

S 
⏐ ⏐  

U 
p  

−−−−→ S 

of maps of R-algebras can be completed by a map U 
p −→ S. 

In terms of coordinates, the lifting property says this: Given a solution (a1, ..., an ) of the equations 
f1 = · · · = fr = 0 with ai ∈ S , there exists a solution (a1, ..., an), with ai ∈ S, such that ai ≡ ai 
(modulo N). 

Definition III.11.6: A finitely generated commutative R-algebra U is smooth if it has the lifting 
property for all data III.11.5. 

It is a fact that, in order to verify smoothness, it is enough to prove the lifting property in the case 
that S is a finitely generated, artinian R-algebra. 

Example III.11.7: We use Newton’s method to verify that a polynomial f(x) ∈ R[x] defines a 
smooth algebra according to Grothendieck’s definition if F and f genewrate the unit ideal. A 
point of U = R[x]/(f) with values in S is a solution x = a of the equation f(x) = 0 with a ∈ S. 
With notation as in (III.11.5), let x = a be a solution in S . Looking for a solution in S which 
lifts a , we begin by choosing an arbitrary lifting, say to a ∈ S. This arbitrary lifting is unlikely 
to be a solution, but since a ≡ a (modulo N) and f(a ) = 0, we can conclude that f(a) ≡ 0 
(modulo N). We are allowed to adjust our original choice a by adding an element of N , so we 
try to solve the equation f(a + h) = 0, with h ∈ N . Because h2 = 0, Taylor’s formula reduces to 
f(a + h) = f(a) + hf (a). So we look for h so that hf (a) = − f(a). Now since f, f generate the 
unit ideal, pf + qf = 1 for some p, q ∈ R[x]. So pf 2 + qff = f . Substituting x = a, the first term 
lands in N2 , hence is zero. So q(a)f(a)f (a) = f(a), and we may set h = − q(a)f(a). 

We’ll omit the proof of the next proposition. 

Proposition III.11.11. A smooth algebra or scheme is flat over R. 

Exercise: Let U = C[x, y]/(xy), and define Sn = C[t]/(tn+1). Starting with the point U 
p0−→ S0 

whose coordinates are (0, 0), determine its liftings to S1 and to S2, and verify that U does not 
satisfy Grothendieck’s definition of smoothness. 

Proposition III.11.8. Let A be an R-algebra which is a free module, and let U be the algebra 
defined by the idempotent relations (III.11.4). Then U is a smooth R-algebra. 

Proof. As was illustrated above in the case of one equation, one can try to use the explicit equations 
and Newton’s method to lift solutions, which amounts to using a jacobian criterion for smoothness. 
That method is hard to apply in our case. Also, the equations (III.11.4) are not intrinsic to the 
problem of finding idempotents, because they depend on the choice of basis. 

We will present Grothendieck’s general method for verifying the lifting property for an algebra 
U . The method requires usa to have a usable interpretation of the meaning of a point of U with 
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values in a commutative algebra S. In our case, a point of U with values in an R-algebra S has 
an intrinsic interpretation: It corresponds to an idempotent element of the algebra AS . That 
is how the equations are defined. A solution (a1, ..., an) of (III.11.4), with values in S , yields an 
idempotent element e in AS , and lifting this to a solution (a1, ..., an ) with values in S is equivalent 
with the problem of lifting the idempotent e from the algebra AS to an idempotent of AS . The 
algebra AS is obtained by killing the square zero ideal NAS in AS , so we know that the lifting is 
possible. Therefore U is smooth!  

A similar analysis can be made for the matrix unit equations eij ekl = δij eil and e11 + · · · + err = 1. 
If A is a free R-algebra of rank r2 sith a basis uα, we can write down a system of “matrix unit 
equations” fν (x) = 0 in r3 variables xijα, such that a solution of the system in S yields matrix 
units, hence yields an isomorphism of AS with the matrix algebra Mr(S). The exact nature of the 
equations is not important, but they are 

(III.11.9) Σαβγ cαβγ xijαxklβ = δ jkxilγ , and Σαxijα = 1. 

Now it is known that if S = S/N where N2 = 0, then a system eij of matrix units in AS can be 
lifted to a system eij in AS . This shows 

Proposition III.11.10. The system of matrix unit equations defines a smooth algebra U = 
R[xijα]/(fν ).  

To close this section, we note that any commutative R-algebra U has a tautological point with 
values in U , namely the one given by the identity map U −→ U . It is worthwhile spending a 
moment to reinterpret this point. First, if U = R[x1, ..., xn]/(f1, ..., fr ), then a point U 

p −→ S with 
values in S corresponds to a solution (a1, ..., an) of the system of equations f(x) = 0 in S. The 
solution corresponding to the identity map U −→ U takes for ai the residue of xi in U . Also, if 
we can interpret the meaning of a point with values in S, then we can apply that interpretation 
to the point U = U . Thus if U is the algebra defined by the matrix unit equations (III.11.9), then 
a point of U with values in S corresponds to a system of matrix units in the algebra AS . So the 
identity map U = U corresponds to a set of matrix units in AU , and AU is isomorphic to a matrix 
algebra over U . 
Now most algebras aren’t isomorphic to r × r matrix algebras, and most can’t be made into 
matrix algebras by changing the ground ring. For instance, if A happens to be commutative, then 
A ⊗ U will be commutative for all commutative U , whereas if r > 1, the matrix algebra Mr(U) 
is not commutative - unless U is the zero ring. The matrix algebra over the zero ring is the only 
commutative one. Thus, for a random algebra A, it is quite likely that our ring U will be the zero 
ring, i.e., the polynomials (III.11.9) will generate the unit ideal. 

Exercise: The identity map U −→ U , the corresponding solution of the system of equations in U , 
and their interpretation in case of a problem such as matrix units, all have universal properties. 
Discuss. 

III.12. Azumaya algebras 

Azumaya algebras are analogous to bundles of matrix algebras in topology. As we have seen, we 
should allow more general forms of “localization” than the adjunction of inverses. 
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Proposition III.12.1. Let R be a noetherian commutative ring, and let A be an R-algebra which 
is a finite R-module. The following are equivalent. If one of them holds , then A is called an 
Azumaya algebra over R. 

(i) There is a faithfully flat, commutative R-algebra R such that A⊗ R R is isomorphic to a matrix 
algebra Mn(R ). 

(ii) There is a smooth commutative R-algebra R such that the map Spec R −→ Spec R is surjec-
tive, and that A ⊗ R R is isomorphic to a matrix algebra Mn(R ). 

(iii) A is a projective R-module of constant rank, and for every map R −→ K where K is an 
algebraically closed field, A ⊗ R K is isomorphic to a matrix algebra over K. 

(iv) A is a projective R-module of constant rank, and the canonical map Ao ⊗ R A −→ EndR A is 
bijective. 

Proof. (i) ⇒ (iii): Let R be as in (i), and let R −→ K be a homomorphism. Let S = R ⊗ K. 
Then S is not the zero algebra because R is faithfully flat over R. Hence S is faithfully flat over 
the field K. Also, AS = A ⊗ S ≈ AR ⊗ R S. Since AR is a matrix algebra, so is AS . We replace 
R by K and R by S. The fact that AS is a matrix algebra means that the matrix unit equations 
(III.11.9) have a solution in some nonzero ring. Hence the algebra U (III.11.10) is not the zero 
ring, and by the Nullstellensatz, U has a point with values in the algebraically closed field K. Thus 
AK is a matrix algebra. 

(iii) ⇒ (iv): Let E1 = Ao ⊗ A and E = EndR A. the right action of E1 on A commutes with the 
R-action, which we view as a left action. This defines the canonical map f : E1 −→ E referred 
to in the statement of the theorem. Note that E1 and E are locally free R-modules of the same 
ranks. A map f : E1 −→ E between locally free modules is bijective if and only if the induced 
map E1 ⊗ K −→ E ⊗ K is bijective for every homomorphism R −→ K to a field. So to prove (iii), 
we may replace R by K. Then (ii) tells us that A is a matrix algebra, for which we verify directly 
that f is bijective. 

(iv)⇒ (iii): This reduces to showing that if R is an algebraically closed field and (iii) holds, then 
A is a matrix algebra. Since R is a field, EndR A is a matrix algebra, hence a central simple 
R-algebra. Applying (1.5) and (1.8), we see that the center of A is R and that A is a simple ring. 
So A is central simple. Since R is algebraically closed, A is a matrix algebra. 

(iii) ⇒ (ii): We look at the matrix unit equations (III.11.9) and the algebra U they define. This 
algebra is smooth. It suffices to show that the map Spec U −→ Spec R is surjective (III.5.2). 
Then we can take R = U , and use the solution corresponding to the identity map U −→ U . 
Surjectivity of the map of spectra is equivalent with saying that every map R −→ K, where K is 
an algebraically closed field, has a point of U with values in K lying over it. Translating this, for 
every map R −→ K, there is a system of matrix units in the algebra AK . This is true because A K 
is a matrix algebra. 

(ii) ⇒ (i): This follows from (III.11.11) and (III.5.2).  

We now take a second look at the proof of Theorem III.3.1, and adapt it to extend the Skolem-
Noether theorem. 
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Theorem III.12.2. (Skolem-Noether) Let R be a commutative, noetherian local ring, and let A 
be an Azumaya algebra over R. Then every R-automorphism of A is inner. 

Proof. For the moment, R can be arbitrary. Let θ be an R-automorphism of A. We make A into 
an (A, A)-bimodule in two ways: First in the usual way, and second by letting A act on the right 
through θ. We denote this second module by A∗ . Thus for x ∈ A∗ , right multiplication is defined 
by x ∗ a = xaθ . Let E = Ao ⊗ A ≈ EndR A. Let us suppose for the moment that A and A∗ are 
isomorphic right E-modules, and let φ : A −→ A∗ be an isomorphism. The proof of (III.3.1) shows 
that θ is inner. Conversely, if θ is inner, say aθ = u−1au where u is invertible in A, then right 
multiplication by u is an E-isomorphism A −→ A∗ . 

We need to conclude that, if R is a local ring, then A and A∗ are isomorphic. Since A is a projective 
R-module, we have a Morita equivalence of categories 

(III.12.3) Mod R 
−⊗RA −−−−→ Mod E. 

It has an inverse − ⊗ E Q, where Q = HomE(A, E). Then L = A∗ ⊗ E Q is a projective R-module. 
If R is a local ring, then L is free, and one sees that its rank must be 1, hence it is isomorphic to 
R ≈ A ⊗ E Q. Because − ⊗ E Q is an equivalence, A and A∗ are isomorphic.  

Exercise: Prove the following proposition: 

Proposition III.12.4. An Azumaya algebra A over a commutative ring R has a well defined 
determinant det : A −→ R. This determinant is compatible with extension of scalars R −→ R , 
and it agrees with the usual determinant when A is a matrix algebra. 

III.13. Dimension of a variety 

Let k be an algebraically closed field. Every nonempty variety X over k has a dimension, with 
these properties: 

Theorem III.13.1. (i) If dim X = 0, then X consists of a finite set of points. If dim X > 0, 
then X cointains infinitely many points. 

(ii) The affine space An 
k = Spec k[x1, ..., xn ] has dimension n. 

(iii) If X is irreducible and if Y is a proper closed subvariety of X, then dim Y < dim X . 

(iv) If f : X −→ Y is a morphism of varieties and if y is a point of Y , then the fibre f −1(y), a 
closed subvariety of X, has dimension at least dim X − dim Y unless it is empty. 

III.14. Background on algebraic curves 

Let k be an algebraically closed field. A function field in one variable K over k is a field extension 
of transcendence degree 1, which is finitely generated as field extension. We’ll call such a field a 
function field for short. 

Every function field K has a unique smooth projective model X, an algebraic curve. Calling it 
projective means that it can be embedded into projective space in some way. We won’t use an 
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explicit embedding. For example, if K = k(t) is a pure transcendental extension, then X is the 
projective line P1 over k. 

The points of X are in bijective correspondence with discrete valuations of K. We’ll denote the 
valuation associated to a point p of X by vp. So for a ∈ K, its valuation at p, denoted by vp(a), is 
an integer which is zero for all but a finite number of points p. If vp(a) is positive, it is called the 
order of zero of a at p. If vp(a) is negative, then −vp(a) is called the order of pole of a at p. 

A divisor on X is an integer linear combination of points: D = Σripi, the sum being finite. The 
degree of a divisor D = Σripi is the integer Σri. 

The divisor of a function a is defined to be 

(III.14.1) Σp v p(a)p, 

“the zeros minus the poles of a”. It is usually denoted by the overused symbol (a), and is often 
split into its positive and negative parts: (a) = (a)0 − (a)∞, where (a)0 is the divisor of zeros, and 
(a)∞ is the divisor of poles. The degree of the divisor of a function is zero: 

(III.14.2) Σv p(a) = 0. 

A function has the same number of zeros as poles. 

The Riemann-Roch theorem computes the space of elements of K whose poles are bounded by a 
fixed divisor D. This set becomes a vector space over k if the zero element (which does not have 
a divisor) is added. A critically important fact is that the dimension of this vector space is finite 
for any divisor D. 

The Riemann-roch theorem makes reference to a certain invariant of the curve X, its genus g. The 
genus of P1 is zero. 

Theorem III.14.3. (Riemann-Roch) Let D be a divisor of degree d on X, and let V be the vector 
space of elements of K whose poles are bounded by D: 

V = {f ∈ K | (f)∞ < D}. 

Then if d > 2g − 2, 
dim V = d + 1 − g. 

In any case, dim V ≥ d + 1 − g. 

Exercise: Prove the Riemann-Roch theorem for P1 . 
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III.15 Tsen’s theorem 

Theorem III.15.1. (Tsen) Let K be a function field in one variable over an algebraically closed 
field k. Every division ring D which is a K-algebra, finite as K-module, is commutative. Hence 
the Brauer group of K is the trivial group. 

Proof. We may assume that K is the center of D, so that D is a central simple algebra over K. We 
try to adapt the method of proof of Theorem III.9.2. Since D is a division ring, the determinant 
of any nonzero element a ∈ D is nonzero. If [D : K] = n2 , then the determinant is computed by 
evaluating a polynomial Δ with coefficients in K, which is homogeneous of degree n in n2 variables 
xi. The statement that det(a)  = 0 for all a  = 0 means that this polynomial does not take the value 
zero for any substitution xi = ai, with ai ∈ K and not all zero. The next theorem shows that the 
only possibility is that n = 1 and therefore D = K.  

Theorem III.15.2. (Tsen-Lang) Let K be a function field in one variable over an algebraically 
closed field k, and let F (x1, ..., xr ) be a homogeneous polynomial in K[x1, ..., xr ] of degree d < r. 
There exist elements a1, ..., ar in K, not all zero, such that F (a1, ..., ar ) = 0. 

Proof. We will prove this theorem using Riemann-Roch. To do so, we look for a zero (a1, ..., ar ) 
such that the elements ai have poles only at a fixed point p of X, say of degree ≤ n. We’ll allow 
n to be as large as necessary, in particular, larger than 2g − 2. By Riemann-Roch, the space V of 
all such functions has dimension n + 1 − g. The space V r of r-tuples (a1, ..., ar ) of such functions 
obviously has dimension 

(III.15.3) dim V r = r(n + 1 − g) = rn + const(n). 

Now if (a1, ..., ar ) ∈ V r , what are the poles of F (a)? First of all, F has coefficients in the function 
field K, and these coefficients will have poles. The coefficients of F are fixed elements of K. Let Z 
be a divisor larger than the poles of all of these coefficients, and let z be the degree of Z. Second, 
each monomial of degree d in { ai} contributes poles only at p, and of order ≤ dn. Thus the poles 
of F (a) are bounded above by Z + dn p, which is a divisor of degree z + dn. So F (a) is contained 
in the vector space W of all functions with at most these poles. Riemann-Roch tells us that 

(III.15.4) dim W = dn + z + 1 − g = dn + const(n). 

Since r > d, we find that dim V r > dim W if n is sufficiently large. 

Now we make a slight contortion. We regard the vector spaces V r and W as varieties. To be 
precise, a k-vector space W of dimension N is isomorphic to the space kN via a choice of basis, 
and kN has another incarnation, as the space of points of affine space AN 

k with values in k (see 
Section 10). So W is isomorphic to the space of points of an affine space too. At the risk of 
confusion, we’ll denote the affine spaces associated to our two vector spaces by V r and W too. 

Lemma III.15.5. The polynomial F defines a morphism of varieties V r −→ W which sends 
(a1, ..., ar ) to F (a). 

Assume the lemma. The dimension formula (III.13.1iv) shows that the nonempty fibres of F have 
positive dimension. The fibre over 0 in W is not empty because F (0, ..., 0) = 0. Thus it has positive 
dimension, and contains infintely many nonzero points (a1, ..., ar ).  
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Proof of the lemma. What has to be verified is that, whereas F has coefficients in the function 
field K, its restriction to V r is is described by some polynomial functions with coefficients in the 
ground field k. 

We choose a k-basis for V , say v1, ..., vm, and write the elements a1, ..., ar of V in terms of this 
basis: ai = Σyij vj , where yij are undetermined coefficients which are to be evaluated in k. The 
substitution xi = ai into F yields a polynomial Φ(y) in the variables yij , say, in multi-index 
notation, 

(III.15.6) Φ(y) = Σcαy α . 

The coefficients cα are obtained by algebraic operations from the coefficients of F and the vj . So 
they are elements of the function field K. Let W denote the finite dimensional k-subspace of K 
spanned by the coefficients and by W . Since the monomials yα are polynomials, formula III.15.6 
exhibits the restriction of F to V r as a polynomial map V r −→ W . Since its image is contained 
in W , we also obtain a polynomial map to W by projection.  
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IV. MAXIMAL ORDERS 

Terminology: R: a commutative, noetherian, often a Dedekind domain, and K the field of 
fractions of A. 
AK : a K-algebra which is a finite K-module, and which is often central simple. 

For many reasons, it is useful to “extend” AK over Spec R. This means finding an algebra A over 
R such that A ⊗ K ≈ AK . For instance, if K is the field of rational numbers, we may want to 
reduce AK modulo p, and in order for this to make sense, the defining equations for AK must have 
integer coefficients. 

Extending to Spec R amounts to this: choosing generators and defining relations for AK , and ma-
nipulating them so that the defining relations have coefficients in R. The most primitive approach 
would be simply to take a set of defining equations, and clear denominators from the coefficients. 
Such a direct approach is unworkable. Complications arise because the procedure is far from 
unique. One needs to choose the generators and relations very carefully. 

Suppose that AK is central simple. The nicest situation is when we can choose the relations so 
that A is an Azumaya algebra. But this may not be possible, even when the defining relations are 
chosen optimally. In that case we say that the algebra AK “ramifies”, and we’d like a structure 
theorem for the extended algebra. There is structure theorem when R is a Dedekind domain. 

As a simple example, the equations defining the algebra of quaternions, which are i2 = − 1, j2 = − 1, 
ji = − ij, have integer coeffcients. The Z-algebra A = Z i, j /(i2 = j2 = − 1, ji = − ij), whose 
elements are the integer linear combinations a+bi+cj+dij, is a fairly nice Z-algebra. Its reduction 
modulo p is a matrix algebra for every integer prime p  = 2. But when we reduce modulo 2, the 
algebra becomes commutative. So A is not an Azumaya algebra. We will discuss this example in 
more detail later. 

Exercise: Prove that A ⊗ Fp is a matrix algebra for all p  = 2. 

IV.1. Lattices and orders 

An R-lattice L in a finitely generated right K-module V is a finitely generated R-submodule which 
generates V as K-module. We may refer to an R-lattice simply as a lattice, for short. 

A reminder: If S denotes the multiplicative set of nonzero elements of the domain R, then L⊗ K = 
LS−1 . So L generates V if and only if L ⊗ K ≈ V . 

Proposition IV.1.1. (i) Suppose that V is generated as K-module by elements v1, ..., vn . Then 
the set L = v1R + · · · + vnR is a lattice. Every lattice has this form. 
(ii) If R  = K and V  = 0, then V contains infinitely many lattices. 
(iii) If L is an R-lattice in V and u ∈ K is not zero, then Lu is an R-lattice. 
(iv) Let L be an R-lattice in V and let M be any finitely generated R-submodule of V . There is a 
nonzero element s ∈ R such that Ms ⊂ L. 
(v) Let M be a finitely generated, torsion-free R-module. The canonical map M −→ V := M ⊗ K 
is injective, and M is an R-lattice in V .  
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An R-order A in the finite K-algebra AK is an R-subalgebra which is a lattice in AK , i.e., which 
is a finitely generated R-module such that A ⊗ K ≈ AK . We may also refer to an R-order simply 
as an order. 

Constructing R-orders is not as easy as constructing lattices, because the R-algebra generated by 
a finite set of elements need not be a finite module. There are far fewer orders than lattices. For 
example, if AK = K, then the only R-order is R itself. The Z-algebra generated by the fraction 1 

2 
is not an order, though the Z-module 1 

2Z is a lattice. 

There is a tricky way to construct an order, and thereby to show that orders always exist. I find 
this method extremely elegant. The first step is to choose an arbitrary finite, faithful, right AK -
module V , and a lattice L in V . For example, we may choose V = AK . The second step is to take 
for A the subset of AK of elements which carry the lattice L to itself: 

(IV.1.2) A = {a ∈ V | La ⊂ L} . 

Proposition IV.1.3. The set (IV.1.2) is an R-order. Hence every finite K-algebra AK contains 
an order. 

Proof. It is easily seen that A is a ring, that R ⊂ A, and that A is an R-algebra. To see that A is 
a finite R-module, we note that right multiplication by a ∈ A, the map ρa : L −→ L, is R-linear 
because ar = ra for a ∈ A and r ∈ R. It is not the zero map unless a = 0, because ρa ⊗ K is 
right multiplication by a on V , and V is faithful. So sending a → ρa defines an injective map 
A −→ EndR L. Since L is a finite R-module, so is EndR L. Since R is noetherian, A is also a finite 
R-module. 

Next, to show that A ⊗ K ≈ AK , let a ∈ AK . If v1, ..., vr is a set of generators for L as R-module, 
then v1a, ..., vr a generate La. So La is a finitely generated R-module, and there is a nonzero 
element s ∈ R such that Las ⊂ L. Thus as ∈ A, and a ∈ A ⊗ K.  

If A is an R-order, then we may also define the concept of A-lattice in a finite right AK -module V . 
An A-lattice is an A-submodule of V which is also an R-lattice. Note that since the operation of 
R is central, we may consider an A-lattice as an (R, A)-bimodule. The analogues of the assertions 
of IV.1.1 for R-lattices carry over. 

Lemma IV.1.4. Let A be an R-order in a finite K-algebra AK . 
(i) Let V be a finite AK -module, generated by elements v1, ..., vn . The set L = v1A + · · · + vnA is 
an A-lattice. Moreover, every A-lattice has this form. 
(ii) If R  = K then any nonzero AK -module V contains infinitely many lattices. 
(iii) If L is an A-lattice in V and u ∈ K is not zero, then Lu is an A-lattice. 
(iv) Let L be an A-lattice in V and let M be any finitely generated A-submodule of V . There is a 
nonzero element s ∈ R such that Ms ⊂ L. 
(v) Let A be an R-algebra which is a finite, torsion-free R-module. then A is an R-order in A ⊗ K. 
 

Exercise: (1) Prove that if M, N are finite R-modules, then HomR(M, N) is a finite R-module. 
(2) Let L be a lattice in V and let V = L ⊗ K. Show that EndR L is an order in EndK V . 

IV.2. The trace pairing on an Azumaya algebra 
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Let M, N be finite, locally free R-modules. The concept of an R-bilinear form − , − : M × N −→ R 
is defined exactly as when R is a field. If M and N are free modules with bases {ui} and {vj } 
respectively, then the form is determined by the matrix  ui, vj  , which can be an arbitrary matrix 
with entries in R. 

Let M∗ = HomR(M, R) be the dual module. A bilinear form defines a map N −→ M ∗ , by the 
rule y → − , y . This is an R-linear map. 

Suppose that M = N and that the form is symmetric. If the map M −→ M ∗ defined by the form 
is bijective, then the form is called nondegenerate. It is important to notice that this is stronger 
than saying that the nullspace of the form is zero. The nullspace of the form is zero whenever the 
map M −→ M∗ is injective, and if R is a field, this implies bijectivity. Not otherwise. 

In case M is free, with basis {ui}, the form is nondegenerate if and only if its discriminant 
δ = det( ui, uj  ) is an invertible element of R. A change of basis, say v = P u, where P is an 
invertible R-matrix, changes the discriminant by the factor (det P )2 . Since det P is invertible, this 
is the square of a unit. So the discriminant is determined only locally, and locally only up to the 
square of a unit factor. 

Proposition IV.2.1. Let A be an Azumaya algebra over an arbitrary commutative noetherian 
ring S. The map A × A −→ S, defined by 

a, b = trace(ab) 

is a nondegenerate symmetric bilinear form on the S-module A. 

Proof. In the case that A is a matrix algebra, this lemma is proved by taking a look, and it follows 
in the general case by descent.  

Proposition IV.2.2. Let R be a commutative, noetherian, normal domain, and let A be an R-
order in a central simple K-algebra AK . For any a ∈ A, the characteristic polynomial p(t) of a is 
in R. 

Proof. Let R[a] denote the commutative R-subalgebra of A generated by a. This is a finite R-
module because it is an R-submodule of A, A is a finite module, and R is noetherian. Therefore a 
is integral over R, and is the root of a monic polynomial, say g(t), with coefficients in R. 

Going over to K, we know that the kernel IK of the map K[t] −→ K[a] is a principle ideal, generated 
by a monic polynomial f(t). Going further, to the algebraic closure K, we have K[a] ⊗ K ⊂ A ⊗ K 
because K is flat over K, so K[a] ⊗ K is the K-subalgebra of A ⊗ K = Mn(K) generated by a. 
It follows that f also generates the kernel of the map K[t] −→ K[a]. This shows that f is the 
minimal polynomial of the matrix a. The minimal polynomial and the characteristic polynomial 
p(t) have the same roots. So p(t) divides a power of f(t) in K[t] and in K[t]. 

Next, suppose that R is a discrete valuation ring, so that, in particular, it is a unique factorization 
domain. Let f0 and p0 denote the primitive polynomials, determined up to unit factor, associated 
with f and p. Then f0 generates the kernel IR of the map R[t] −→ R[a] ⊂ K[a]. (If f divides 
h in K[t] and if h ∈ R[t], then f0 divides h in R[t].) We saw above that the kernel IR contains 
a monic polynomial. Therefore f0 must also be monic (up to unit factor), i.e., f0 = f . Since p 
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divides a power of f , p0 divides a power of f0, which shows that p0 is monic and equal to p, hence 
that p ∈ R[t]. 

Finally, to treat the case of a general normal domain R, we apply the next lemma, a standard 
result from commutative algebra.  

Recall that the height one prime ideals P in a domain R are those which are minimal among 
nonzero prime ideals. 

Lemma IV.2.3. Let R be a commutative, noetherian, normal domain. 
(i) The local ring RP at a height one prime ideal P is a discrete valuation ring. 
(ii) R = 

 
P RP , where P runs over the height one primes of R, and RP is the localization of R 

at P . 

The second part of this lemma becomes an important tool when one tries to extend results from 
Dedekind domains to domains of higher dimension. 

IV.3. Separable algebras 

Let K be a field. A finite K-algbra AK is separable if it is a direct sum A1 ⊕ · · · ⊕ Ar, were each Ai 

is a central simple algebra over a separable field extension Ki of K. Equivalently, AK is separable 
if and only if AK ⊗ K is a direct sum of matrix algebras over K. 

Proposition IV.3.1. Let K be a field, and let AK be a finite K-algebra. Suppose that τ : AK −→ 
K is a linear function such that the bilinear form 

a, b = τ(ab), 

is a symmetric and nondegenerate form on AK . Then AK is a separable K-algebra. 

Proof. The linear form extends to K, so we may assume that K is algebraically closed. The next 
lemma shows that every ideal yields a decomposition of AK into a direct sum of subrings, hence 
that AK decomposes as a direct sum of simple rings. By Wedderburn’s theorem, each of these 
simple rings is a matrix algebra.  

Exercise: Prove the converse: If AK is a separable algebra, then such a linear form τ exists. 

Lemma IV.3.2. Let I be an ideal of AK , and let I⊥ be its orthogonal complement. Then I⊥ is 
an ideal, and I I⊥ = I⊥I = 0. So AK = I ⊕ I⊥ is a decomposition of AK as a direct sum of rings. 

Proof. By definition, I⊥ = { y ∈ AK |  y, I = 0} . Then for a ∈ AK ,  ya, I = τ(yaI) =  y, aI ⊂ 
 y, I = 0. This shows that I⊥ is a right ideal. Since  I, y = 0 as well, I⊥ is also a left ideal. It is 
clear that I I⊥ = I⊥I = 0, and the fact that I and I⊥ are subrings follows.  

The decomposition of 1 in I ⊕ I⊥ yields a pair of idempotents which are in the center of AK . 

Proposition IV.3.3. Let A be an R-order in a central simple K-algebra AK . Assume that A is 
a locally free R-module. Then A is an Azumaya algebra if and only if  a, b = trace(ab) defines a 
nondegenerate pairing A × A −→ R. 

Proof. The “only if” part is contained in Proposition IV.2.1. Suppose that the trace pairing is 
nondegenerate. To prove that A is an Azumaya algebra, it suffices to show that AL is a matrix 
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algebra over L for every homomorphism R −→ L to an algebraically closed field (CSA, III.12.1). 
Tensoring with L, the trace pairing is the composition of multiplication in AL , composed with the 
linear form τ = trace ⊗ L. But we can’t conclude that the linear form is trace until we show that 
AL is a matrix algebra, which is what we are trying to prove. Anyway, we can apply the previous 
proposition to this pairing, to conclude that AL is a separable algebra. To show that it is a matrix 
algebra, it suffices to show that AL doesn’t contain any central idempotent other than 0, 1. 

There are probably more elegant ways to prove this, but I’m too lazy to think of one. At this 
stage, we can get through just by beating it to death. Suppose that e ∈ AL is a central idempotent 
different from 0 and 1. Let U be the smooth R-algebra defined by the idempotent equations (CSA, 
III.11.4). The idempotent e corresponds to a point of U with values in L. Let P be the kernel of 
the map U −→ L, let S be the local ring UP , and let L be the residue field of S. So we have a 
sequence of maps U −→ S −→ L −→ L, and corresponding idempotents eU → eS → eL → eL = e. 

Lemma IV.3.4. Let S be a local ring with residue field L and let L be the algebraic closure of L. 
Let e be an idempotent element of a finite S-algebra AS . If the image of e in AL is central, then e 
is central. 

Proof. Say that e = e1 and that e1 +e2 = 1. Consider the Peirce decomposition A = 
 
Aij , where 

Aij = eiAej . Because e1e2 = e2e1 = 0 and e1 is the identity element in A11, e1 is central in A if 
and only if A12 = A21 = 0. The Peirce decomposition of A induces the Peirce decompositions of 
AL and AL by tensor product, and by the Nakayama lemma, A12 = 0 if and only if A12 ⊗ L = 0, 
which is true if and only if A12 ⊗ L = 0.  

Scholium IV.3.5. Suppose that A is an R-order in a central simple K-algebra AK . There are 
two obstructions to A being an Azumaya algebra. First, A must be a locally free R-module, and 
second, the trace pairing must be nondegenerate. Both of these are open conditions on Spec R. 

If A is locally free, then whether or not a given form is nondegenerate is determined by its dis-
criminant δ, computed with respect to a local basis { ui} of A. The points where A is an Azumaya 
algebra are those at which δ does not take the value 0. This is an open set. 

To see that the condition of being locally free is open, let M be a finite module over the commu-
tative, noetherian, domain R, and let n = dimK (M ⊗ K). If p ∈ Spec R is a point corresponding 
to a prime ideal P of R, let k(p) be the residue field k(p) = RP /PP , and let 

n(p) = dimk(p)(M ⊗ k(p)). 

Lemma 2.7. Let M be a finite module over a commutative noetherian domain R. With the above 
notation, 
(i) The function n(p) is upper semicontinuous on Spec R. In particular, n(p) ≥ n for all points p. 
(ii) M is locally free (or projective) at a point p if and only if n(p) = n. 

Thus the locus of points at which the order A is locally free is an open set in Spec R. 

Proof. (i) We choose a free resolution of M , say 

Rr P −→ Rs −→ M −→ 0, 
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where P is an r × s matrix with entries in R (operating on the right). Then n(p) ≥ d if and only 
if the rank of the matrix P ⊗ k(p) is at most s − d, i.e., if and only if the determinants of all 
(s − d + 1)-rowed minors of P are zero. The vanishing of these determinants is a closed condition. 

(ii) We may replace R by the local ring at p. The Nakayama lemma shows that we may choose 
the presentation so that r = n(p). If some entry of P is not zero, then the rank of P ⊗ K is less 
than r, so n(p) > n. If P = 0, then M is free.  

IV.4. Maximal orders in central simple algebras 

An R-order A in a finite K-algebra AK is called a maximal order if it is not properly contained 
in another order. Maximal orders in central simple algebras are analogues to integrally closed 
domains, and it is natural to concentrate the study of orders on them. A change that occurs when 
AK is not commutative is that the maximal order is often not unique. 

Theorem IV.4.1. Let AK be a central simple algebra. Every R-order in AK is contained in a 
maximal order. 

Example IV.4.2: Some orders in a matrix algebra. Let’s take the case that R = k[t] and K = k(t), 
where k is an algebraically closed field. Let AK = M2(K). Then A = M2(R) is a maximal order 
(see (IV.4.5) below). It contains many nonmaximal orders which are isomorphic to A except at 
the point t = 0, for instance the order 

(IV.4.3) 

 
R R 
tR R 

 

. 

There are also other maximal orders. If L is an arbitary A-lattice in AK , then A = End LA will 
be maximal (see (IV.4.5)). This yields examples such as 

L = 

 
tR tR 
R R 

 

, A = 

 
R tR 

t−1R R 

 

. (IV.4.4) 

Proof of Theorem IV.4.1. The proof is similar to the proof that the integral closure of R in a finite 
separable field extension is a finite R-module. It uses the trace pairing defined in the previous 
section. Proposition 2.2 shows that the form  a, a  = trace(aa ) takes its values in R if a, a ∈ A, 
and so it defines a pairing A × A −→ R. This in turn defines an R-linear map A −→ A∗ = 
HomR(A, R), which is injective because the pairing is nondegenerate on AK . Since A is a finite 
R-module, so is A∗ . 

Now suppose that A ⊂ B are two orders. Then because B is an order, the trace pairing carries 
B × B −→ R. We can restrict this pairing to obtain a pairing A × B −→ R. This pairing defines 
an injective map B −→ HomR(A, R) = A∗ . Then we have inclusions A ⊂ B ⊂ A∗ , which hems B 
in, because A∗ is a finite R-module, and hence noetherian.  
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Corollary IV.4.5. An Azumaya algebra over R is a maximal order. 

Proof. If A is an Azumaya algebra, the trace pairing is nondegenerate, and therefore A = A∗ . 
Going back to the proof of the theorem, if A ⊂ B are orders and A is Azumaya, then A ⊂ B ⊂ A∗ , 
which shows that A = B.  

Exercise: Show by example that an Azumaya algebra A over R needn’t be Morita equivalent to R. 

Example IV.4.6. Integer quaternions. Here R = Z, and A is the order of quaternions with 
integer coefficients. In order to differentiate the complex number i from the element of A usually 
denoted by the same letter, we’ll use bold face i and j for the quaternions. So A is a free Z-module 
with basis 1, i, j, ij. 

Let R = Z[i] be the ring of Gauss integers. There is a matrix representation of AR , given by 

i → 

 
i 0 
0 −i 

 

, j → 

 
0 −1 
1 0 

 

, (IV.4.7) 

and the formulas 

e11 = 1 
2 (1 − ii) , e22 = 1 

2 (1 + ii) , e12 = −e11j , e21 = e22j 

show that AR becomes isomorphic to the 2 × 2 matrix algebra when 2 is inverted, i.e., except 
at the prime 2. This shows that A[ 12 ] is Azumaya algebra over Z[ 1 

2 ], hence a maximal order. 
However A is not a maximal Z-order. To obtain a maximal order, we must adjoin the element 
α = 1 

2 (1 + i + j + ij). This is analogoues to the fact that 1 
2 (1 + 

√ 
−3) is an algebraic integer. 

Exercise: Prove that the Z-lattice B having basis 1, i, j, α is an order. 

It is not hard to see that B is a maximal order, though it is not an Azumaya algebra. According 
to Proposition 2.2, the determinant of an element β ∈ B must be an integer. Writing β = 
a + bi + cj + dij, we compute the determinant by using the matrix representation (IV.4.7): 

(IV.4.8) β = 

 
a+ i −c − di 
c − di a− i 

 

, 

and 

(IV.4.9) det(β) = a 2 + b 2 + c 2 + d 2 . 

Since A[ 12 ] is maximal, A[ 12 ] = B[ 1 
2 ], and so if β ∈ B, then the denominators of a, b, c, d are powers 

of 2. Then in order for det(β) to be an integer, the denominators, if not 1, must all be 2. Therefore 
β is in the lattice spanned by 1, i, j, α. 

Exercise: Compute the discriminant of the trace pairing on B, and determine the structure of 
B ⊗ F2. 

Exercise: Let R = k[t], K = k(t), and let AK be the K-algebra K[x]/(x2). Prove that there is no 
maximal R-order in AK . 
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Proposition IV.4.7. Let A be a maximal R-order in the matrix algebra AK = Mn(K). 
(i) Let L be an A-lattice in V = Kn . Then A ≈ EndR L. 
(ii) Suppose that R is a Dedekind domain. Then A has the form EndR L, where L is a projective 
R-module. 

Proof. (i) Every lattice is an RLA bimodule, hence corresponds to a map A −→ EndR L. Then 
EndR L is also an order in Mn(K) = EndK V . Since A is maximal, EndR L = A. 

(ii) This is true because every finite, torsion free module over a Dedekind domain is projective.  

IV.5. Hensel’s Lemma 

Let R be a complete local ring with residue field k and maximal ideal m. For f(t) ∈ R[t], we denote 
by f the polynomial in k[t] obtained by reducing the coefficients of f . 

Proposition IV.5.1. (Hensel’s Lemma) Let f(t) ∈ R[t], and suppose that in k[t], f = g h, where 
 g and h are relatively prime, and  g is a monic polynomial. Then f factors accordingly: There are 
unique polynomials g, h ∈ R[t] such that f = gh, g is monic, g = g, and h = h. Moreover, g, h 
generate the unit ideal in R[t]. 

Proof. We proceed by lifting the solution f = gh from R/m to each R/md step by step. This 
suffices because R = lim ←− R/m

d . The general lemma which allows the lifting is the following: 

Lemma IV.5.2. Let S be a commutative ring, N an ideal of S such that N 2 = 0, and f ∈ S[t]. 
Let f denote its image in S[t], where S = S/N . Suppose given a factorization f = gh in S[t], 
such that  g is monic, and that  g, h generate the unit ideal in S[t], i.e., pg + qh = 1 for some 
 p,  q ∈ S[t]. There are unique polynomials g, h in S[t] such that f = gh, g is monic,  g = g, and 
h = h. Moreover, g, h generate the unit ideal in S[t]. 

Proof. This is done by Newton’s method. We begin by choosing arbitrary liftings of g, h to S[t]. 
Then f ≡ gh (modulo N), so we may write f + w = gh, where w is a polynomial in N [t], i.e., all 
of its coefficients are in N . We are free to adjust g, h by polynomials in N [t], say to g1 = g + u, 
and h1 = h + v. Then because N 2 = 0, g1h1 = gh + gv + uh = f + w + gv + hu. To factor f , we 
must solve the equation gv + hu + w = 0. Now since N 2 = 0, N [t] is an S[t] module, i.e., S[t] acts 
on N [t] through S[t]. So we may as well write  gv + hu + w = 0, and this equation can be solved 
because g, h generate the unit ideal. 

This procedure may not yield a monic polynomial g. To show that we can lift the solution while 
keeping g monic, we start with any lifting. The leading coefficient of g, say b ∈ S, has the property 
that b ≡ 1 (modulo N). Since N 2 = 0, b is a unit. So we may change g to b−1g and h to bh, and 
we are done. 

The fact that g, h generate the unit ideal follows from the next lemma. Since we do not need the 
uniqueness here, we leave the proof of uniqueness as an exercise.  
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Lemma IV.5.3. Let R be a local ring with residue field k, and let g, h ∈ R[t] be polynomials, with 
g monic. If g, h generate the unit ideal in k[t], then g, h generate the unit ideal in R[t]. 

Proof. because g is monic, R[t]/(g) is a finite R-module, and so is S = R[t]/(g, h). By the Nakayama 
lemma, S ⊗ k = k[t]/(g, oh) = 0 implies that S = 0.  

We remark that there is a system of equations which expresses the fact that f is a product gh, and 
that g, h generate the unit ideal, say pg+qh = 1, where g, h, p, q are polynomials with undetermined 
coefficients, g being monic. The the degrees of g and h have to add up to degf . The degrees of p 
and q are fixed and arbitrary. Lemma IV.5.2 shows that this is a smooth system of equations. 

Exercise: Write down the system of equations. 

Corollary IV.5.4. Let f be a primitive and irreducible polynomial in R[t] such that f is not a 
constant. Then the leading coefficient of f is a unit. 

Proof. We write f = g h, where h ∈ k is the leading coefficient of f and g is monic. By Hensel’s 
Lemma, f factors accordingly: f = gh, where g is monic. Since  g is not constant, neither is g. 
Then since f is irreducible, h is a constant, and since h = 0, h is a unit.  

IV.6. Maximal orders over complete discrete valuation rings 

In this section, R denotes a complete discrete valuation ring with field of fractions K, and D is a 
division ring with center K and finite over K. 

Theorem IV.6.1. Let R be a complete discrete valuation ring, and let D be a central division 
ring over its field of fractions K. 
(i) There is a unique maximal order A in D, and it is the set 

A = {a ∈ D | det(a) ∈ R}. 

(ii) Let A be the maximal order described in (i). Every maximal order in Mr(D) is isomorphic to 
Mr(A). 

Proof of Theorem IV.6.1(i). We already know that the determinant of any element of an order is 
in R (2.2). So it is clear that A, as defined above, contains every order, and the only thing to be 
proved is that A, as defined above, is an order. 

Lemma IV.6.2. If a ∈ D and if det(a) ∈ R, then the characteristic polynomial of a is in R[t], 
and a is integral over R. 

Proof. Because D is a division ring, R[a] is a commutative domain. Therefore the minimal monic 
polynomial f(t) for a over K is irreducible. The minimal polynomial and the characteristic poly-
nomial p(t) have the same roots, so since f is irreducible, p is a power of f . By hypothesis, the 
constant coefficient det(a) of p(t) is in R. Therefore the constant coefficient of f(t) is in R too. Let 
f0 denote the associated primitive polynomial in R[t], which is obtained from f by multiplying by 
a power of a generator x for the maximal ideal m of R to clear denominators. 

We claim that the polynomial f 0 obtained by reducing f0 modulo m is not constant. Since f0 is 
primitive, at least one of its coefficients is a unit of R, and the degree of f 0 is the largest degree 
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having a unit coefficient. If f does not have coefficients in R, then multiplication by x is necessary, 
and because the constant term of f is already in R, the constant term of f0 will be divisible by x. 
So it is not a unit, and f 0 has positive degree in this case. Else, if f itself has coefficients in R, 
then f0 = f , and f has degree n because f is monic. 

Corollary IV.5.4 shows that f0 is monic, so f0 = f , and p, being a power of f , has coefficients in 
R.  

Lemma IV.6.3. The set A is an R-algebra. 

Proof. It is clear that A is closed under multiplication. To see that R ⊂ A, it is enough to note 
that, if [D : K] = n2 , then 

(IV.6.4) det(c) = c n 

for any element c ∈ K, in particular for c ∈ R. 

It is less clear that A is closed under addition, but there is an amazing trick to show this. Let 
a, b ∈ A, and say that the order of zero of det(a) is not greater than that of det(b). Then u = 
a−1b ∈ A. So by the previous lemma, u is integral over R, and every element of the commutative 
ring R[u] is integral, hence is in A. In particular, 1 + u is in A. Then a(1 + u) = a + b is in A too, 
as was to be shown.  

Lemma IV.6.5. The set A is an R-order in D. 

Proof. It is clear from the definition of A that A ⊗ K = D. So taking into account the previous 
lemma, what remains to be proved is that A is a finite R-module. This uses the trace pairing, 
and is similar to the proof of IV.4.1. Let a, b ∈ A. Then ab ∈ A, and by Lemma IV.6.2,  a, b = 
trace(ab) ∈ R. We may choose an R-lattice L in D which is a submodule of A. The trace pairing 
defines a map L × A −→ R, hence an injective map A ⊂ L∗ . Since L∗ is a finite R-module, so is 
A.  

The next proposition lists some of the nice properties of the maximal order IV.6.1. The proofs are 
all easy, and we omit them. 

Proposition IV.6.6. Let A be the order IV.6.1, and let π ∈ A be an element such that det(π) is 
not a unit of R, but v(det(π)) is minimal among such elements of A. 
(i) Every nonzero element of D has the form πku, where k is an integer and u is an invertible 
element of A. 
(ii) π is a normal element of A, i.e., πA = Aπ. The two-sided ideal J = πA of A is the Jacobson 
radical of A, and is a maximal right ideal and a maximal left ideal. Δ := A/J is a division ring. 
(iii) The nonzero ideals of A are the powers of J . Every right or left ideal is a two-sided ideal.  

Proposition IV.6.7. Every finite, torsion-free A-module MA is free. 

Proof. Since Δ is a division ring, M := M ⊗ A Δ is a free Δ-module, and we may lift a basis 
{ mi} of M to a set { mi} of elements of M . This set generates M by the Nakayama Lemma, and 
it is a basis because M is torsion-free: If Σmiai = 0 is a nontrivial relation, then because M is 
torsion-free, we may cancel a power of π so that some aν is not in J . Because the set { mi} is a 
basis, this implies that aν = 0, which is a contradiction.  
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Proposition IV.6.8. Let vK denote the m-adic valuation of K. This valuation defines a valuation 
vD on D, by the rule 

vD(x) = vK (det(x)). 

So for x ∈ A, vD(x) = k if x ∈ Jk and x ∈ jk+1 . 

Proof. The defining properties of a valuation are 

vD(xy) = vD(x) + vD(y), and 

vD(x + y) ≥ min{vD(x), vD(y)} . 
The first of these is clear. For the second one, we use the trick of the proof of IV.6.3. Say that 
vD(x) ≤ vD(y). Then vD(x−1y) ≥ 0, so x−1y ∈ A. Then 1 + x−1y ∈ A too, so vD(1 + x−1y) ≥ 0. 
Multiplying by x, vD(x + y) ≥ vD(x).  

Note that for r ∈ R, 

(IV.6.9) vD(R) = n vK (R) 

People often normalize the valuation vD differently. One can divide by n so that vD agrees with 
vR on R, or else one can set vD(π) = 1, so that all integer values are taken on. The first has the 
disadvantage that the values are not necessarily integers, and the second complicates the definition 
of the valuation. But these are minor points. 

Let R be the integral closure of R in a separable extension K of K, and let m be its maximal 
ideal. Then k = R /m is an extension field of k. The extension K /K is called unramified if 
m = mR and k /k is separable. In that case k = R ⊗ k. We may say that k is obtained from K 
by reduction modulo m. 

Proposition IV.6.10. Let R be a complete discrete valuation ring with perfect residue field k, 
and let D be a central simple K-algebra which is a division ring. 
(i) Every finite field extension L of k which is obtained as above from an unramified extension L 
of K. If L ⊂ Δ, then L can be realized as a subfield of D. 
(ii) There is a maximal commutative subfield L of D which is an unramified extension of K. 

Proof. (i) Let L ⊂ Δ be a separable commutative field extension of k. We may choose a primitive 
element, and write L = k[a] ≈ k[t]/(f), where f is an irreducible monic polynomial in k[t] and 
where f, df/dt are relatively prime. We lift f arbitrarily to a monic polynomial f ∈ R[t]. Taking 
into account Lemma IV.5.3, it suffices to show that the root a of f can be lifted to a root a of f 
in A. Because A = lim ←− A/J

n , it suffices to lift the root step by step to A/Jn for every n. This is 

done by Newton’s method, using the fact that f, df/dt are relatively prime. 

For the proof of (ii), we use induction on [D : K], together with the next lemma. 

Lemma IV.6.11. Suppose that D  = K. To prove (ii), It suffices to find any unramified field 
extension L of K contained in D, and which is not equal to K. 

Proof. We choose L to be maximal. Let L be the centralizer of L in D. So L is a division ring, 
and L is contained in the center of L . By (A.1), the centralizer of L is L, and since L ⊂ L , L 
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is the center of L . By induction, there is an unramified extension L1 of L which is a maximal 
commutative subfield of L . By maximality of L, L = L1, and this is possible only if L = L (CSA, 
4.2).  

It remains to find the unramified extension as in the Lemma. 

Case 1: Δ > k. We choose an arbitrary element a ∈ Δ which is not in k. Because k is perfect, 
a is separable over k. We may write k = k[a] ≈ k[t]/(f), where f, df/dt generate the unit ideal 
in k[t]. Let f ∈ R[t] be a monic polynomial whose residue modulo mR is f . Lemma IV.5.3 shows 
that f, df/dt generate the unit ideal in R[t], hence that R = R[t]/(f) is a finite etale R-algebra. 
Because f is irreducible, so is f . So K = K[t]/(f) is the required unramified extension of K. 

Case 2: Δ = k. In this case we show that A = R, hence that D = K. Let π ∈ A be an element of 
minimal positive valuation, and J = Aπ. Let a = a0 ∈ A be arbitrary. Because Δ = k, we can find 
an element r0 ∈ R such that a0 ≡ r0 (modulo Aπ), or a = r0 + a1π. The same reasoning, applied 
to a1, yields a = r0 + r1π + a2π

2 , and continuing,we obtain a = r0 + r1π + r2π2 + · · · , with ri ∈ R. 
On the other hand, π is integral over R, so it satisfies a monic polynomial relation with coefficients 
in R. If the degree of this relation is d, then the process can be terminated at degree d, to show 
that a can be written as a polynomial in π with coefficients in R. This shows that A ⊂ R[π], so A 
and AK are commutative. Since K is the center of AK , AK = K.  

Proof of Theorem IV.6.1(ii). We note that Dr is a (D, Mr(D))-bimodule. If B is an order in 
Mr(D), then Ao ⊗ B is an order in Do ⊗ Mr(D). Choose an Ao ⊗ B-lattice L in Dr . By xxx, L 
is a free left A-module. So this lattice defines an operation of B on Ar

A, hence it identifies B as a 
subalgebra of Mr(A) = End Ar

A. Since there exists a maximal order, Mr(A) must be maximal.  

Corollary IV.6.12. (i) Let L be a maximal subfield of D and L a maximal subfield of k. Then 
[L : K] = [L : k]. 
(ii) Let π ∈ A be an element of minimal positive valuation. Say that vD(π) = f and [D : K] = n2 . 
Also, let k be the center of Δ. Then f divides n, say ef = n. Moreover [k : k] = e and 
[Δ : k ] = f2 . 

Proof. (ii) Let p be a generator for the maximal ideal m, and let e = n/f . Then (IV.6.9) vD(p) = n, 
hence p = πeu, where u is invertible in A. This shows that e = n/f is an integer and that pA = J e . 
Because A is a free R-module, dimk(A/pA) = dimK D = n2 . 

We have a chain of ideals A ⊃ J ⊃ J2 ⊃ · · · ⊃ Je = pA, and J i/J i+1 is a free right A/J = Δ-
module of rank 1, generated by πi . So n2 = dimk(A/pA) = e[Δ : k], and [Δ : k] = ef 2 . 

Let e = [k : k], and f 2 
= [Δ : k ], so that [Δ : k] = e f 2 

. Then a maximal subfield of Δ has 
degree f over k , hence degree e f over k, and (i) shows that e f = n = ef . This implies that 
e = e and f = f .  

More can be said. We state the next theorem without proof. 

Theorem IV.6.13. With the above notation, 
(i) The field extension k of k is a Galois extension with cyclic Galois group. 
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(ii) Let R be the integral closure of R in an unramified extension K of K which splits D. Then 
A := A ⊗ R is isomorphic to a standard hereditary order in the matrix algebra Mn(K ), as 
described below. 

The description of the order: Let M = Mr(R ), and let p denote a generator for the maximal ideal 
of R and of R . Then A is made up of a e × e array of f × f blocks. The blocks below the diagonal 
are pM , an the rest are M . The Jacobson radical J = J ⊗ R has all blocks on the diagonal equal 
to pM as well, as illustrated below for the case e = 3. 

A = 

⎛ 

⎝ 
M M M 
pM M M 
pM pM M 

⎞ 

⎠ , J = 

⎛ 

⎝ 
pM M M 
pM pM M 
pM pM pM 

⎞ 

⎠ . (IV.6.14) 

IV.7. Recovering data from the completion 

We want to use the results of the previous section to describe maximal orders over a Dedekind 
domain R which is not complete. If we are given a central simple K-algebra AK , then we can 
as first approximation, choose any R-order, maximal or not, and ask where it is Azumaya. As 
we have remarked, being Azumaya is an open condition, so in the case of a Dedekind domain, it 
will be the complement of a finite set of points. The problem is to describe the order at these 
“bad” points. We can treat each of these points separately, and thereby reduce to the case that 
a maximal order has been described except at a single point p. (The uses of the symbols p and t 
have changed.) There is a general principle which tells us that the order, or any other structure 
on a finite R-module, is determined by its restriction to the complement of the point on Spec R, 
and by its completion at p. We describe this principle here. 

Let R be a Dedekind domain which is not a field, and let m be a maximal ideal of R. Let’s call 
p the corresponding point of Spec R. For simplicity, we’ll assume that m is a principal ideal of R, 
generated by an element t. Let R = R[t−1], and let R denote the completion of R at m. So R 
is a complete discrete valuation ring, and the valuations of R and of R at p agree on the field of 
fractions K of R. We pose the problem of recovering information about R from R and R. We 
know that R and R are flat over R, and by (CSA, 5.2) that R ⊕ R is a faithfully flat R-algebra. 

We consider the category C of pairs (M , M), where M is a finite R -module and M is a finite 
R-module, such that M ⊗ bR K = M and M ⊗ R K are isomorphic. We suppress the isomorphism in 
our notation in order to avoid clutter, but it is to be understood that the isomorphism is assigned 
by the pair. A morphism (M , M) −→ (N , N ) in C is a pair of maps M −→ N and M −→ N 
such that the induced maps M −→ N are equal. 

We have a functor Φ : (mod R) −→ C , which carries a finite R-module M to the pair (M ⊗ R , M ⊗ 
R). The isomorphism is the canonical isomorphism 

M ⊗ R ⊗R K ≈ M ⊗ K ≈ M ⊗ R ⊗ bR K. 

If M is a finite R-module, we will write M = M ⊗ R , M = M ⊗ R, and  M = M ⊗ K. However, 
we also use the notation (M ,  M) for an element of C which, a priori, does not come from a finite 
R-module M . 
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Theorem IV.7.1. (i) Let M be a finite R-module. The sequence 

(IV.7.2) 0 −→ M −→ M ⊕ M 
(+,−)−−−−→ M 

is exact, where (+, − ) denotes the difference of the canonical maps. In other words, elements of 
M correspond bijectively to pairs of elements (m , m) whose images in  M are equal. 
(ii) The functor Φ is an equivalence of categories. 

Proof. The analogues of this theorem are true in higher dimensions, but since we are stating the 
result for Dedekind domains, we may as well use their special properties. 

(i) The sequence IV.7.2 is compatible with direct sums. So since every finite R-module is a direct 
sum of a finite length module and a projective module, we may treat the cases of a finite length 
module and of a projective module separately. 

The map M −→ M ⊕  M is injective because R ⊕ R is faithfully flat (CSA, xxx). Also, the 
composition of the two maps in the sequence is zero. 

If M has finite length and is supported at p, then M = 0,  M = 0, and M ≈ M . If M has finite 
length and its support is away from p, then M ≈ M , and  M = M = 0. The sequence is exact in 
both cases. 

Suppose that M is projective. Then M is a summand of a free module, and it suffices to verify 
the assertion for a free module. This in turn reduces to the case that M = R. The assertion for 
R can be restated in this way: If the image in K of an element x ∈ R lies in R, then x ∈ R. To 
say that x ∈ R is the same as saying that its valuation vp(x) is not negative. The valuation on the 
completion R is the same as the valuation on R at p. So this is true if x ∈ R. 

Lemma IV.7.3. Let R be a commutative noetherian ring, and let M, N be finite R-modules. 
(i) HomR(M, N) is a finite R-module. More generally, for all q, Extq 

R (M, N) is a finite R-module. 
(ii) Let S be a flat R-algebra, and let MS = M ⊗ S. The canonical maps Extq 

R (M, N) ⊗ S −→ 
Extq 

S(MS, NS ) are bijective. In particular, HomR(M, N) ⊗ S ≈ HomS (MS, NS ) is bijective.  

Lemma IV.7.6. (i) The functor Φ is fully faithful. 
(ii) The category of R-modules of finite length supported at p is equivalent to the category of finite 
length R-modules, and also to the full subcategory of C of objects of the form (0, F ). 
(iii) Let F be an R-module of finite length supported at p. Then for any finite R-module N , 
Ext 1 

R(F, N) ≈ Ext 1 
bR
(F, N) ≈ Ext 1 

C ((0 , F ) , (N , N )). 

Proof. (i) Let H = HomR(M, N). By Lemma xxx, HomR (M , N ) ≈ H , Hom bR(M, N ) ≈ H , and 

Hom b K( M , N ) ≈ H . By part (i) of the theorem, the sequence 

0 −→ H −→ H ⊕ H −→ H 

is exact. This identifies H with HomC ((M ,  M), (N , N )). 

(ii) This follows because a finite length R-module supported at p is a module over R/tnR for some 
n, and R/tnR ≈ R/tnR. 
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(iii) We choose a resolution of F as R-module, say 

(IV.7.7) 0 −→ P −→ R k −→ F −→ 0. 

Then because R is a Dedekind domain, P is projective. So the exact sequence 

(IV.7.8) 0 −→ HomR(R k , N) −→ HomR(P, N) −→ Ext 1 
R(F, N) −→ 0 

computes Ext 1 . Both sequences remain exact when tensored with R, and P is a projective R-

module. The first two terms of the second sequence, tensored with R, are identified by Lemma xxx. 
This shows that Ext 1 

R(F, N)⊗ R ≈ Ext 1bR(F, N). The isomorphism Ext 1 
bR
(F, N) ≈ Ext 1 

C((0 , F ) , (N , N )) 
is verified by inspection.  

Going back to the proof of the second part of the theorem, let (M ,  M) be an object of C . There 
is a finitely generated R-submodule N of M such that N ≈ M , and then N ≈  M too. If we

replace N by tkN for suitably large k, N will be t-torsion free, and the map N −→ M will be 
induced by an injection N ⊂  M . Then setting F = M/N , M becomes an R-module extension of 
N by F . By Lemma xxx(iii), this extension is induced by an R-module extension of M by F , and 
one sees that Φ(M) ≈ (M ,  M).  

IV.8. Addendum to the handout on Central simple algebras 

The following is one of Brauer’s theorems, and it should have been included in (CSA, Section 4). 
At the time, I thought we wouldn’t need this assertion, so I suppressed it. You can find a proof in 
any reference which treats central simple algebras. 

Theorem A.1. Let A be a central simple K-algebra, and let B be a simple subalgebra. Let B be 
the centralizer of B in A, and B the centralizer of B . Then (i) B is simple. (ii) B = B , and 
(iii) [A : K] = [B : K][B : K]. 

This discussion should have been in (CSA, Section 12). The Brauer group of a ring R is defined 
as the group of equivalence classes [A] of Azumaya algebras A over R, the operation being tensor 
product. The only point that needs discussion is the definition of the equivalence relation. The 
clue is given by (CSA III.12.1(iv)), which tells us that Ao ⊗ R A is isomorphic to E := EndR A. If 
we expect [Ao] to invert [A], as it does in the case of a field, then we must make [E] equal to the 
trivial class [R]. It is therefore natural to define the equivalence class of R to be the set of algebras 
isomorphic to EndR P , where P is any finite, locally free (or projective) R-module. Then we must 
say that A and B are equivalent if there are finite projective modules P, Q such that A ⊗ EndR P 
and B ⊗ EndR Q are isomorphic. This works, and it defines a group. 

Exercise: Show that the tensor product of Azumaya algebras is Azumaya, and verify that Br(R) 
is an abelian group. 
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V. IRREDUCIBLE REPRESENTATIONS 

V.1. Definition 

Let A be an algebra over a field k, and let K be a field extension of k. We’ll be talking exclusively 
about finite-dimensional representations of A, so when we say representation, the hypothesis that 
it is finite-dimensional is there. 

An n-dimensional matrix representation over K is a k-homomorphism ρ : A −→ Mn(K) to the 
matrix algebra over K. Two matrix representations ρ, ρ are equivalent if one is obtained from the 
other by an inner automorphism of the matrix algebra, i.e., ρ = uρu−1 for some invertible matrix 
u ∈ Mn(K). The representation is irreducible if the image ρ(A) generates the matrix algebra as K-
algebra, or if the map A⊗ K −→ Mn(K) is surjective. We often study the case that k = K. In that 
case a representation ρ : A −→ Mn(k) is irreducible if and only if it is a surjective homomorphism. 

Lemma V.1.1. Let ρ : A −→ Mn(K) be a matrix representation, and let L be a field extension 
of K. Then ρ is irreducible if and only if the representation A −→ Mn(L) obtained by composition 
with the inclusion map Mn(K) −→ Mn(L) is irreducible.  

Suppose that A is a finitely generated algebra over k, say A = k x1, ..., xr  /I, where I is an ideal 
of the free ring k x . Then the representation ρ is determined when we assign the images ρ(xi), 
which have to satisfy the relations imposed by the ideal I. 

A second definition of an n-dimensional representation is as a module V over the tensor product 
A ⊗ k K, which is n-dimensional as K-module. Since K and A commute in the tensor product, the 
module structure defines a homomorphism A −→ EndK V , and by the choice of a basis, EndK V 
becomes a matrix algebra. Conversely, a homomorphism A −→ Mn(K) defines an A ⊗ K-module 
structure on V = Kn . Equivalence of representations carries over to isomorphism of modules. 
When k = K, V is just an A-module which has dimension n over k. 

Proposition V.1.2. Let K denote the algebraic closure of K. Via the above correspondence, 
irreducible matrix representations correspond to finite dimensional A ⊗ K-modules V such that 
V ⊗ K is a simple A ⊗ K-module. 

Proof. We’ll show that if ρ is not irreducible, then V ⊗ K K is not simple. Suppose that the map 
A ⊗ K −→ Mn(K) induced by a choice of basis for VK is not surjective. Then A ⊗ K −→ Mn(K) 
is not surjective either. We replace K by K, thereby reducing to the case that K is algebraically 
closed. Let B ⊂ Mn(K) denote the image of A ⊗ K, and let J denote the Jacobson radical of 
B. Since V is simple and V/V J  = 0 by Nakayama, it follows that V J = 0 and that V is a 
B/J-module. By Wedderburn, B/J is a sum of matrix algebras, and if B  = Mn(K), the ranks 
of these matrix algebras are smaller than n. Then the simple B/J-modules have dimensions < n 
too, and it follows that V is not simple.  

There is a third way to look at irreducible representations, namely in terms of the kernel of the 
homomorphism A −→ Mn(K). Suppose that k = K, and let ρ be an irreducible representation. 
The kernel P of the surjective map A −→ Mn(k) is a maximal ideal because Mn(k) is a simple ring, 
and so A/P is isomorphic to the matrix algebra. By the Skolem-Noether theorem, the isomorphism 
is detemined up to conjugation. So P determines the equivalence class of the representation. This 
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shows that equivalence classes of irreducible representations over k correspond to certain maximal 
ideals P in A: those such that A/P is a matrix algebra. 

The kernel characterizes the equivalence class of a representation when K is any field, but to use it 
we must understand when matrix representations over different fields should be called equivalent. 
It is better to leave this point for later, when some theory has been developed (see Theorem 8.7). 

V.2. Examples 

We’ll work out the irreducible representations of three rings in this section. We assume that the 
ground field k is algebraically closed and of characteristic zero, and we’ll study representations by 
k-vector spaces. 

Example V.2.1 The enveloping algebra of sl2. The Lie algebra sl2 of traceless matrices is spanned 
by 

 
0 1 
0 0 

 

, 

 
0 0 
1 0 

 

, 

 
1 0 
0 −1 

 

and we denote these matrices by x, y, h respectively. They satisfy the relations 

(V.2.2) [y, x] = h , [x, h] = 2x , [y, h] = −2y, 

and the enveloping algebra A = U(sl2), which is the associative algebra generated by x, y, h, is 
defined by the same relations: 

(V.2.3) xy − yx = h , hx − xh = 2x , hy − yh = −2y . 

Exercise: Use the Diamond Lemma do show that the ordered monomials hixj yk form a basis of 
U . 

Let V be an irreducible representation of A, and let v ∈ V be an eigenvector for the operation of 
h on V , say vh = λv. Then 

vxh = v[x, h] + vhx = 2vx + λvx = (λ + 2)vx. 

So vx, if not zero, is an eigenvector for h with eigenvalue λ + 2. Similarly, vyh = (λ − 2)vy. 

Choose an eigenvector v = v0 for h with an eigenvalue λ = r, and so that r+2 is not an eigenvalue, 
hence so that vx = 0. For n ≥ 0, set vn = vyn . Then 

vnh = (r − 2n)vn, 

(V.2.4) vny = vn+1, 

vnx = αnvn−1, 

where αn = nr − n(n − 1). The last formula is proved by induction, using the initial condition 
α0 = 0: 

vn+1x = vnyx = vn[y, x] + vnxy = vnh + αnvn−1y = (r − 2n + αn)vn. 

So αn+1 = αn + r − 2n, from which the formula follows. 

These formulas show that vr+1x = 0, but that vn are independent if n ≤ r. This allows us to mimic 
our representation by using the same formulas (V.2.4) for the vector space with basis {v0, ..., vr }, 
but setting vr+1 = 0. Our representation maps to this one, so since V is irreducible, the map must 
be an isomorphism. Working this out yields the following: 
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Proposition V.2.5. There is, up to isomorphism, a unique irreducible representation of U(sl2) 
of dimension r + 1 for every r ≥ 0.  

Example V.2.6. Varying the q-plane. Let A denote the ring generated by elements x, y, t, t−1 , 
with relations 

(V.2.7) yx = txy , tx = xt , ty = yt . 

The 1-dimensional representations of A are the homomorphisms A −→ k. Since k is commutative, 
we can factor such a homomorphism through the ring  A obtained by forcing commutativity. Since 
t is already central, the only relation we need to add is yx = xy. Combining with the first relation 
(V.2.7), this yields the defining equation for A, namely (t − 1)xy = 0. So the one dimensional 
representations of A are the k-valued points of the commutative ring  A, which are the points on 
the three planes t = 1, x = 0, and y = 0 in (x, y, t)-space. 

We now describe the higher dimensional irreducible representations. Since t is in the center of 
A and since the center of Mn(k) is the set of scalar matrices, the matrix representing t must be 
a scalar. So we can begin by assigning a value for q in k. Setting t = q yields the quantum 
polynomial ring k x, y /(yx − qxy). We may as well work with the quantum polynomial ring 
Aq = k x, y /(yx − qxy), where q denotes any nonzero element of k. Elements of Aq can be 
represented uniquely by ordered polynomials Σ aij x

iyj . 

Lemma V.2.8. Suppose that q ∈ k is not a root of unity. Then every nonzero ideal of Aq contains 
a monomial xiyj . 

Proof. To show this, we start with any nonzero element f(x, y) = Σ aij x
iyj in an ideal I. We 

note that (xiyj )x = qj x(xiyj ). So qrx(xiyj ) − (xiyj )x = 0 if and only if j = r. Replacing f by 
qrxf − fx kills the term xiyj in f if j = r, and replaces it by the nonzero term (qr − qj )xi+1yj if 
j  = r. In this way we can reduce number of powers of y which appear in f to 1, without killing f . 
Similarly, operations of the form qrfy − yf reduce the number of powers of x to 1, and we are left 
with a polynomial of the form axiyj with a = 0.  

Lemma V.2.9. If q is not a root of unity, then the only irreducible representations of Aq are 
one-dimensional. 

Proof. Let ρ : Aq −→ Mn(k) be a surjective homomorphism. Because Mn(k) is a prime ring, the 
kernel P of ρ is a prime ideal. It is not zero because Aq is infinite-dimensional. By the previous 
lemma, P contains xiyj for some i, j. Then because the monomials span Aq , xAq x

i−1yj ⊂ P too, 
and by induction, x or y is in P . Therefore Aq /P is commutative, and n = 1.  

The quantum polynomial ring Aq has a Z2-grading, and a corresponding two-parameter family of 
automorphisms, defined by x −→ λx and y −→ µy, λ, µ  = 0. 

Lemma V.2.10. Suppose that q is a primitive nth root of unity. 
(i) The map sending x to the n × n diagonal matrix whose diagonal entries are the powers of ζ in 
order, and y to the n × n cyclic permutation matrix, defines an irreducible representation of Aq . 
(See (CSA, 2.5), and set a = 1.) 
(ii) Every irreducible representation of Aq has dimension 1 or n, and the representations of di-
mension n are obtained from the representation (i) by the automorphisms x → λx and y → µy. 



64 

Exercise V.2.11: Prove Lemma V.2.10. 

Example V.2.12. The Weyl algebra. This algebra is A = k x, y /(yx = xy + 1). the equation 
yx = xy + 1 has no solution in n × n-matrices, because trace(xy) = trace(yx) and trace(1) = n. 
Therefore this algebra has no finite-dimensional representations at all. 

The Weyl algebra exhibits the limitations inherent in the program of studying algebras by means 
of their representation theory. What is worse, there are no general methods for handling represen-
tations of all dimensions simultaneously. The methods available analyze the representations whose 
dimensions are bounded by a fixed integer n. This is a serious problem. However, for representa-
tions of dimensions ≤ n there is a big theory, and we will look at two aspects of it. The first one 
is abstract, and it leads to the concept of polynomial identity rings. The second one is the direct 
approach of describing a matrix representation ρ of a finitely presented ring A = k x1, ..., xr  /I as 
the point in n2r-dimensional space whose coordinates are the entries of the matrices ρ(xi). This 
approach leads back to classical invariant theory. 

V.3. The standard identities 

The commutator [x, y] = xy − yx has analogues for more variables, called generalized commutators 

(V.3.1) Sn(x1, ..., xn) = Σ (−1) σ xσ1xσ2 · · · xσn, 

where σ runs over the group of all permutations. Thus S2(x, y) = [x, y], and 

S3(x, y, z) = xyz + yzx + zxy − yxz − xzy − zyx. 

The generalized commutators are multilinear and alternating polynomials in the variables, i.e., they 
are linear in each variable and zero if two variables are equal. A general multilinear polynomial in 
x1, ..., xn has the form 

(V.3.2) p(x1, ..., xn) = Σ cσ xσ1xσ2 · · · xσn, 

where the coefficients cσ are elements of the ground field k. 

Our first fundamental result is the following theorem of Amitsur and Levitski: 

Theorem V.3.3. (Amitsur-Levitski) Let R be a commutative ring, and let r be an integer. 
(i) If r ≥ 2n, then Sr(a1, ..., ar) = 0 for every set a1, ..., ar of n × n matrices with entries in R. 
(ii) Let p(x1, ..., xr) be a nonzero mulilinear polynomial. If r < 2n, there exist n × n matrices 
a1, ..., ar such that p(a1, ..., ar)  = 0. In particular, Sr(x1, ..., xr) is not identically zero. 

The identity S2n ≡ 0 is called the standard identity of n × n matrices. For instance S2 ≡ 0 is the 
commutative law, which holds for 1 × 1 matrices but not for n × n matrices if n > 1. 

Note that since Mn(R) is a free R-module of rank n2 , it satisfies the identity Sn2+1 = 0, simply 
because the generalized commutator is multilinear and skew symmetric. However, the precise 
bound provided by the Amitsur-Levitski theorem is useful. 

Here is the reason that the theorem is important: Suppose that we wish to study the representations 
A −→ Mn(k) of a k-algebra A. Let I ⊂ A denote the ideal generated by all substitutions of elements 
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of A into S2n, and let  A = A/I. Part (i) of the theorem tells us that the identity S2n = 0 is true 
in Md(k) if d ≤ n. So every d-dimensional representation of A factors through A. Part (ii) tells us 
that S2n is not true if d > n. So no irreducible d-dimensional representation A −→ Md(k) factors 
through A. Killing I has the effect of keeping the representations of dimensions ≤ n, while cutting 
out all irreducible representations of higher dimension. The ring  A is an example of a polynomial 
identity ring, and we need to develop machinery to handle these rings. 

Proof of Theorem V.3.3. (ii) We leave the reduction to the case r = 2n − 1 as an exercise. Suppose 
that r = 2n − 1. We rearrange the variables so that the monomial x1 · · · x2n−1 has a nonzero 
coefficient c in p. Consider the string of 2n − 1 matrices e11, e12, e22, e23, ..., en−1 n,enn. The 
product of the string in the order indicated is e1n, while the product in any other order is zero. 
Substituting the above string into p yields c e1n, which is not zero. 

The proof that n × n matrices do satisfy the identity S2n = 0 is much trickier. Since S2n is linear 
in each of its variables, it would suffice to verify the identity when each xν is some matrix unit eij , 
but this direct approach is awkward. The following proof by Rosset is the best one available. 

Extending a smaller matrix by zeros shows it is enough to prove the assertion in the case r = 2n. 
Next, since the entries of S2n are polynomials in the matrix entries of the xν , we are trying to 
prove some identities among polynomials. Checking such identities can be done over the complex 
numbers. So it suffices to prove S2n ≡ 0 when the xν are complex n × n matrices. 

Let A = Mn(C), let U be a complex vector space of dimension 2n, say with basis { u1, ..., u2n } , and 
let E denote the exterior algebra on U . Let T = A ⊗ E denote the tensor product algebra. Let xν 

be indeterminate elements of A, and set 

(V.3.4) α = Σ xν ⊗ uν . 

Also, let β = α2 . Collecting terms, we find 

(V.3.5) αr = Σ Sr(xi1 , ..., xir ) ⊗ ui1 ∧ · · · ∧ uir , 

the sum being over all multi-indices i1 < · · · < ir. In particular, 

(V.3.6) βn = α 2n = S2n(x1, ..., x2n ) ⊗ u1 ∧ · · · ∧ u2n. 

It suffices to show βn = 0. Now E is a graded algebra, and the part E0 of even degree is 
commutative. The tensor product inherits the grading, and our element β is even. So we can work 
in the algebra A ⊗ E0, which is isomorphic to the matrix algebra Mn(E0) over the commutative 
ring E0. 

Lemma V.3.7. Let R be a commutative C-algebra, and let β ∈ Mn(R) be a matrix such that 
trace(βi) = 0 for all i = 1, ..., n. Then βn = 0. 

Proof. In characteristic zero we can recover the coefficients of the characteristic polynomial of β 
from these traces. So the characteristic polynomial is tn , and the Cayley-Hamilton theorem says 
that βn = 0.  

Now to prove the Amitsur-Levitski theorem, it suffices to verify that trace(β i) = 0 for 1 ≤ i ≤ n. 
We look at formula (V.3.5). Since trace is linear, it suffices to show that S2i(y1, ..., y2i) has trace 
zero for all i ≤ 2n and all matrices yi. 
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Lemma V.3.8. For any n × n matrices y1, ..., y2i, S2i(y1, ..., y2i) has trace zero. 

Proof by example. Trace is preserved by cyclic permutations of the variables, and cyclic permuta-
tions of an even number of indices are odd. So we can group as follows: 

S4(x, y, z, w) = (xyzw − wxyz) + (−yxzw + wyxz) + · · · . 
 

V.4. Central polynomials 

In about 1970, Formanek and Razmyslov independently found polynomials which, when evaluated 
on n×n matrices, always yield scalar matrices, but which aren’t identically zero. Such polynomials 
are called central polynomials. Their discovery simplified the theory of PI rings greatly. We’ll 
present Razmyslov’s central polynomial here. 

Let N = n2 , let v = {vi}, i = 1, ..., N be a basis for the matrix algebra Mn(k), and let v ∗ = {v∗i } 
denote the dual basis, with respect to the trace form x, y = trace(xy). Let I denote the identity 
matrix in Mn(k). 

Proposition V.4.1. For any matrix z, Σi vizv
∗ 
i = trace(z)I. 

Proof. We first check the formula for the case that v is the standard basis e = {eµν }, taken in an 
arbitrary order. The dual basis is e ∗µν = eνµ. Then, writing z = Σ zµν eµν , 

Σ eµν ze 
∗ 
µν = Σ eµν zeνµ = Σ eµν zνν eννeνµ = Σ zνν e µµ = trace(z)I. 

Next, for an arbitrary basis v = {vi}, we write v = P e and v ∗ = e ∗Q, for some n2 × n2 matrices 
P, Q. Then In2 = v, v ∗ = P e, e ∗tQ = P Q. So P Q = I. Now 

Σ vizv ∗ 
i = Σ pij ej ze 

∗ 
kqki = Σ qkipij ej ze 

∗ 
k = Σ δ kjej ze 

∗ 
k = Σ ej ze 

∗ 
j = trace(z)I, 

as required.  

So to find a central polynomial, it is enough to express the dual basis x∗ 
i of a basis xi as a polynomial 

fi(x, y) in xi and some auxiliary variables yi. Then Σ xizfi will be a central polynomial. 

We need a multilinear and alternating polynomial in x1, ..., xN which isn’t identically zero when 
evaluated on n × n matrices. The Capelli polynomial is the not true universal such polynomial. 
It is obtained by interspersing s + 1 auxiliary variables y0, ..., yN between the terms in the prod-
ucts xσ1xσ2 · · · xσn. The auxiliary variables are needed so that the polynomial does not vanish 
identically on n × n matrices. 

(V.4.2) d = d(x, y) = Σ (−1) σ y0xσ1y1xσ2y2 · · · xσsyN . 

Let M denote the space of noncommutative polynomials in some variables x, y, ... which are linear 
in the variable x. We define an operation τx on M as follows: Any monomial appearing in f has 
the form uxv, where u, v are monomials in the remaining variables. We set 

(V.4.3) (uxv)τx = vu. 

This definition extends linearly to an operation τx on the space M . 
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Theorem V.4.4. Let x1, ..., xN be a basis of Mn(k) and let y0, ..., yN be arbitrary matrices in 
Mn(k). Let a = trace(d). The dual basis is 

x ∗ 
i = a−1 d τi , 

where d is the Capelli polynomial and τi = τxi . 

Proof. Since trace(uxv) = trace(xvu) for all matrices u, x, v and since trace is linear, it follows 
that for all f ∈ M , 

(V.4.5) trace(xf τx ) = trace(f) 

whenever matrices are substituted for the variables. Substituting another variable for x yields a 
trivial variant of this identity: 

(V.4.6) trace(wf τx ) = trace(f |{x=w}), 

where f |{x=w} denotes the polynomial obtained by substituting w for x into f . Again, this formula 
is valid whenever matrices are substituted for the variables. 

We apply these formulas to the Capelli polynomial d = d(x, y). (V.4.5) shows that 

(V.4.7) xi, d τi  = trace(xid τi ) = trace(d) = a. 

If i = j, then d|{xj =xi} = 0 because d is alternating. Therefore V.4.6 shows that 

xi, d τj  = trace(xid τj ) = 0 

for all i = j.  

Theorem V.4.8. Let x1, ..., xN ; y0, ..., yN ; z be variables. The polynomial 

cn(x, y, z) = Σ xizd
τi 

is a homogeneous multilinear central polynomial for n × n matrices. More precisely, evaluating this 
polynomial on n×n matrices, cn(x, y, z) = trace(d)trace(z)I. Moreover, trace(d) is not identically 
zero on Mn(k), hence cn(x, y, z) is not identically zero either. 

Proof. The formula cn(x, y, z) = trace(d)trace(z)I follows from Proposition V.4.1 and Theorem 
V.4.4. It remains to show that trace(d) is not identically zero. For this, we take for x the matrix 
unit basis eiν jν , 1 ≤ ν ≤ s, in an arbitrary order. We set y0 = e1i1 , yN = ejN 1, and for 0 < ν < s, 
yν = e jν iν+1 . Then 

y0x1y1 · · · yn−1xnyn = e1i1 ei1j1 ej1i2 ei2j2 · · · eiN jN eiN 1 = e11, 

while y0xσ1y1 · · · yn−1xσnyn = 0 if σ = 1. Then trace(d) = trace(e11) = 1.  
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Proposition V.4.9. The central polynomial cn(x, y, z) is identically zero on r × r-matrices with 
r < n. 

Proof. We can view an r × r matrix as the upper left block of an n × n matrix with zeros in the 
remaining positions. This is compatible with addition and multiplication. Then cn evaluates to a 
scalar matrix with the bottom right entry zero, hence to zero.  

Example V.4.10. A central polynomial for 2 × 2-matrices. There is a simpler central polynomial 
for 2 × 2 matrices. The Cayley-Hamilton theorem for 2 × 2 matrices z shows that z2 = trace(z)z − 
det(z). Since trace[x, y] = 0, for any 2 × 2 matrices x, y, it follows that [x, y]2 = −det[x, y], hence 
that [x, y]2 is a central polynomial of degree 4. The Razmyslov polynomial has degree 10. 

V.5. Polynomial identity rings 

A polynomial identity for an algebra A over a field k is a nonzero, noncommutative polynomial 
f(x1, ..., xr ) with coefficients in k which vanishes identically on A, i.e., such that f(a1, ..., ar ) = 0 
for all a1, ..., ar ∈ A. 

Proposition V.5.1. Let k be an infinite field, and let A be a k-algebra. 
(i) If A satisfies an identity f(x1, ..., xr ) = 0, then the homogeneous components of f also vanish 
identically on A. 
(ii) If A satisfies a homogeneous polynomial identity of positive degree, then it also satisfies a 
multilinear identity of the same degree. 

Proof. This is proved by a method called polarization. Let t1, ..., tr be indeterminate scalars. Then 
f(t1x1, ..., tr xr) expands to 

(V.5.2) Σ(i) t 
i1 
1 · · · t ir 

r f(i)(x), 

where f(i) is the multihomogeneous part of f of degree iν in the variables xν . If f vanishes 
identically on A, so does f(t1x1, ..., tr xr), and the homogeneous parts can be recovered by making 
sufficiently many substitutions for tν in k. So they also vanish identically. This proves (i). 

(ii) Suppose that f is multihomogeneous, say of degree d in x1. We substitute x1 = t1y1 + · · ·+tdyd 

into f , obtaining a polynomial f(t1y1 +...+tryd, x2, ..., xr ) in the variables y1, ..., yd, x2, ..., xr , which 
vanishes identically, and we extract the coefficient of t1 · · · td. This is a multilinear polynomial in 
y1, ..., yd. We continue with the other variables.  

Corollary V.5.3. If k is infinite and if A is not the zero ring, then Mn(A) satisfies no polynomial 
identity of degree < 2n. 

Proof. This follows from the second part of the the Amitsur-Levitski theorem.  

Proposition V.5.4. Let A be a k-algebra, with or without unit element, which satisfies a multi-
linear identity f(x1, ..., xr ) = 0. Then for any commutative k-algebra R, A ⊗ R satisfies the same 
identity, as does any quotient of A ⊗ R.  

We will call a k-algebra A a polynomial identity algebra, or a PI algebra for short, if A ⊗ k, where 
k is the algebraic closure of k, satisfies a polynomial identity. 
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Thus commutative algebras and finite-dimensional algebras are a PI algebras: 

V.6. Kaplansky’s theorem 

The next result is a Corollary of the Jacobson density theorem. 

Proposition V.6.1. Let A be a ring, let V be a simple right A-module, and let D = End VA. 
(i) If V has dimension ≥ n over the division ring D = End VA, then the matrix algebra Mn(D) is 
a subquotient of A, i.e., there is a subring B of A and a surjective map B −→ Mn(D). 
(ii) If A satisfies a homogeneous polynomial identity of degree 2r, then dimDV ≤ r, and if 
dimDV = n, then A ≈ Mn(D). 

Proof. (i) We choose a D-submodule U of dimension n, and we let B be the subring of A of elements 
which carry U to itself. Then restriction to U defines a homomorphism B −→ EndD U ≈ Mn(D), 
and the density theorem tells us that this homomorphism is surjective. 

(ii) This follows from (i), Corollary V.5.3, and the density theorem  

We now come to Kaplansky’s theorem, the main theorem in the theory of PI algebras. Remarkably, 
the exact identity which holds is of no importance. 

Theorem V.6.2. (Kaplansky) Let A be a PI algebra over a field k, which satisfies a multilinear 
identity of degree 2r and which has has a faithful simple right module V (so A is a primitive ring). 
Then A is a central simple algebra over its center, a field K, and [A : K] ≤ r2 . 

We first treat the case that A is a division ring. 

Lemma V.6.3. A division ring D which satisfies a multilinear polynomial identity is D is finite 
over its center K. 

Proof. We may choose a multilinear identity p(x1, ..., xr ) of degree 2r for D. Let L be a maximal 
commutative subfield of D, let B = Lo ⊗ D (which is equal to L ⊗ D because L is commutative), 
and let V = D. The L, D-bimodule structure on V makes V into a right B-module. Then 

(a) [B : L] = [D : K]. 
(b) B satisfies the same identity (V.5.4). 
(c) B is a simple ring (CSA,1.8), and its center is L (CSA,1.3). 
(d) V := D is a simple B-module, because it is a simple D-module. 
(e) End VB = L. 

For the last assertion, we note that End VD = D, hence End VD is the centralizer of L in D, which 
is L itself because L is maximal (CSA,4.1). 

Then B is dense in EndL V , and by Proposition V.6.1, dimLV ≤ r, and [B : L] = [D : K] ≤ r2 . 
 

Proof of Theorem V.6.2. Let D = End VA, and say that dimDV ≥ n. Because V is a faithful 
module, A embeds into EndD V , and by Proposition V.6.1, A ≈ Mn(D). Since D ⊂ Mn(D), D 
also satisfies a polynomial identity, and is a finite module over its center K. This shows that A is 
a central simple algebra over K. If K denotes the algebraic closure of K, then A ⊗ K is a matrix 
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algebra, say Mn(K) over K (CSA,2.3), and it also satisfies the same identity (V.5.4). So, n ≤ r 
and [A : K] ≤ r2 .  

V.7. A theorem of Amitsur 

The symbol A[t] denotes the ring of polynomials with coefficients in A, and in which t is a central 
variable, i.e., the elements of A commute with t. 

Theorem V.7.1. (Amitsur) Let A be a k-algebra which contains no nonzero nil ideal, for example 
a prime algebra. Then the Jacobson radical of A[t] is zero. 

Example V.7.2. Let k be algebraically closed, and let A be the (commutative) power series ring 
k[[x]]. The Jacobson radical of A[t] is the intersection of its maximal ideals, and the theorem 
asserts that this intersection is zero. This seems a bit mysterious at first, because the obvious 
maximal ideals of A[t] are the ideals (x, t − c) for c ∈ k. Their intersection is xA[t]. However, there 
are other maximal ideals. For instance, the polynomial xt − 1 generates a maximal ideal. The 
ring A[t]/(xt − 1) can be viewed as the ring obtained from k[[x]] by adjoining the inverse of x, and 
inverting x in k[[x]] gives us the field of fractions k((x)). 

Exercise: Describe all maximal ideals of the ring A[t] in the above example. 

Proof of the theorem. We argue by contradiction. Let J be the Jacobson radical of A[t], and let 
α = α(t) be a nonzero element of J . Then − αt ∈ J as well, and therefore 1− αt is invertible in A[t], 
say (1 − αt)−1 = g(t). If A were commutative, the next lemma would show that the coefficients of 
α are nilpotent. 

Lemma V.7.3. Let R be a commutative ring. A polynomial f(t) = a0 + a1t + · · · + ant
n is 

invertible in the polynomial ring R[t] if and only if ai is nilpotent for every i > 0, and a0 is a unit 
of R. Hence, if f(t) = 1 − α(t)t ∈ R[t] is invertible, then α(t) is nilpotent.  

It is harder to interpret the existence of an inverse in the noncommutative case. But there is a 
trick: Let S = { i1, ..., ir } be an ordered set of indices for which there exists a nonzero element 
α = ai1 t

i1 + · · · + air t
ir in J . We choose S so that r is minimal, and we compute the commutator 

[aiν , α]. The commutator is in J , and its coefficient of tiν is [aiν , aiν ] = 0. Since r is minimal, we 
can conclude that [aiν , α] = 0, which means that [aiν , aiµ ] = 0 for all µ, ν. So the ring R = k aiν  
generated by the coefficients of α is commutative, and 1 − αt ∈ R[t]. 

Now we regard A[t] as subring of the ring of formal power series A[[t]]. In the ring A[[t]], we 
have R[t] = A[t] ∩ R[[t]]. The polynomial 1 − αt is invertible in A[t] and in R[[t]]. Therefore it is 
invertible in R[t], and this shows that the coefficients aiν of α are nilpotent. 

Finally, for this particular set S, the vector space N of coefficients ai1 of lowest degree among 
elements of J which are linear combinations of ti1 , ..., tir is an ideal of A, and as we have seen, it 
is a nil ideal.  

Corollary V.7.4. Let A be a PI algebra which contains no nil ideal. Then A has a faithful 
family of irreducible representations of bounded degree. In other words, there is a family of matrix 
representations ρi : A −→ Mni (Ki), with ni bounded, such that the product map A −→ 


Mni (Ki) 

is injective. 
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Proof. We may replace A by A[t] (V.5.4), hence assume that the Jacobson radical of A is zero. A 
ring whose Jacobson radical is zero has a faithful family of simple modules: For every maximal 
right ideal M of A, A/M is a simple module in which M is the annihilator of the residue of 1. Since 
J is the intersection of these maximal right ideals, the operation of A on the product of simple 
modules is faithful. To be specific, we may take one simple module Vi from each isomorphism class 
[Vi], and set Di = End(Vi)A. Then the map 

(V.7.5) A −→ EndDi Vi 

is injective. 

Suppose, as in our case, that A is also a PI ring. Then by Kaplansky’s theorem, EndDi Vi is a 
central simple algebra of bounded rank, which we can split in a finite extension Ki of the center 
Ki. So in this case A embeds as subring into a direct product of matrix algebras Mri (Ki), with ri 

bounded, as claimed.  

V.8. Posner’s theorem 

Theorem V.8.1. (Posner) A prime PI algebra has a right ring of factions which is a central 
simple algebra. More precisely, let Z denote the center of A, and let K be the field of fractions of 
Z. Then A ⊗ Z K is a central simple K-algebra. 

The original proof of this theorem showed that, though A needn’t be noetherian, Goldie’s conditions 
were satisfied. Since central polynomials became available, the proof has been simplified. 

Theorem V.8.2. (Rowan) Let A be a prime PI algebra with center Z, and let I be a nonzero 
ideal of A. Then I ∩ Z  = 0. 

Proof. Since A is prime, it has a faithful family of irreducible representations, and I has a nonzero 
image in at least one of the corresponding matrix algebras, say in B = Mn(K). Thus A⊗ K −→ B 
is surjective, and the image of I in B is not zero. We choose such a B with n maximal. The right 
ideal IB is the image of I ⊗ K in B, so it is a two-sided ideal, and IB = B because B is a simple 
ring. 

Let c(x, y) be a multilinear central polynomial for n × n matrices. then c has a nonzero evaluation 
in B, so it is not an identity in B. The fact that there is a surjective map I ⊗ K −→ B shows 
that c is not an identity in I ⊗ K. By Proposition V.5.4, it is not an identity in I either. So there 
are elements u, v ∈ I with c(u, v)  = 0. If A −→ Mr(L) is an irreducible representation of A with 
r ≤ n, then the image of c(u, v) is in the center because c is a central polynomial (in fact, it is 
zero if r < n). And if r > n, then the image of c(u, v) is zero because c(u, v) ∈ I and n was chosen 
maximal. Hence c(u, v) maps to the center in every irreducible representation, which shows that 
it is in the center of A.  

Proof of Posner’s theorem. With the notation of the theorem, A⊗ Z K is a localization of A, and it 
is a PI ring whose center is K (CSA,1.3). So to prove the theorem, we may replace A by A ⊗ Z K. 
This reduces the theorem to the next lemma. 
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Lemma V.8.3. A prime PI ring A whose center is a field K is a central simple algebra over K. 

Proof. Theorem V.8.2 shows that A is a simple ring. So it has a faithful irreducible module, and 
(V.6.2) shows that it is central simple.  

Corollary V.8.4. Let A be a prime PI algebra which satisfies the standard identity S2n = 0. Then 
A satisfies all identities which hold for n × n matrices over k. 

Proof. By Posner’s theorem, A embeds into a central simple algebra which, by (V.6.4) has rank at 
most n 2 over its center.  

Lemma V.8.5. (i) Let R be a commutative ring, and let I be an ideal of an R-algebra A, and let 
B be a faithfully flat R-algebra. If I ⊗ B is a prime ideal of A ⊗ B, then I is a prime ideal of A. 
(ii) The kernel P of an irreducible representation ρ is a prime ideal. 

Proof. (i) First, I ⊗ B is an ideal of A ⊗ B because B is flat. Suppose that I ⊗ B is a prime ideal. 
Let a, a ∈ A. If axa = 0 for all x ∈ A, then (a ⊗ 1)(x ⊗ b)(a ⊗ 1) = 0 in A ⊗ B for all b, hence 
a ⊗ 1 = 0 or a ⊗ 1 = 0, i.e., a = 0 or a = 0. Therefore I is prime. 

(ii) The kernel of the surjective map A ⊗ K −→ Mn(K) is prime because Mn(K) is a prime ring. 
 

Definition V.8.6. Two matrix representations ρ : A −→ Mn(K) and ρ : Mn(K ) are called 
equivalent if there is a common field extension L of K and K such that the induced representations 
ρ ⊗ K L : A −→ Mn(L) and ρ ⊗ K L : A −→ Mn(L) are conjugate. 

Theorem V.8.7. Two irreducible matrix representations ρ, ρ are equivalent if and only if their 
kernels are equal. 

Proof. It is clear from the definition that equivalent representations have the same kernel. To prove 
the converse, let P be the kernel of a pair of irreducible representations ρ, ρ , which is a prime ideal. 
We may replace A by the prime ring A/P , hence suppose that the kernel is zero. Then because 
the center of Mn(K) is a field, every nonzero element of the center Z of A becomes invertible in 
Mn(K). So ρ factors through the ring of fractions A ⊗ Z K0, where K0 is the field of fracttions of 
Z. By Posner’s theorem, A ⊗ Z K0 is a central simple algebra. this reduces us to the case that A 
is a central simple algebra over a field K0. 

When A is central simple, the representation ρ defines an injection of centers Q −→ K, and ρ 
is a homomorphism of Q-algebras. So A ⊗ Q K ≈ Mn(K). The Skolem-Noether theorem tells us 
that two isomorphisms to the matrix algebra differ by an inner automorphism, hence they define 
equivalent representations. So ρ and ρ become equivalent in any common field extension L.  

V.9. An intrinsic characterization of Azumaya algebras 

Matrix algebras satisfy identities which are not consequences of the standard identity, but though 
much work has been done to describe them, they are still not completely understood. One example 
of such an identity for 2 × 2 matrices is obtained from the central polynomial [x, y]2 (4.10): 

(V.9.1) [[x, y]2 , z] = 0. 
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is an identity. 

Exercise: Show that V.9.1 is not a consequence of the standard identity. 

On the other hand, these identities have not been of very much importance, because the study of 
PI rings has emphasized prime rings. As we know from Posner’s theorem, a prime ring A which 
satisfies the standard identity S2n = 0 actually satisfies all identities of n× n matrices over k. We’ll 
say that a prime ring A has PI degree n if S2n ≡ 0 holds in A. 

Theorem V.9.2. Let A be a k-algebra which satisfies all identities of n × n matrices over k, and 
which has no irreducible representation of dimension less than n. Then A is an Azumaya algebra 
of rank n 2 over its center. 

Corollary V.9.3. Let A be a prime k-algebra of PI degree n, and let γ be a nonzero evaluation 
of the Razmyslov polynomial in A. Then A = A[γ−1] is an Azumaya algebra. 

Proof of the Corollary. Let ρ : A −→ Mr(K) be a representation of dimension r < n, and let 
P = ker(ρ). By Proposition 4.9, γ ∈ P . Therefore P generates the unit ideal in A . This shows 
that ρ does not extend to a representation of A . On the other hand, every representation of A 
restricts to a representation of A of the same dimension. So A has no representation of dimension 
r < n at all, and A is Azumaya.  

Lemma V.9.4. Let R be a commutative ring, and V an R-module. Suppose given elements 
v1, ..., vn ⊂ V and η1, ..., ηn ⊂ V ∗ = HomR(V, R) such that x = Σ ηi(x)vi for all x ∈ V . Then V is 
a projective R-module. 

Proof. The formula shows that vi generate V , so there is a surjection π : Rn −→ V which sends 
the standard basis vector ei to vi. The map θ : V −→ Rn defined by θ(x) = Σ ηi(x)ei splits this 
projection: πθ(x) = Σ ηi(x)vi = x. So V is projective.  

Proof of Theorem V.9.2. (Schelter) We’ll prove the theorem here in the case of a prime ring A. 
Posner’s theorem shows that a prime ring A satisfies the identities of n × n matrices if and only if 
it satisfies any multilinear identity of degree 2n. 

Let c(x1, ..., xN , y) be the Razmyslov polynomial, which we know is multilinear and alternating in 
the variables xi, and also involves some other variables, which we call y. Because A embeds into 
an n × n matrix algebra (by Posner’s theorem), every evaluation of c in A yields an element of its 
center. Notice that s is the largest number of variables in which a polynomial can be multilinear 
and alternating without vanishing identically on n × n matrices. Schelter considers the following 
expression: 

(V.9.5) φ(x0, ..., x N ; y) = Σ (−1) ν c(x0, ..., xν , ..., x N ; y)xν . 

This is a multilinear alternating polynomial in the N + 1 variables x0, ..., xN , and in some aux-
iliary variables y. Evaluating on n × n matrices and fixing y, it becomes a multilinear map

N +1 
Mn(K) −→ Mn(K), or a linear map ΛN+1Mn(K) −→ Mn(K), which is therefore identi-

cally zero. 

Suppose first that there is an evaluation of c in A which is an invertible central element, say 
γ = c(α1, ..., αN ; β), where α, β are n × n matrices. We substitute x0 = x, xi = αi for i = 1, ..., N , 
and y = β into φ, obtaining the expression 

(V.9.6) γx = Σ (−1) ν+1 c(x, α1, ..., αν , ..., α N ; β)αν . 
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Let 

(V.9.7) ην (x) = (−1) ν+1 c(x, α1, ..., αν , ..., α N ; β). 

Then ην (x) is a central element for all x ∈ A. Since it is also a linear function of x, we can view it 
as an element of A∗ = HomR(A, R). Then 

(V.9.8) γx = Σ ην (x)αν . 

Lemma V.9.4 shows that A is a projective R-module, generated by αν . So the rank of A as R-
module is at most n2 at any point. Since the rank of a projective module is constant on evey 
connected component of Spec R, and since R ⊂ A, the rank is positive. 

Let R −→ K be any homomorphism to an algebraically closed field. Then A ⊗ R K is not zero, and 
it has dimension at most n2 . Because there is no irreducible representation of dimension < n, it 
follows from Wedderburn’s theorem that A ⊗ R K ≈ Mn(K). Therefore A is an Azumaya algebra. 
This completes the proof in the case that there is an evaluation of the central polynomial which is 
a unit. 

In the general case, we use the next lemma: 

Lemma V.9.9. With the hypotheses of the theorem, there is a finite set of evaluations γi of the 
central polynomial c(x; y) in A which generate the unit ideal in A, i.e., such that for some ai ∈ A, 

Σ γiai = 1. 

Proof. It suffices to show that the evaluations of c(x; y) do not all lie in any maximal ideal M of 
A. If M is a maximal ideal, then by Kaplansky’s theorem,  A = A/M is central simple over its 
center K, and by hypothesis,  A⊗ K ≈ Mn(K). Therefore there is a nonzero evaluation of c(x; y) 
in A, which we can lift to A.  

Going back to the formula (V.9.8), we may write 

(V.9.10) γix = Σν ηi,ν (x)αi,ν 

for each i, and since x = Σ γixai, 

(V.9.11) x = Σ i,ν ηi,ν (x)αi,ν ai. 

This shows again that A is a finitely generated projective R-module. The elements ci do not vanish 
identically on Spec R because they don’t vanish identically at any maximal ideal of A, and every 
maximal ideal of R has a maximal ideal of A lying over it. So { ci} generates the unit ideal in 
R too. By what has been proved, A[c−1

i ] is an Azumaya algebra for every i. It follows that A is 
Azumaya.  

V.10. Irreducible representations of the free ring 
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A matrix representation of the free ring k x1, ..., xm  is given by assigning arbitrary matrices as 
images of the variables. In itself, this is not particularly interesting. However, when one asks for 
equivalence classes of irreducible representations, one is led to an interesting problem in invariant 
theory. This is the topic of the remaining sections. 

In principle, this discussion will also apply to finitely generated k-algebras which are presented as 
quotients of the free ring. Their representations form certain loci in the spaces of representations 
of the free ring. 

In order to simplify our discussion, we assume that our ground field k is algebraically closed, and 
we study representations into Mn(k). By points of a variety X we will mean closed points, i.e., 
k-valued points here, and if R is a commutative ring, we’ll write Spec R for the space of maximal 
ideals. This restriction to an algebraically closed field is minor. 

A more important assumption will be that the characteristic of the field k is zero. This is needed 
in order to apply classical invariant theory, and is essential for much of what follows. 

The two assumptions will be in force throughout the rest of these notes. 

Let m ≥ 2 be an integer, and let X1, ..., Xm be n× n matrices with entries xν
ij which are independent 

central variables. The subring of the matrix algebra Mn(k[x
(ν)
ij ]) generated by the matrices Xν is 

called, rather ambiguously, the algebra of generic matrices. We’ll denote it by k X1, ..., Xm  . Of 
course there is a canonical homomorphism 

(V.10.1) kx1, ..., xm  π −→ kX1, ..., Xm  

from the free ring on variables x1, ..., xm to this ring. 

If u1, ..., um are n × n matrices with entries in a commutative k-algebra R, we can substitute uj 

for Xj , and thereby obtain a homomorphism k X1, ..., Xm  −→ Mn(R). 

Proposition V.10.2. (i) A polynomial f(x1, ..., xm) is in the kernel of the map π if and only if 
it vanishes identically on Mn(R) for every commutative k-algebra R, and this is true if and only 
if f vanishes identically on Mn(k). 
(ii) The (irreducible) matrix representations of the free ring k x1, ..., xm  of dimension ≤ n corre-
spond bijectively to the (irreducible) matrix representations of the ring of generic matrices,  

Lemma V.10.3. Let u1, ..., uN be a basis for the matrix algebra Mn(K), and let z1, ..., zN be 
indeterminates. The entries of the matrix Z = Σ zj uj are algebraically independent.  

Theorem V.10.4. (Amitsur) The algebra k X1, ..., Xm  of generic matrices is a domain. 

Proof. We choose a field extension K of k and a division ring D with center K, such that [D : K] = 
n2 , and we let u1, ..., uN be a K-basis for D. Let zij be central indeterminates. The polynomial 
ring D[zij ] = D ⊗ k[zij ] is a domain. Over the algebraic closure K, D ⊗ K ≈ Mn(K), so we 
can view the elements uj as n × n matrices, and they form a basis of the matrix algebra. The 
lemma tells us that the matrices Zi = Σ zij uj have algebraically independent entries. So the map 
k X1, ..., Xm  −→ Mn(K[zij ]) which sends Xi → Zi is injective, and its image is in the domain 
D[zij ]. So kX is a domain too. 
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The only thing to be verified is that such a division ring D exists. The simplest construction of D 
is as a cyclic algebra. Let L = k(w1, ..., wn ) be a pure transcendental extension of k, and consider 
the automorphism σ of L which permutes w1, ..., wn cyclically. Let B denote the Ore extension 
L[y; σ]. This is a Noetherian domain, which has a division ring of fractions D. The center of D is 
K = Lσ(v) where v = yn , and [D : K] = n2 .  

Exercise: Use Amitsur’s theorem to prove (V.9.2) for algebras A which are not necessarily prime. 

Because an n-dimensional matrix representation ρ of the free ring k x1, ..., xm  is determined by 
assigning arbitrary images to the variables, it corresponds to a point in the affine space whose 
coordinates are the n2m matrix entries x(ν) 

ij of the variable matrices Xν . This affine space is the 

space Spec R of maximal ideals of the polynomial ring R = k[x(ν)
ij ]. So in what follows, we will 

identify points of the affine space Spec R with n-dimensional matrix representations. 

The general linear group G = GLn(k) operates on the matrices (X1, ..., Xm) by simultaneous 
conjugation. An invertible matrix p ∈ G operates as 

(V.10.5) p(X1, ..., Xm)p−1 = (pX1p
−1 , ..., pXmp

−1). 

This induces an action on the affine space Spec R, and on the commutative ring R. Viewing points 
of the affine space as representations, the orbits for the action of G are the equivalence classes of 
representations. We would like to parametrize the equivalence classes by constructing a variety 
whose points are the G-orbits, and classical invariant theory provides a reasonably satisfactory 
solution to this problem. 

To be specific about the action of G on the polynomial ring R, the operation of p ∈ G sends the 
variable x(ν) 

ij to the i, j entry of the matrix pXν p
−1 . This rule induces the operation on R = k[x(ν)

ij ]. 

In order minimize indices while avoiding ambiguity, we use the following notation: If X, Y are 
indeterminate matrices, we write a commutative polynomial f in the variable matrix entries xij , yij 

as f([X], [Y ]). Then the action of p on R sends a polynomial f([X1], ..., [Xm]) to 

(V.10.6) fp([X1], ..., [Xm]) = f([pX1p
−1], ..., ]pXp−1 ])). 

The polynomials f ∈ R which are invariant under this action are constant on the G-orbits. So we 
can try to use invariant polynomials to parametrize the orbits. 

Some of the simplest invariant polynomials are trace(X1), trace(X1X2), det(X1) and det(X1 +X2). 

The next theorem is an application of the Hilbert-Mumford theory of invariants for reductive group 
actions. 

Theorem V.10.7. (Hilbert-Mumford) 
(i) The ring of invariants RG is a finitely generated, integrally closed k-algebra. 
(ii) The map X = Spec R −→ Spec RG = Y is surjective. The fibre Xy over a point y ∈ Y is a 
union of G-orbits, and it contains exactly one closed orbit. Thus the closed orbit is in the closure 
of every other orbit in the fibre. 

V.11. The case of two 2 × 2 matrices X, Y 
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Let X, Y denote two variable 2 × 2 matrices, and let R = k[xij , yij ]. Let 

(V.11.1) t1 = trace(X), t2 = trace(Y ), t3 = trace(X 2), t4 = trace(Y 2), t5 = trace(XY ). 

We can recover traces from determinants by the formula 

trace(Z) = det(Z + 1) − det(Z) − 1. 

And since the characteristic is zero, we can recover determinants from traces: 

det(Z) = 1 
2 (trace Z)2 − trace(Z 2 )). 

Proposition V.11.2. (i) [X, Y ]2 = t21t4 + t22t3 − 2t3t4 − 2t1t2t5 + 2t25. 
(ii) Two 2 × 2 matrices u, v with entries in k generate the matrix algebra M2(k) as k-algebra if 
and only if 1, u, v, uv form a basis of M2(k). This is true if and only if [u, v]2 = 0. 

Proposition V.11.3. The five traces t1, ..., t5 are algebraically independent, and they generate the 
ring RG of all invariant functions in the polynomial ring R = k[xij , yij ]. 

It is a good exercise to prove these assertions without appealing to Theorem V.10.7. One can 
start by showing that two different semisimple representations can be distinguished by these trace 
functions. Then, once it is proved that t1, ..., t5 are algebraically independent, the proof that they 
generate RG is simplified because the ring that they generate is integrally closed. 

It is very unusual for a ring of invariants to be a polynomial ring, and this does not happen when 
n > 2. 

V.12. Some tensor notation. 

This section contains some notation and some formulas that we need. The verifications of the 
formulas are straightforward. If you don’t carry these verifications out, you risk becoming lost in 
the notation. 

Let V be an n-dimensional vector space over k, and let V ∗ = Homk(V, k), and E = End V . Thus 
E ≈ Mn(k). We let V ∗ and E act on the left on V . If v ∈ V and α ∈ V ∗ , we write 

(V.12.1) α(v) = {α, v}. 

There is a canonical isomorphism V ⊗ V ∗ ≈ E, where a tensor u ⊗ α acts on a vector v ∈ V by 
the formula 

(V.12.2) [u ⊗ α]v = u{α, v}, 

{α, v} being a scalar factor. Similarly, E acts on the right on V ∗ , by 

(V.12.3) β[u ⊗ α] = {β, u}α. 
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Multiplication in E is given by the formula 

(V.12.4) (u ⊗ α)(v ⊗ β) = u ⊗ β {α, v}, 

where as before, {α, v} is a scalar factor. 

The trace map E −→ k is given by 

(V.12.5) trace(u ⊗ α) = {α, u}. 

Therefore the trace pairing trace(pq) on E is 

(V.12.6) u ⊗ α, v ⊗ β = {β, u}{α, v}. 

The trace pairing defines an isomorphism E ≈ E∗ . This isomorphism is the same as the one defined 
by the symmetry of the tensor product: 

(V.12.7) E ∗ = V ∗ ⊗ V ≈ V ⊗ V ∗ = E. 

Denoting by V ⊗m the m-th tensor power of V , we have 

(V ⊗m)∗ ≈ (V ∗)⊗m 

and 

(V.12.8) E ⊗m ≈ V ⊗m ⊗ V ∗⊗m ≈ End V ⊗m . 

Thus E⊗m is an nm × nm matrix algebra. The trace pairing on E⊗m is given on tensors by the 
formula 

(V.12.9) p1 ⊗ · · · ⊗ pm , q1 ⊗ · · · ⊗ qm  = p1, q1 · · · pm, qm . 

V.13. The main theorem of invariant theory 

The group G = GLn(k) acts on V , on V ∗ , and on E by conjugation. An element p ∈ G acts by 

(V.13.1) v → pv , α → αp−1 , and v ⊗ α → pv ⊗ αp−1 . 

The induced action of p on E⊗m is conjugation by the matrix p⊗m = p ⊗ · · · ⊗ p. 

We consider two subalgebras of the algebra E⊗m: the group algebra B of the symmetric group 
Sn, which operates on V ⊗m by permuting its factors, and the subalgebra A = Symmm(E) con-
sisting of symmetric tensors. The symmetric tensors are those elements which are invariant under 
permutation of the factors of E⊗m . They are linear combinations of orbit sums of the form 

(V.13.2) Σσ xσ1 ⊗ · · · ⊗ xσm, 

with x1, ..., xm ∈ E. 
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Proposition V.13.3. A = Symmm(E) is spanned by elements of the form p⊗m , with p ∈ GLn. 

Proof. First, the elements p⊗m with p ∈ GLn are dense in the space of all elements x⊗m with 
x ∈ E, so they span the same subspace. To show that the orbit sums (V.13.2) can be written in 
terms of these elements, we polarize. Let xt = x1t1 + · · · +m tm, where ti are indeterminate scalars. 
We expand x⊗m 

t formally as a polynomial in t1, ..., tm. The coefficient of t1 · · · tm is (V.13.2), and 
it can be recovered using a finite number of substitutions for ti in k.  

Theorem V.13.4. (Main theorem of invariant theory) The algebras A and B are semisimple, B 
is the centralizer of A , and A is the centralizer of B . 

Proof. The group algebra B is semisimple by Maschke’s theorem. So its centralizer B is semisimple, 
and the centralizer of B is B . [(MO,A.1) is still not stated in sufficient generality. :( ] So the only 
thing that needs to be verified is that the centralizer of B is A . 

Of course an element commutes with B if and only if it commutes with every permutation. Perhaps 
it should be obvious from the definitions that such an element is a symmetric tensor, but I don’t 
see why it is obvious. So, let σ be a permutation. By definition, σ(v1 ⊗ · · · ⊗ vm) = vσ1 ⊗ · · · ⊗ vσm. 
This allows us to write σ explicitly as element of E, in terms of the matrix units: 

(V.13.5) σ = Σ(i) eiσ1i1 ⊗ · · · ⊗ eiσmim , 

the sum being over all multi-indices (i1, ..., im). To verify this formula, we compute the product 
with tensors ej1 ⊗ · · · ⊗ ejm ∈ V ⊗m . A similar computation shows that σ−1 operates on the right 
on V ∗⊗m by the permutation σ. 

If x = (ei1 ⊗  j1 ) ⊗ · · · ⊗ (eim ⊗  jm ) = ei1j1 ⊗ · · · ⊗ eimjm , then 

(V.13.6) σxσ−1 = eiσ1jσ1 ⊗ · · · ⊗ eiσmjσm . 

A linear combination 

(V.13.7) Σ c(i),(j)ei1j1 ⊗ · · · eimjm 

commutes with σ if and only if 

(V.13.8) cσ(i),σ(j) = c(i),(j) 

for all multi-indices (i), (j).  

V.14. Procesi’s theorem 

To state Procesi’s results, we need to define the semisimple representation associated to a repre-
sentation ρ : A −→ Mn(k). As always, we assume that k is algebraically closed, but the algebra 
A can be arbitrary here. Recall that a right A-module V is semisimple if it is a direct sum of 
simple submodules. Any module V which is finite-dimensional as k-module has finite length, and 
so there is a filtration by A-submodules 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vr = 0, such that the successive 
quotients V i = Vi/Vi−1 are simple. The Jordan-Hölder theorem says that, though the filtration is 
not canonical, the associated graded module V = 

 
V i is determined up to isomorphism. And of 
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course dimV = dimV . We call V the associated semisimple representation of the representation 
V . 

If we choose a basis vi of V compatibly with the filtration, then the corresponding matrix repres-
ntation ρ has a block triangular form. There are r diagonal blocks ρi, where ρi is the matrix 
representation associated to V i with the induced basis. It is an irreducible matrix representation 
of dimension dimV i. The representation ρ is zero below the blocks. The entries above the blocks 
needn’t be zero, and the associated semisimple representation is obtained by replacing these entries 
by zero, i.e., it is the block diagonal representation 

(V.14.1) ρss = ρ 1 ⊕ · · · ⊕ ρ r. 

Thus, if a matrix representation ρ : A −→ Mn(k) is given, the associated semisimple representation 
ρss is determined only up to equivalence. 

Theorem V.14.2. (Procesi) 
(i) The ring of invariants RG is generated by traces of monomials in the matrices X1, ..., Xm. 
(ii) The closed orbits are the equivalence classes of semi-simple representations. A matrix repre-
sentation ρ has the same image in Spec RG as its associated semisimple representation ρss . Thus 
the orbit of ρ has the closed orbit of ρss in its closure. 

Proof. There are two steps in the proof of (i). We first reduce the question to multilinear invariants, 
and then apply the main theorem. 

Lemma V.14.3. It suffices to prove the theorem for G-invariant polynomials which are multilin-
ear. 

Proof. First of all, the number of variables appearing is unimportant. If we could write an invariant 
function in RG using auxiliary variables, then we could replace those variables by zero. (We’re 
doing commutative algebra here.) 

Next, conjugation X → pXp−1 is a linear operation, so the action of G on R is multi-homogeneous: 
If (d) = (d1, ..., dm) is a multi-index and if R(d) denotes the set of polynomials whose degree in 

[Xν ] = {x(ν) 
ij } is dν , then G carries R(d) to itself. Therefore RG = 

 
RG

(d). 

We reduce homogeneous invariant polynomials to multilinear ones by polarization. Let f([X], [Y ], ...) 
be a multihomogeneous, G-invariant polynomial function of some matrix entries [X], [Y ], ..., which 
is homogeneous of degree d in [X]. Let X1, ..., Xd be indeterminate matrices, and let t1, ..., td be 
scalar indeterminates. The polynomial f([t1X1 + · · · + tdXd], [Y ], ...) is G-invariant too. Moreover, 
if we collect terms of like multi-degree in t, and write 

f([t1X1 + · · · + tdXd], [Y ], ...) = Σ(i) f(i)([X1], ..., [Xd], [Y ], ...)t(i) , 

then each f(i) is G-invariant. Setting (1) = (1, ...., 1), the invariant polynomial f(1)([X1], ..., [Xd], [Y ], ...) 
is G-invariant and multilinear in X1, ..., Xd, and we can recover p by the formula 

(V.14.4) d ! f([X], [Y ], ...) = f (1)([X], [X], ..., [X], [Y ], ...). 

Doing this for all the variables shows that we can replace p by a multilinear polynomial.  
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Now a multilinear polynomial can be interpreted either as a multilinear map φ : 
 
E −→ k, or 

as a linear map E⊗m −→ k. And since E∗⊗m ≈ E⊗m , we can also regard φ as an element of 
E⊗m . As we have seen, the operation by p ∈ GLn on E⊗m is conjugation by p⊗m . So (V.13.4) the 
invariant elements are the elements in the centralizer of Symmm(E), which is the group algebra B . 
The group algebra is generated by permutations. To prove the theorem, it suffices to show that 
the linear map φσ : 


E −→ k defined by a permutation σ can be expressed in terms of traces. 

Moreover, it suffices to do this for a cyclic permutation, say σ = (1 2 ... r)−1 . 

Lemma V.14.5. Let σ = (1 2 ... r)−1 . The multilinear map 
 m 

E −→ k defined by σ is 

φσ ([X1], ..., [Xm]) = trace(X1 · · · Xr). 

Proof. Since both sides are multilinear, it suffices to verify this formula when Xν are matrix units. 

We write σ as element of E⊗m using the formula (V.13.5). The associated linear map φσ : E⊗m −→ 
k is given by the trace pairing, which is 

(V.14.6) X1 ⊗ · · · ⊗ Xm , Y1 ⊗ · · · ⊗ Ym  = X1, Y1 · · · Xm, Ym , 
and where X, Y  = trace(XY ). Set X1 ⊗ · · · ⊗ Xm = eξ1η1 ⊗ · · · ⊗ eξmηm . With σ written as in 
(V.13.5), 

(V.14.7)  σ, X1 ⊗ · · · ⊗ Xm  = Σ(i) ( 
ν 

trace(eσiνiν eξν ην )). 

For fixed (i), the term on the right side is zero unless (i) = (ξ). If (i) = (ξ), it is 

Πν trace(eσ(ξν )ην ) 

which is zero if σ(ξ)  = (η) and 1 if σ(ξ) = (η). So 

(V.14.8)  σ, X1 ⊗ · · · ⊗ Xm  = δσ(ξ) η. 

When σ is the cyclic permutation (1 2 · · · r)−1 , this yields 1 if ξi−1 = ηi for i = 1, ..., r and is zero 
otheriwse. Evaluating trace(eξ1η1 · · · eξr ηr ) = 1 leads to the same result.  

The second part of Procesi’s theorem follows from the main theorem and from next two lemmas. 

Lemma V.14.9. Let ρ be an n-dimensional representation of the ring A of generic matrices. The 
associated semisimple representation ρss is in the closure of the orbit of ρ. 

Proof by example. Say that ρ is a reducible 2-dimensional representation. Then with a suitable 
choice of basis, the representation will have the triangular form 

(V.14.10) ρ(u) = 

 
a(u) b(u) 

0 d(u) 

 

, 

for u ∈ A. Let 

p = 

 
t 0 
0 1 

 

. 

then 

(V.14.11) pρp−1 = 

 
a(u) tb(u) 

0 d(u) 

 

. 

For every nonzero element t ∈ k, the representation pρp−1 is in the orbit of ρ. Therefore the 
representation obtained by setting t = 0 in V.14.11 is in the closure of this orbit.  
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Lemma V.14.12. Two semisimple n-dimensional representations ρ and ρ are equivalent if trace(ρ(u)) = 
trace(ρ (u)) for every u ∈ A. 

Proof. Let ρ1, ..., ρr denote the equivalence classes of distinct simple representations which occur as 
factors of ρ and ρ , and say that dimρν = dν . These simple representations correspond to distinct 
maximal ideals m1, ..., mr of A, such that the map A −→ A/mν ≈ Mdν (k) is the representation 
ρν . Unless ρ and ρ are equivalent, at least one of the representations ρν , say ρ1, occurs with a 
different multiplicity in them. 

By the Chinese remainder theorem, the map A −→ 
 
A/mν is surjective. So there is an element 

a ∈ A such that ρ1(a) = 1 and ρν (a) = 0 for ν  = 1. The trace of this element distinguishes the 
two representations.  

V.15. The spectrum of the ring of generic matrices 

As in the previous sections, we assume that k is algebraically closed. If A is a finitely generated PI 
algebra over k, Spec A will denote the space of its maximal ideals. We know that if m is a maximal 
ideal, then A/m is isomorphic to a matrix algebra Mr(k) of bounded rank. We define Specr A to 
be the subset of Spec A of maximal ideals such that A/m is isomorphic to Mr(A). Then 

(V.15.1) Spec A = Spec1 A ∪ Spec2 A ∪ · · · ∪ Specn A, 

for suitable n. If A is a prime ring, then n is the PI degree of A, the largest integer such that the 
standard identity S2n = 0 holds. 

Because they are defined by the identities S2r ≡ 0, the subsets Spec≤r A = Spec1 A ∪ · · · ∪ Specr A 
are closed in Spec A in the Zariski topology. Consequently U = Specn A, being the complement of 
a closed set, is open in Spec A. 

We now describe the intrinsic structure of the set U . Let’s suppose for simplicity that A is a prime 
ring of PI degree n, and let γ be a nonzero evaluation of the Razmyslov polynomial. Then (V.9.3) 
A[γ−1] is an Azumaya algebra of rank n2 over its center. 

Next, U = Spec A can be identifed with the open subset of U = Specn A consisting of the maximal 
ideals which do not contain γ. Moreover, for every maximal ideal m ∈ U , there is an evaluation 
γ of the Razmyslov polynomial which is not in m (V.9.9). This shows that U can be covered by 
open subsets U which are spectra of Azumaya algebras. 

If γ1 and γ2 are two evaluations of the Razmyslov polynomial, with corresponding Azumaya alge-
bras A1 and A2, then the intersection of the open sets U1 and U2 is the spectrum of the common 
localization A12 = A1[γ

−1
2 ] = A2[γ

−1
1 ]. 

Now a central localization of an Azumaya algebra is just given by a localization of the center. The 
common localizations A12 descrdibed above defines data for gluing the spectra Vi = Spec Zi of 
the centers Ai. In this way one constructs a scheme V which is covered by affine opens of the 
form Spec Z . In general, this scheme will not be affine itself. However, it comes equipped with 
a coherent sheaf of Azumaya algebras A over its structure sheaf O V , the sheaf whose algebra of 
sections on the open set V is A . We may think of V as the “center” of U . 
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Recall that the two sided ideals of an Azumaya algebra A correspond bijectively to two sided 
ideals of its center Z , because two-sided ideals are modules over A o ⊗ A ≈ EndZ A , which is a 
ring Morita equivalent to Z . Because of this, U and V are homeomorphic, as topological spaces. 
They are two incarnations of the space of irreducible n-dimensional representations. However, as 
schemes, one is commutative and the other is not. 

The subsets Specr A can be described similarly. 

Though the above remarks don’t depend on the characteristic of k, we need to assume that the 
characteristic is zero to continue this discussion. Let A = k X1, ..., Xn  be the ring of generic n × n 
matrices, and let R = k[xν

ij ] be the polynomial ring on the matrix entries, as before. Then the 
space Specn A has yet a third incarnation, namely as the subset Yn of the spectrum Y = Spec RG 

of the invariant ring which corresponds to the irreducible representations. 

Proposition V.15.2. Let Y = Spec RG be the spectrum of the invariant ring, and let Yn ⊂ Y be 
the subset of equivalence classes of irreducible representations. Then Yn is an open subscheme of 
Y , and it is isomorphic to the scheme V described above. 

Proof. An evaluation γ of the Razmyslov polynomial is central, hence it is a G-invariant element 
of A: For any α, β ∈ A, c(α, β) = pc(α, β)p−1 = c(pαp−1 , pβp−1). It is also an element of R, hence 
it is in RG . The set of common zeros of these evaluations in Y is a closed subset, and Yn is the 
complement of that set. So Yn is open in Y . 

Let γ be an evaluation of the Razmyslov polynomial, and let A = A[γ−1] be the corresponding 
Azumaya algebra. The trace of any element α ∈ A is in its center Z (B,12.4). Since RG is 
generated by traces, we obtain a canonical homomorphism RG −→ Z . These canonical maps 
glue to define a morphism V −→ Y . Since both V and Yn correspond bijectively to irreducible 
n-dimensional representations, the map carries V bijectively to the open subscheme Yn. 

The center Z is a domain because A is a prime ring. Hence V is reduced and irreducible. Moreover, 
RG is integrally closed (V.10.7) hence Yn is a normal scheme. Now the fact that the map V −→ Yn 

is an isomorphism follows from Zariski’s main theorem.  

What remains to be done here is to understand the relation between the whole spectrum Spec A of 
the ring of generic matrices, and the spectrum of the invariant ring Spec RG . Let Ur = Specr A for 
r ≤ n, and let Vr be the center of Ur, constructed as for the case r = n above. Then as topological 
spaces, Ur ≈ Vr. 

We also have Spec A = U1 ∪ · · · ∪ Un, which, set-theoretically, is in bijective correspondence with 
the disjoint union union 

(V.15.3) V = V1 ∪ · · · ∪ Vn. 

(I don’t like to write U ≈ V because U is a noncommutative scheme of Azumaya algebras whose 
center is V .) 

On the other hand, the scheme Y is the space of semisimple n-dimensional representations of 
A. This space is closely related to V , but it is not the same space. When n = 2, a semisimple 
2-dimensional representation, if reducible, is the sum of two (possibly equivalent) 1-dimensional 
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representations. It corresponds to an unordered pair of points of V1, i.e., a point of the symmetric 
square S2(V1). So in this case 

(V.15.4) Y = Y1,1 ∪ Y2 ≈ S 2(V1) ∪ V2. 

For n = 3, 

(V.15.5) Y = Y1,1,1 ∪ Y1,2 ∪ Y3 ≈ S 3(V1) ∪ (V1 × V2) ∪ V3. 

Exercise: Work out the case n = 4. 
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VI. GROWTH OF ALGEBRAS 

VI.1. Growth functions 

In these notes, k is a field. By algebra, we will mean k-algebra unless otherwise specified. 

Let A be a finitely generated algebra over k. If V is a subspace of A, we denote by V n the subspace 
spanned by all products of elements of V of length n. By generating subspace V , we will mean a 
finite-dimensional subspace of A which generates A as algebra, and which contains 1. Then V n is 
spanned by the products of length ≤ n of elements of V , and because V generates, A = 

 
V n . 

The growth function associated to a generating subspace is 

(VI.1.1) f(n) = fV (n) := dim kV
n . 

An equivalent definition is to take a finite subset X of A which generates A and which contains 1. 
Let Xn denote the set of products of length n of elements of X. As before, this includes all shorter 
products. Let V n be the vector space spanned by Xn . Then we set fX (n) = dimV n , which is the 
number of linearly independent products of length ≤ n of elements of X. 

An algebra A is said to have polynomial growth if there are positive real numbers c, r such that 

(VI.1.2) f(n) ≤ cn r 

for all n. We will see below (1.5) that this is independent of the choice of the generating subspace 
V . And A has exponential growth if there is a real number s > 1 so that f(n) ≥ sn for infinitely 
many n. 

The Gelfand-Kirillov dimension of an algebra with polynomial growth is the infimum of the real 
numbers r such that (1.2) holds for some c: 

(VI.1.3) gk(A) = inf { r | f(n) ≤ cn r }. 
If A does not have polynomial growth, then gk(A) = ∞. Again, (1.5) shows that the GK dimension 
is independent of the choice of the subspace V . 

Exercise: Show that gk(A) = inf { r | f(n) ≤ p(n) } for some polynomial p of degree r. 

In contexts in which the generating set is given naturally, for example if the algebra is graded, we 
may also want to keep track of the constant coefficient c. In that case it would be more natural to 
ask for the smallest c such that (1.2) holds it for large n. Such a modification would not change r. 

Exercise: Show that gk(A) = inf { r | f(n) ≤ n r for large n}. 
Examples VI.1.4. 1. The commutative polynomial ring A = k[x1, ..., xd] has Gelfand-Kirillov 
dimension d. If we let V be the space spanned by {1, x1, ..., xd}, then V n is the space of polynomials 
of degree ≤ n. The dimension of this space is n+d 

d , which is a polynomial of degree d in n. 

2. If d > 1, the free ring A = kx1, ..., xd has exponential growth, hence infinite GK dimension, 
because the number of noncommutative monomials of degree n is dn . 

Exercise: Let A be a finitely generated, commutative domain of Krull dimension d. Prove that 
gk(A) = d. 

The next proposition shows, as promised, that the Gelfand-Kirillov dimension is independent of 
the choice of the generating space V . 
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Proposition VI.1.5. Let A be a finitely generated k-algebra, let V, W be generating subpaces, and 
set f = fV , g = fW . If f(n) ≤ cnr for all n, then there is a c such that g(n) ≤ c nr for all n. 

Proof. Assume that f(n) ≤ cnr . Since A = 
 
V n and W is finite-dimensional, W ⊂ V s for some 

s. Then W n ⊂ V sn , hence g(n) ≤ f(sn) ≤ csrnr = c nr .  

For comparison purposes, it would be useful to have a lower bound on the growth of fV . The only 
general one that I know is the following: 

Proposition VI.1.6. Suppose that A is finitely generated but not finite dimensional over k. Let 
f = fV be a growth function for A. Then f is is a strictly increasing function, hence f(n) ≥ n. 

Proof. We have f(n + 1) ≥ f(n) because V n+1 ⊃ V n . If f(n + 1) = f(n) for some n, then 
V V n = V n , and this implies that V n+m = V n for all m ≥ 0. Then A = 

 
V n+m = V n , so A is 

finite dimensional.  

Corollary VI.1.7. Let A be a finitely generated k-algebra. Then gk(A) = 0 if and only if A has 
finite dimension over k. If A is infinite dimensional, then gk(A) ≥ 1.  

The next three propositions derive elementary properties of the GK dimension. 

Proposition VI.1.8. Let A[t] denote the algebra of polynomials in t with coefficients in A, where 
t is a central variable. Then gk(A[t]) = gk(A) + 1. 

Proof. Let V be a subspace of A which generates A and contains 1. The subspace W spanned by 
V and t generates A[t], and W n = V n ⊕ V n−1 t ⊕ · · · ⊕ V tn−1 ⊕ ktn . Suppose that f(n) ≤ cnr . 
Then fW (n) = f(0) + · · · + f(n) ≤ c(1r + · · · + nr) ≤ c nr+1 . Thus gk(A[t]) ≤ gk(A) + 1. 

On the other hand, W 2n ⊃ V ntn ⊕ V ntn−1 ⊕ · · · ⊕ V nt0 , hence dim W 2n ≥ n dim V n . Then if 
dim V n ≥ cnr for infinitely many n, dim W 2n ≥ cnr+1 for infinitely many n too. This shows that 
gk(A[t]) ≥ gk(A) + 1.  

Proposition VI.1.9. If γ is a regular central element of a finitely generated algebra A, then 
gk(A) = gk(A[γ−1]. The same is true if γ is a normalizing element. 

Proof. Let V be a generating subspace of A, and let W = Span{V, γ−1}, which is a generating 
subspace for A[γ−1]). Then V n ⊂ W n and γnW n ⊂ V 2n . So fV (n) ≤ fW (n) ≤ fV (2n). The 
assertion follows.  

Proposition VI.1.10. Let A be a finitely generated graded algebra. Let r = gk(A), and let 

s = inf {s | dimAn ≤ cn s}. 

(i) r ≤ s + 1. 
(ii) If there is an integer d > 0, such that dim An ≤ dimAn+d for all sufficiently large n, then 
r = s+ 1. 
(iii) The condition of (ii) is satisfied in each of the following cases: 

(a) dim An is monotonic, 
(b) dim Akd is a polynomial function of k, or 
(c) A contains a homogeneous left or right regular element of degree d. 
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Proof. Let an = dim kAn. We may take as generating subspace for A the space V = A0 + · · ·+ Ak 

for some sufficiently large k. Then V n = A0 ⊕· · ·⊕Ank, and fV (n) = a0 +a1 + · · · ank. If an ≤ cns , 
then dim V n ≤ Σn

i=0kci
s ≤ c ns+1 . This proves (i). 

Suppose that the hypothesis of (ii) is satisfied. Replacing d by a multiple and increasing k, we 
arrange things so that d = k ≥ 2. Then 

V 2n = A0 ⊕ · · ·A2nd ⊃ An+d ⊕ An+2d ⊕ · · · ⊕An+nd, 

hence dim V 2n ≥ nan. If s < s, then an > cn s  
for infinitely many n, and then fV (2n) ≥ cn s  

= 
c (2n)s  

. Hence gk(A) > s + 1. The proof of (iii) is easy.  

VI.2. Warfield’s theorem 

Theorem VI.2.1. (Warfield) For any real number r ≥ 2, there is a finitely generated graded 
algebra R with gk(R) = r. 

Proof. Because of Proposition VI.1.8, it suffices to construct a ring R with gk(R) = r when 
2 ≤ r ≤ 3. 

Let F = kx, y be the free ring on two generators, and let I denote the two-sided ideal of F 
generated by the element y. Let A = F/I3 and B = F/I2 . Then An has a monomial basis 
consisting of the monomials of degree n which have ≤ 2 in y. There are n

k monomials of degree 
k in y. Thus 

(VI.2.2) dim An = n 
2 + n 

1 + n 
0 = 1 

2 (n 2 + n + 2), 

and similarly, 

(VI.2.3) dim Bn = n + 1. 

So gk(A) = 3 and gk(B) = 2. The algebra we construct will have the form R = F/J , where J is a 
monomial ideal, and I3 ⊂ J ⊂ I2 . To define J , we must decide which elements xiyxj yxk from I2 

to put into Jn. 

Let q be a real number with 0 ≤ q ≤ 1. Set un = [nq ] and vn = n − un, where [c] denotes the 
integer part of c. Warfield’s theorem follows from the next lemma: 

Lemma VI.2.4. (i) The sequences un and vn are monotonic. 
(ii) Let Jn denote the span of all monomials of degree n which have degree ≥ 3 in y, together with 
the monomials of the form xiyxj yxk with j < vn. Then J = 

 
Jn is an ideal of the free ring F . 

If A = F/J , then dim An = un 
2 + n + 1, this dimension is monotonic, and gk(A) = 2 + q. 

Proof. (ii) That J is an ideal follows from the fact that vn is monotonic. The monomials of degree 
n not in Jn are those of degree ≤ 1 in y, together with the monomials xiyxj yxk with j ≥ vn. The 
number of these monomials is u n 

2 + n + 1. This verifies the formula for dim An, and monotonicity 
follows from the fact that un is monotonic. The value gk(A) = q + 2 follows from Proposition 
VI.1.10.  



88 

Note that the definition of J requires only that un and vn be monotonic. So within these bounds, 
any function is possible. This illustrates the fact that, without some hypotheses on the algebra, 
growth functions can be pretty arbitrary. 

VI.3. Path algebras 

Let Γ be a finite oriented graph, and let its edges, the arrows, be labeled x1, ..., xm. The path 
algebra A is the graded algebra with basis the oriented paths in Γ. The product uv of two paths is 
defined to be the composed path u · v if the paths can be composed, i.e., if v starts where u ends. 
If the paths can not be composed, then uv = 0. 

The algebra is graded by the length of a path, the number of its arrows: An is the vector space 
spanned by paths of length n. 

It is customary to adjoin paths of length zero which represent the vertices of the graph. They are 
idempotent elements in the path algebra A, and their sum is 1. 

For example, the paths in the graph ◦ x1 −→ ◦ x2 −→ · · · xm−−→ ◦ are the words xixi+1 · · · xj for 1 ≤ 
i ≤ j ≤ m. This path algebra is the algebra of upper triangular m + 1 × m + 1 matrices, with 
xi = ei−1,i. 

The path algebra is finite dimensional if the graph Γ has no oriented loops, or cycles. But a cycle 
gives us a path, say u, whose powers un are all distinct an nonzero. The next proposition shows 
how the GK dimension of the path algebra can be read off from the geometry of the graph. 

Proposition VI.3.1. Let A be the path algebra of a finite oriented graph Γ. 
(i) If Γ contains two cycles which have a vertex in common, then A has exponential growth. 
(ii) Suppose that Γ contains r cycles, none of which have a vertex in common. Then gk(A) ≤ r. 
Moreover, gk(A) = r if and only if there is a path that traverses all of the cycles. 

Sketch of the proof. (i) Say that a vertex is in common to two distinct cycles, and let u,v be the 
paths which traverse these loops, starting and ending at a common vertex. Then the words in u, v 
represent distinct paths. In fact, they represent distinct elements in the fundamental group of the 
graph. So A contains the free ring ku, v. 
(ii) Suppose for instance that there are exactly two distinct cycles, and say that u, v are paths 
which traverse them. There may or may not be some paths y connecting u to v, i.e., such that 
uyv = 0. But if such a path exists, then there can be no path in the opposite direction, because 
if vzu = 0, then yz would be a cycle yz having a vertex in common with u. If y exists, then the 
paths which can be built using u, y, v are uiyvj . Since we can not return to u from v, every path 
has the form wuiyvj w , where each of the subpaths w, w , y is a member of a finite set. This leads 
to very regular quadratic growth.  

VI.4. Bergman’s Gap Theorem 

Theorem VI.4.1. (Bergman) There is no algebra A whose GK dimension is in the open interval 
1 < r < 2. If A is a finitely generated algebra of GK dimension 1, then every growth function 
f = fV for A is bounded by a linear function, i.e., f(n) ≤ cn for some c. 
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Let {x1, ..., xm} be indeterminates. We’ll refer to a monomial w in {xν } also as a word, and we will 
use notation of the form w = a1 · · · ar, where each ai denotes one of the variables xν . A subword of 
a word w is a word v such that w = yvz for some words y, z. The length of a word w, the number 
of its letters, will be denoted by |w|. 
An infinite word is a sequence of letters indexed by Z. A period of an infinite word h = {an} is an 
integer p such that an = an+p for all n ∈ Z. The periods of h form a subgroup of Z+ , and if h has 
a non-zero period, then the positive generator for this subgroup is called the minimal period of h. 

A (finite) word w will also be called periodic, of period p, provided that |w| ≥ p and that ai = ai+p 

for all relevant indices. Thus abcabca has period 3. The periodic infinite word h = {an} with 
period p and having w = a1 · · · as as a subword is uniquely determined by w. It is the sequence 
defined by apk+r = ar for r = 1, ..., p. 

If an infinite word has period p, then verifying that it also has another period q requires checking 
periodicity on a sufficiently large finite subword. The next lemma determines the length of that 
subword. 

Lemma VI.4.2. Let h = {an} be an infinite word which has a period p, and let q be an integer 
< p. Suppose that a subword w of length ≥ p + q −1 is periodic of period q. Then q is also a period 
of h. 

Proof. We may assume w = a1 · · · ap+q−1. Because w has period q, any subword of length q is a 
complete cycle, and it differs from the initial subword u = a1 · · · aq by a cyclic permutation. The 
string v = ap · · · ap+q−1 is such a subword. 

In the infinite word h, u = a1 · · · aq = ap+1 · · · ap+q because h has period p. So u and v have a 
common subword x = a1...aq−1 = ap+1 · · · ap+q. Then since both u and v are complete q-cycles, the 
remaining letters of u and v, which are aq = ap+q and ap, must also be equal. The equality ap = 
ap+q shows that the periodicity of w extends one letter to the right, to the word w = a1 · · · ap+q . 
By induction, it extends indefinitely. Inverting the order shows that the periodicity also extends 
to the left.  

The (graded) lexicographic order on monomials: If v, w are words, then v < w if either |v| < |w|, 
or if |v| = |w| and v appears earlier in the dictionary. 

Lemma VI.4.3. Let y, u, u , z be words. Then yuz < yu z if and only if u < u .  

Let A be a finitely generated algebra which is presented as a quotient of the free algebra F = 
kx1, ..., xn , say A = F/I. The standard monomial basis for A is the lowest basis in lexico-
graphic order. It is obtained recursively: We assign degree 1 to the variables xi. Let V = 
Span(1, x1, ..., xm). We take the smallest basis Wn−1 for V n−1 , and add monomials of degree n 
as needed, in lexicographic order, to obtain a basis Wn of V n . Then W = 

 
(Wn) is the standard 

monomial basis for A. Thus the standard monomial basis for the commutative polynomial ring 
k[x, y] is {x i yj }. 
Lemma VI.4.4. A set W of monomials is a standard monomial basis for a quotient algebra 
A = F/I if and only if every subword of a word in W is also in W . If so, then the set N of words 
not in W spans a monomial ideal J , and W is the standard monomial basis for the graded algebra 
F/J .  
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So to measure the growth of an arbitrary algebra A = F/I, we may replace it by the graded algebra 
defined by a suitable monomial ideal J . Unfortunately, the property that I is finitely generated, if 
it holds, may not carry over to the monomial ideal J . 

We now examine more closely the case of a monomial ideal J which is generated by words of some 
fixed length d (and hence is a finitely generated ideal). 

Lemma VI.4.5. Let S be an arbitrary set of words of length d, let J be the ideal generated by the 
words of length d not in S, and let A = F/J . The standard monomial basis for A consists of all 
words w such that every subword of w of length d is in S.  

Let S be a set of words of length d. We form an oriented graph Γ whose vertices are the elements 
of S and whose edges, the arrows are as follows: If u, v ∈ S, there is an arrow u → v if ub = av 
for some letters a, b. This is equivalent with saying that there is a common subword x of u and v 
of length d − 1, such that u = ax and v = xb. So u = a1 · · · ad, v = a2 · · · ad+1, and x = a2 · · · ad, 
where a = a1, b = ad+1. Since a and b are uniquely determined by u and v, there is at most one 
arrow u → v. 

Given an oriented path u0 → u1 → · · · → ur in Γ of length r, we form a word as follows. We 
write u0 = a1 · · · ad, u1 = a2 · · · ad+1 , ... , ur = ar+1 · · · ad+r. Then the word w = a0 · · · ad+r−1 of 
length d + p has the property that every subword of length d is in S. 

Lemma VI.4.6. Let W be the standard monomial basis for the above algebra A. The oriented 
paths of length n in Γ correspond bijectively to elements of Wn+d.  

Let u = a1 · · · ad be a word with minimal period p ≤ d. Then we obtain an oriented cycle of length 
p in Γ: 

(VI.4.7) u = u0 → u1 → · · · → u p = u 

as follows: We take the infinite periodic word h = {an} of which u is a subword, and we define 

(VI.4.8) u0 = a1 · · · ad, u1 = a2 · · · a p+1, , ..., u p = a p+1 · · · p+d = u0. 

We call ui the translates of u. For instance, let u = abcabca. The period is 3, and the cycle is 
u0 → u1 → u2 → u0, where u0 = u, u1 = bcabcab, and u2 = cabcabc. 

Lemma VI.4.9. The oriented cycles of length p in Γ are determined by words u of period p ≤ d 
whose translates ui are in W for all i. 

Proof. Let u0 → u1 → · · · → up = u0 be a cycle, where u0 = a1 · · · ad, and where ui = u0 

for 1 < i < p. Then u1 = a2 · · · adb1, u2 = a3 · · · adb1b2, and up = ap+1 · · · adb1 · · · bp = u0, for 
suitable elements bi taken from among the elements a1, ..., ap. Since u0 = up, we have a1 · · · ad−p = 
ap+1 · · · ad. Thus u is periodic of period p as claimed.  

The next proposition, which is analogous to Proposition VI.3.1, shows that the structure of the 
graph Γ reflects the GK dimension of the algebra A. 

Proposition VI.4.10. Let Γ denote the graph of an algebra A defined by monomial relations of 
degree d. 
(i) If Γ contains two cycles which have a vertex in common, then A has exponential growth. 
(ii) Suppose that Γ contains r cycles, none of which have a vertex in common. Then gk(A) ≤ r. 
Moreover, gk(A) = r if and only if there is a path that traverses all of the cycles.  
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Theorem VI.4.11. If |S| ≤ d, an oriented path in Γ can traverse at most one cycle. It can 
traverse that cycle a finite number of times in succession, but it can not leave the cycle and then 
return to it. 

Proof. The method is to show that any path which traverses two cycles has length at least d + 1, 
unless the two cycles are equal and are traversed in immediate succession. 

We may assume that our path starts at a cyclic word u of period p, taverses the corresponding 
cycle Cu to return to u, then proceeds to another cyclic word v of period q along a path P , and 
finally traverses the cycle Cv. There are p vertices on the cycle Cp and q vertices on Cq , and the 
endpoints of the path P are among them. So we must show that the length s of P is at least 
d − p − q + 2. We may assume that q ≤ p. The other case is treated by passing to the opposite 
graph. 

If w1 → w2 is an arrow in Γ, then w2 is obtained from w1 by removing the first letter, and putting 
some other letter at the end. To obtain v from u via the path P , we repeat this process s times. 
So if u = a1 · · · ad, then v = as+1 · · · adb1 · · · bs for some bi. Thus, in the notation of VI.4.8, the 
word v is obtained from us by replacing the last s letters. By hypothesis, u and us have period p, 
while v has period q. 

If s < d − p + q + 2, then d − s ≥ p + q − 1. We may embed u into an infinite periodic word h and 
apply Lemma VI.4.2. The lemma shows that u has period q. Since q ≤ p and p is the minimal 
period of u, we conclude that q = p. The first segment of our path P leaves the cycle determined 
by u, hence it replaces u = a1 · · · ad by a2 · · · adb, where in the notation of VI.4.8, b  = ad+1. This 
breaks the symmetry of u, and because ad+1 = ad+1−p, there is no way to obtain a periodic word 
without replacing the letter ad+1−p. This requires a path of length at least d − p + 1.  

Proof of Bergman’s theorem. Let A be a finitely generated algebra with 1 ≤ gk(A) < 2, let 
{x1, ..., xm} be a generating subset. Lemma VI.4.4 shows that the standard monomial basis W for 
A is also the monomial basis for an algebra defined by a monomial ideal J . So we may assume 
that A is the algebra A = F/J , in particular that A is graded and generated by elements of degree 
1. Then V = Span(1, x1, ..., xm) is a generating subspace. 

If an = dim An ≥ n for all n, then dim V n = a0 + · · · + an ≥ n+1 
2 , and gk(A) ≥ 2. Since this 

is not the case, dim Ad ≤ d for some d. This is the only property of the algebra A that we use in 
what follows. 

Let S denote the set of words of degree d which are in the standard monomial basis W , and let 
T be the words of length d not in S. Thus T is a subset of the monomial ideal J . Let J be 
the ideal generated by T , and let A = F/J . Then because T ⊂ J , A is a quotient of A , and 
dim An ≥ dim An, while Ad = Ad. So we are reduced to considering the algebra discussed in 
Theorem VI.4.11, and the fact that a path can traverse only one loop shows that the growth is 
linear VI.4.10.  
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VI.5. Theorem of Stephenson and Zhang 

Theorem VI.5.1. (Stephenson – Zhang) A connected graded, right noetherian k-algebra A has 
subexponential growth. 

A sequence f = {f(n)} of real numbers has exponential growth if, for some s > 1, there are 
infinitely many n so that f(n) > sn . A function which does not have exponential growth is said 
to have subexponential growth. 

To determine exponential growth, it is convenient to use the measure lim f(n)1/n . The growth is 
exponential if and only if 

(VI.5.2) lim f(n)1/n > 1. 

Lemma VI.5.3. Let A be a finitely generated graded algebra. Let V = A0 ⊕ · · · ⊕ Ak be a 
generating subspace, with growth function f(n), let a(n) = dimkAn and s(n) = a(0) + · · · + a(n). 
The assertions of exponential growth of the sequences a(n), s(n), and f(n) are equivalent. 

Proof. Let a(n) denote the maximum value of a(i) for i ≤ n. Then a(n) ≤ a(n) ≤ s(n) ≤ 
(n + 1)a(n). The sequences a and s are monotonic, and unless the sequence a(n) is bounded, 
a(n) = a(n) infinitely often. Then 

lim(a(n)) 1/n ≤ lim(s(n)) 1/n ≤ lim(n + 1) 1/n(a(n)) 1/n = lim (a(n)) 1/n = lim(a(n)) 1/n . 

Finally, f(n) = s(nk). Since s(n) is monotonic, (lim(f(n))1/n)k = lim(s(n))1/n .  

Proof of the theorem. Suppose that A has exponential growth. By Lemma VI.5.3, there is a real 
number α > 1 so that a(n) > αn infinitely often. To show that A is not right noetherian, we use 
the next lemma to constuct an infinite increasing chain of right ideals. 

Lemma VI.5.4. There is a sequence of integers 0 < r1 < r2 < · · · such that for every k, 

(VI.5.5) a(rk) > Σ k−1 
i=1 a(rk − ri), 

In particular, a(r1) > 0. 

Suppose that this sequence has been found. Then we construct a chain of right ideals as follows: 
We choose y1 ∈ Ar1 , with y1 = 0, and we set I1 = y1A. This is possible because a(r1) > 0. Then 
because a(r2) > a(r2 − r1), it follows that y1Ar2−r1 = Ar2 , and Ar2 ⊂ I1. We choose y2 ∈ Ar2 and 
not in I1, and we set I2 = I1 + y2A. Then I1 < I2. Next, because a(r3) > a(r3 − r1) + a(r2 − r2), it 
follows that y1Ar3−r1 + y2Ar3−r2 = Ar3 , and Ar3 ⊂ I2. We choose y3 ∈ Ar3 not in I2, and we set 
I3 = I2 + y3A, so that I2 < I3, and so on. Continuing in this way, we obtain the required strictly 
increasing sequence of right ideals.  

Proof of the lemma. We will construct the sequence ri with the additional property that αri > 2i . 
This simply requires choosing each ri large enough. We can find r1. So suppose that r1 < r2 < 
· · · rk−1 have been found. 
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Sublemma VI.5.6. There are infinitely many integers n so that, for every i < k, a(n) > a(n − 
ri)α

ri . 

Proof. Suppose the contrary: For every n > n0, there is an i with 1 ≤ i ≤ k − 1, so that 
a(n) ≤ a(n − ri)αri . If n − ri > n0, we repeat: There is a j so that a(n − ri) ≤ a(n − ri − rj)αrj , 
hence a(n) ≤ a(n − ri − rj)αri+rj and so on. By induction, a(n) ≤ a(n )αn−n 

, where n ≤ n0. 
Therefore a(n) < cαn for all n. This contradicts exponential growth.  

The sublemma allows us to choose rk so that a(rk) > a(rk − ri)αri for i = 1, ..., k − 1, and also so 
that αrk > 2k . Then a(rk − ri) < a(rk)α−ri < a(rk)2−i , and Σ a(rk − ri) < a(rk)(Σ 2−i) < a(rk). 
 

VI.6. Projective covers 

Let A = k ⊕A1 ⊕ · · · be a noetherian, connected graded algebra. The term connected just means 
that A0 = k. In the next two sections we work primarily with graded right A-modules. By 
finite module we mean a finitely generated module. A map φ : M −→ N of graded modules is 
a homomorphism which sends Mn −→ Nn for every n. The modules we consider will all be left 
bounded, which means that Mn = 0 if n << 0. 

The shift M(r) of a module M is defined to be the graded module whose term of degree n is 
M(r)n = Mn+r. In other words M(r) it is equal to M except that the degrees have been shifted. 
The reason for introducing these shifts is to keep track of degrees in module homomorphisms. For 
example, if x ∈ Ad is a homogeneous element of degree d, then right multiplication by x defines 
a map of graded modules A(r) 

ρx −→ A(r + d). Since all linear maps AA −→ AA are given by left 
multiplication by A, this identifies the set of maps: 

Corollary VI.6.1. Hom gr(A(r), A(s)) = As−r.  

If M is a graded right module and L is a graded left module, the tensor product M ⊗A N is a 
graded vector space, the degree d part of which is generated by the images of {Mn ⊗k Ld−n}. 
The symbol k will also denote the left or right A-module A/A>0. It is a graded module, concen-
trated in degree zero, i.e., k0 = k and kn = 0 for n = 0. For any module M , MA>0 is a submodule, 
and 

(VI.6.2) M ⊗ k = M ⊗ (A/A>0) ≈M/MA>0. 

This is a graded vector space, and it is finite dimensional if M is finitely generated. 

Proposition VI.6.3. (Nakayama Lemma) (i) Let M be a left bounded module. If M ⊗ k = 0, 
then M = 0. 
(ii) A map φ : M −→ N of left bounded graded modules is surjective if and only if the map 
M ⊗A k −→ N ⊗A k is surjective. 

Proof. (i) Assume that M is not the zero module, and let d be the smallest degree such that 
Md = 0. Then (MA>0)d = 0, so 

(M ⊗ k)d ≈Md/(MA>0)d = Md. 

The second assertion follows from the right exactness of tensor product.  

Definition VI.6.4: A map P −→ M of finite graded modules is a projective cover of M if P is 
projective and if the induced map P ⊗ k −→M ⊗ k is bijective. 
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Proposition VI.6.5. (i) Let φ : M −→ N be a surjective map of finite graded modules. If N is 
projective, then φ is bijective. 
(ii) Every finite graded projective A-module is isomorphic to a finite direct sum of shifts of AA: 
P ≈ 

 
A(ri). 

(iii) If P −→ P −→ M −→ 0 is an exact sequence of finite graded modules with P , P projective, 
then P is a projective cover of M if and only if the map P ⊗ k −→ P ⊗ k is the zero map.  

Proposition VI.6.6. Let 

(VI.6.7) P −→M := { · · · −→ P1 −→ P0 −→M −→ 0} 

be a projective resolution of a finite module M , and define Mi by M0 = M and Mi = ker(Pi−1 −→ 
Mi−1) for i > 0. The following conditions are equivalent. If they hold, the resolution is said to be 
a minimal resolution. 
(a) Pi is a projective cover of Mi for all i, 
(b) if P0 −→M is a projective cover of M and for all i > 0, the induced maps Pi ⊗ k −→ Pi−1 ⊗ k 
are zero.  

Corollary VI.6.8. Let P −→M be a minimal projective resolution of a module M . Then Pi ⊗k ≈ 
TorA 

i (M, k). 

Proof. The Tor are computed as the homology of the complex P ⊗ k. Since the maps in this 
complex are zero, Hi(P ⊗ k) = Pi ⊗ k.  

Corollary VI.6.9. Let P −→ k −→ 0 be a minimal projective resolution of the right module k, 
and say that 

(VI.6.10) Pi ≈ 
 

j 

A(−rij ). 

The minimal projective resolution of k as left module has the same shape, i.e., the number of 
summands and the shifts rij which appear are the same. 

Proof. Pi ⊗ k ≈ TorA 
i (k, k), and TorA 

i (k, k) can be computed using either a projective resolution 
of the left module k or a projective resolution of the right module k.  

Scholium VI.6.11. Let P = 
 
A(pi) and P = 

 
A(qj ) be finite projective modules. Corollary 

VI.6.1 shows that 
Hom gr(P, P ) = 

 

i,j 

A(qj − pi). 

The term A(qj − pi) is zero unless pi ≤ qj , because An = 0 if n < 0. If φ : P −→ P is a map, then 
φ ⊗ k = 0 is zero if and only if no entry φij is a nonzero constant. This means φij ∈ Aqj −pi is zero 
unless pi < qj . 

Suppose that φ appears in a minimal projective resolution of some module. Then for every pi, the 
summand A(pi) of P must have a nonzero image in P . Together with the condition that φ⊗k = 0, 
this implies that pi must be strictly less than at least one index qj . So with the notation (VI.6.10), 
the indices −rij are decreasing with i. However, because various shifts can appear, the overlapping 
indices confuse the situation. 
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VI.7. Hilbert functions of graded algebras of finite global dimension 

Let A be a noetherian connected graded algebra. The Hilbert function of A is the sequence 
an = dimkAn. As we have seen (1.10), the Hilbert function is closely related to the growth of the 
algebra. We also consider the power series 

(VI.7.1) h(t) = Σ ∞ 
n=0 ant 

n , 

which is called the Hilbert series of A. 

Lemma VI.7.2. The radius of convergence r of the Hilbert series h(t) is < 1 if and only if the 
Hilbert function has exponential growth. 

Proof. The root test tells us that r = lim(an)1/n .  

Suppose that A has finite global dimension d. This means that every finite graded module has a 
graded projective resolution of length ≤ d. Then one can obtain a recursive formula for the Hilbert 
function in terms of a resolution of the A-module k. (It is a fact that if k has a finite projective 
resolution, then A has finite global dimension, i.e, every finite A-module has a finite projective 
resolution, but never mind.) 

Say that the minimal projective resolution is 

(VI.7.3) 0 −→ Pd 
fd−→ · · · f2−→ P1 

f1−→ P1 
f0−→ P0 −→ k −→ 0, 

where each Pi is a finitely generated graded projective, hence is a sum of shifts of A. We note that 
P0 = A in this case, and we write Pi = 

 
A(−rij ) as in (VI.6.10). 

Lemma VI.7.4. If 0 −→ Vd −→ Vd−1 −→ · · · −→ V0 −→ 0 is an exact sequence of finite-
dimensional vector spaces, then Σ (−1)idim Vi = 0.  

Applying this lemma to the terms of degree n in the resolution (VI.7.3), we obtain the formula, 
valid for all n > 0, 

(VI.7.5) an − Σ d 
i=1 (−1) i+1 (Σj an−rij ) = 0, 

in which all rij are positive (VI.6.11). This recursive formula, together with the initial conditions 
an = 0 for n < 0 and a0 = 1, determines the Hilbert function. 

Examples VI.7.6. 
1. The q-polynomial ring A = kq[x, y], is defined by the relation yx = qxy. Writing operators on 
the right, the resolution of k is 

(VI.7.7) 0 −→ A(−2) 
(y,−qx)−− − −−→ A(−1) 2 (x 

y)−−→ A −→ k −→ 0. 

The recursive formula is an = 2an−1 − an−2, and the Hilbert function is that of the commutative 
polynomial ring (as was clear from the start). 
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2. Let A = kx, y/I, where I is the ideal generated by the two elements [x, [x, y]] = x2y−2xyx+yx2 

and [[x, y], y] = xy2 − 2yxy + y2x. The global dimension is three, and the resolution has the form 

(VI.7.8) 0 −→ A(−4) 
f(2) 

−−→ A(−3) 2 f(1) 

−−→ A(−1) 2 f(0) 

−−→ A −→ k −→ 0, 

where , 

f (0) = 

 
x 
y 

 

, f (1) = 

 
yx − 2xy x 2 

y 2 xy − 2yx 

 

, f (2) = (y, x) 

The recursive formula for the Hilbert function is an − 2an−1 − 2an−3 + an−4 = 0. 

3. Let A = kx, y/I, where I is the ideal generated by the element y2x + x2y − x3 . The global 
dimension is 2, and the resolution has the from 

(VI.7.9) 0 −→ A(−3) 
(y 2−x 2 ,x 2)−−−−−−−→ A(−1) 2 (x

y)−−→−→ A −→ k −→ 0. 

The recursive formula is an − 2an−1 + an−3 = 0. 

Exercise: Using the Diamond lemma, prove that the resolutions VI.7.7-9 are exact. 

We can also describe the Hilbert series h(t) conveniently in terms of the recursive formula. Because 
signs alternate, we can gather the terms in (VI.7.5) together, to obtain a formula of the general 
shape 

(VI.7.10) an − Σ an−ri + Σ an−sj = 0, 

Let 

(VI.7.11) q(t) = 1 − Σ t ri + Σ t sj . 

The next proposition is proved by computing the product q(t)h(t). 

Proposition VI.7.12. h(t) = 1/q(t). Hence the Hilbert function is a rational function.  

Exercise: Prove Hilbert’s theorem, that the Hilbert series of any finitely generated commutative 
graded ring is a rational function. Do it by writing A as a quotient of a polynomial ring P , and 
resolving A as a P -module. 

Having expressed h(t) as a rational function, we can determine the growth of the algebra. We 
write q(t) = 

 
(1 − λit), where λi are the reciprocal roots of q(t) – the reciprocals of the roots. 

Theorem VI.7.13. Let A be a finitely generated, connected graded algebra of finite global dimen-
sion, and let h(t) = 1/q(t) be its Hilbert series. 
(i) an has exponential growth if and only if q(t) has a reciprocal root λ with |λ| > 1. 
(ii) If every reciprocal root of q(t) has absolute value ≤ 1, then the reciprocal roots are roots of 
unity, and q is a product of cyclotomic polynomials. 
(iii) If the reciprocal roots of q are roots of unity, then A has polynomial growth, and its GK 
dimension is the multiplicity of the reciprocal root 1, the order of pole of h(t) at t = 1. Moreover, 
the order of pole of h at t = 1 is its maximal order of pole. 
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Proof. (i) The radius of convergence r of the rational function h(t) is the minimum absolute value 
of its poles. So r < 1 if an only if q(t) has a root λ of absolute value < 1. 

(ii) The reciprocal roots are the nonzero roots of the polynomial tnq(t−1) = tn − Σ tn−ri + Σ tn−sj . 
This is a monic polynomial with integer coefficients. So first of all, the product of the reciprocal 
roots is an integer with absolute value ≥ 1. If |λi| ≤ 1 for all i, then |  

λi| ≤ 1 and so |λi| = 1 for 
all i. Lemma (VI.7.23) below completes the proof. 

(iii) Let k denote an integer such that λk 
i = 1 for all i, and let ζ be a primitive kth root of 1. Also, 

let p denote the largest multiplicity among the roots of q(t). We write h(t) in terms of partial 
fractions, say 

(VI.7.14) h(t) = 
1 
q(t) 

= Σ i,j 
cij 

(1 − ζit)j 

with i = 0, ..., k − 1 and j = 1, ..., p, where cij are complex numbers. The binomial expansion for 
a negative power is 

(VI.7.15) 
1 

(1 − t)j 
= Σ n+j−1 

j−1 t n . 

This yields the formula 

(VI.7.16) an = Σ ci j 
n+j−1 

j−1 ζ in , 

where j = 1, ..., p. Thus the value of an cycles through k polynomial functions. For ν = 0, ..., k − 1, 

(VI.7.17) an = γν (n) := 
i,j 

ci j ζ
iν n+j−1 

j−1 , if n ≡ ν (modulo k). 

Because an takes real values at the integers n ≡ ν, γν (n) is a real polynomial. Its degree is at most 
p − 1, so gk(A) ≤ p. 

The coefficient of np−1 in γν (n) is 

(VI.7.18) 
γν p 

(p − 1)! 
= Σi 

ci p ζ
iν 

(p − 1)! 
. 

It is non-negative because an takes non-negative values. 

Since h(t) has a pole of order p, at least one of the coefficients ci p is nonzero. The coefficient vector 
(γ0 p, γ1p, ..., γk−1 p) is obtained from the vector (c0 p, ..., ck−1 p) by multiplying by the nonsingular 
matrix [ζiν ]. Therefore at least one coefficient γi p is positive, and the sum γ = γ0 p + · · · + γk−1 p 

is positive too. Since 

(VI.7.19) γ = Σ i,ν ci p ζ 
iν = k ci 0, 

It follows that ci 0 > 0, which imples that h has a pole of order p at t = 1. Then (1.10) shows that 
gk(A) = p.  

Examples VI.7.20. For the algebra with resolution (VI.7.8), q(t) = 1−2t+2t3−t4 = (1−t)3(1+t). 
The algebra has GK dimension 3. For the algebra with resolution (VI.7.9), q(t) = 1 − 2t + t3 = 
(1 − t)(t2 − t − 1), which has the root 1 

2
(1 + 

√ 
5): exponential growth, hence by the theorem of 

Stephenson and Zhang, not noetherian. 
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Corollary VI.7.21. (Stephenson – Zhang) A connected graded, right noetherian algebra A of 
finite global dimension has polynomial growth. 

Conjecture VI.7.22. (Anick) If A is connected graded and right noetherian, then 
(i) gk(A) is equal to the global dimension of A, the length of the minimal projective resolution 
VI.7.3. 
(ii) The Hilbert series has the form h(t) = 1/q(t), where q(t) is a product of polynomials of the 
form 1 − tk . 

The series h = 1/q, where q(t) = (1 − tk1 ) · · · (1 − tkd ) is the Hilbert series of the commutative 
polynomial ring on d variables yi, where the degree of yi is ki. So these series do arise. 

Lemma VI.7.23. Let f(x) be a monic polynomial with integer coefficients. If |α| = 1 for every 
complex root α of f , then f is a product of cyclotomic polynomials, and so its roots are roots of 
unity. 

Proof. We may assume that f is irreducible, of degree n. Let its complex roots be α1, ..., αn, and 
let K be the field obtained from Q by adjoining an abstract root x of f . Then K has n embeddings 
φi into C, defined by φi(x) = αi. The roots of f are algebraic integers in K. What we need to 
know from algebraic number theory is that the algebraic integers in K form a ring O, and that the 
map (φ1, ..., φn) embeds this ring as a lattice (not a full lattice) into Cn . So O is a discrete subset 
of Cn . The set of points (z1, ..., zn ) ∈ Cn such that |zi| = 1 for all i is compact and closed under 
multiplication. Therefore it contains only finitely many algebraic integers, and they form a finite 
group.  

VI.8. Modules with linear growth 

Let A be a finitely generated algebra. We fix a finite dimensional subspace V which generates A 
and which contains 1. Let M be a finite A-module, and let U be a finite dimensional subspace 
which generates M as A-module. Then M = 

 
UV n . The growth function of M associated to the 

two subspaces U and V is 

(VI.8.1) g(n) = dimUV n . 

Lemma VI.8.2. Let U1, U2 be two generating subspaces of a finite module M , and let gi(n) = 
dim kUiV n . There is an integer r such that 

g1(n − r) ≤ g2(n) ≤ g1(n + r). 

Proof. Since U1V n exhaust M , U2 ⊂ U1V r for some integer r. Then for all n, V nU2 ⊂ V n+rU1, 
which implies that g2(n) ≤ g1(n + r).  

Lemma VI.8.3. Let M be a finite A-module which has infinite dimension over k, and let g(n) = 
dim kUV n as above. Then g(n) is a strictly increasing function, and in particular, g(n) ≥ n.  
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Lemma VI.8.4. Let N ⊂ M be finitely generated modules, with N infinite dimensional. Let V 
be a generating subspace for A, and U a generating subspace of M . Suppose that the corresponding 
growth function for M has a linear bound, say g(n) = dimUV n ≤ rn + s. Let U be the image of 
U in M = M/N . Then dimUV n ≤ (r − 1)n + s . 

Proof. Since N if finitely generated, W = UV k ∩ N is a generating subspace for suitable k. Then 
for n > k, there is a surjective map (UV n/W V n−k) −→ UV n . By (VI.8.3), dimW V m ≥ m. So 
dimUV n ≤ dimUV n − dimW V n−k ≤ rn + s − (n − k) = (r − 1)n + (s + k).  

Corollary VI.8.5. Let 0 ⊂ M0 ⊂ · · · ⊂ Mn = M be a filtration of submodules. Suppose that M 
is finitely generated, and has a growth function g(n) bounded by a linear function rn + s. There 
are at most r indices i such that Mi/Mi−1 is finitely generated and infinite dimensional. 

Proof. Let i0 be the first index such that Mi0 /Mi0−1 is finitely generated and infinite dimensional. 
We may replace M by M/Mi0−1 and reindex, to reduce to the case that i0 = 1. By the previous 
lemma, M/M1 has a growth function bounded by (r − 1)n + s , so induction on r completes the 
proof.  

VI.9. Theorem of Small and Warfield 

Theorem VI.9.1. (Small – Warfield) Let A be a finitely generated prime k-algebra of GK di-
mension 1. Then A is a finite module over its center Z, and Z is a finitely generated commutative 
domain of dimension 1. 

Corollary VI.9.2. Suppose that k is an algebraically closed field, and let A be a finitely generated 
k-algebra which is a domain, and which has GK dimension 1. Then A is commutative. 

Proof. The corollary follows from the theorem because the field of fractions K of the center Z is 
a function field in one variable, and D = A ⊗ Z K is a division ring finite over K. Tsen’s theorem 
implies that D, and hence A, is commutative.  

We have three preliminary propositions before beginning the proof. 

Proposition VI.9.3. Let Q be a k-algebra with center k. If Q ⊗ K is semisimple for all field 
extensions K ⊃ k, then [Q : k] < ∞ , and hence Q is a central simple algebra over k. 

Proof. We may assume k algebraically closed. Since Q is semisimple with center k, it is a matrix 
algebra over a division ring D, and we must show that D = k. 

Let K be the rational function field k(t). Together with the monomials tν , the elements 1/(t − a)j 

with a ∈ k and j = 1, 2, ... form a k-basis of K. Let x be a nonzero element of D. It is easily 
checked that x+t is a regular element of Q⊗ K. So because Q⊗ K is semisimple, x+t is invertible. 
We write its inverse w explicitly using the basis for K, say 

(VI.9.4) w = Σ 
cij 

(t − ai)j 
+ Σ bν t 

ν , 

with ai ∈ k and cij , bν ∈ Q. It is clear that w is not a polynomial in t, so some cij is nonzero. 
Computing (x + t)w gives us the relations 

(x + ai)cij + ci j+1 = 0, 

for j ≥ 1. Since ci j+1 = 0 for sufficiently large j, we obtain some relation of the form (x + a)c = 0 
with a ∈ k and c ∈ Q nonzero. Since x ∈ D, this implies that x + a = 0.  
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Proposition VI.9.5. Let S be a right Ore set of regular elements in a ring A, and let Q = AS−1 . 
(i) If A is a prime ring, so is Q. 
(ii) If Q is a simple ring, then A is a prime ring. 

Proof. (i) If I is an ideal of Q, then (I ∩ A)Q = I, so I ∩ A = 0, and I ∩ A is an ideal of A. Then 
if I, J are nonzero ideals of Q, (I ∩ A)(J ∩ A) = 0 and IJ = 0. 

(ii) Suppose that Q is simple, and let I be a nonzero ideal of A. Then QIQ = Q, so 1 = Σuis
−1 
i vit

−1 
i 

with si, ti ∈ S and vi ∈ I. We may replace the ti by a common multiple t. (The elements vi ∈ I 
will change.) Then t = Σ uis

−1 
i vi ∈ QI, and since t is invertible, QI = Q. If J is another nonzero 

ideal, QIJ = QJ = 0, so IJ = 0.  

Proposition VI.9.6. Let A be a prime, infinite dimensional k-algebra. 
(i) Every nonzero right ideal M of A is infinite dimensional. 
(ii) Let M < M be right ideals such that M is a right annihilator. There is an ideal N with 
M ⊂ N ⊂ M such that N/M is generated by one element and is infinite dimensional. 

Proof. (i) The right annihilator J of a finite dimensional right ideal M has finite codimension in 
A. If M is not zero, the left annihilator I of J is not zero because it contains M . From IJ = 0, 
and I = 0 we conclude J = 0, which shows that A is finite dimensional. 

(ii) Say that M is the right annihilator of the set X ⊂ A. Then there is an element x ∈ X such 
that xM = 0. We set N = xM + M , so that N/M is generated by the residue of x, and we note 
that N/M is isomorphic to the right ideal xM . So (i) applies.  

Lemma VI.9.7. A finitely generated prime algebra A of GK-dimension ≤ 1 is a Goldie ring. 

Proof. The fact that A satisfies acc on right annihilators follows from Lemmas VI.8.5 and VI.9.6. 
The fact that A has finite Goldie rank follows similarly: Every uniform right ideal U of A contains 
a uniform right ideal which is finitely generated, and then Corollary VI.8.6 applies.  

Lemma VI.9.8. Let A be a finitely generated prime k-algebra of GK dimension 1, and with ring of 
fractions AS−1 = Q. A right ideal M of A is essential in A if and only if it has finite codimension. 

Proof. Since A is Goldie, a right ideal M is essential if and only if it contains a regular element s. 
Then sA ⊂ M ⊂ A, and because sA has the same growth as A, it has finite codimension.  

Lemma VI.9.9. Let A be a finitely generated prime k-algebra of GK dimension ≤ 1, let K be a 
field extension of k, and let A = A ⊗ K. 
(i) A is a finitely generated K-algebra, and its GK dimension as K-algebra is ≤ 1. 
(ii) If k is the center of A, then A is a prime ring. 

Proof. The first assertion is clear. For (ii), let Q be the ring of fractions of A. Then Q ⊗ K is a 
simple ring with center K (CSA, 1.5), so (VI.9.5ii) applies.  

Lemma VI.9.10. Let A be a finitely generated prime k-algebra of GK dimension ≤ 1, with ring 
of fractions Q. Let K be the center of Q, and let A = AK denote the subring of Q generated by 
A and K. Then A is finitely generated prime K-algebra of GK dimension ≤ 1, its center is K, 
and its ring of fractions is Q. 

Proof. Since A is a quotient of A ⊗ K, it is a finitely generated K-algebra of GK dimension ≤ 1. 
Its center is K because K ⊂ A ⊂ Q and K is the center of Q. Finally, the set of regular elements 
of A is also an Ore set in A , with ring of fractions Q, so A is a prime ring by (VI.9.5ii).  



101 

Lemma VI.9.11. Let A be a finitely generated prime k-algebra of GK dimension ≤ 1, and with 
ring of fractions Q. Then Q is a finite module over its center. 

Proof. Lemma VI.9.10 allows us to assume that k is the center of A and of Q. We assume that 
[A : k] = ∞ , and we derive a contradiction. By Proposition VI.9.3, it suffices to show that 
Q = Q ⊗ K is semisimple for every field extension K of k, and A = A ⊗ K is a finitely generated 
prime algebra of GK dimension ≤ 1 (VI.9.9). Also, Q is a simple ring (CSA, 1.5). 

The set S of regular elements of A is an Ore set in A , and Q = A S−1 . Since A is a Goldie ring 
(VI.9.7), so is Q . To sdhow Q semisimple, it suffices to show that every regular element of Q is 
invertible. 

Let t ∈ Q be a regular element, so that tQ = N is an essential right ideal of Q , and let M = N ∩ A . 
Then MS−1 = N , and M is an essential right ideal of A . Indeed, if P is a nonzero right ideal of 
A , then (P ∩ M)S−1 = P S−1 ∩ MS−1 , which is not zero because MS−1 = N is essential. 

By VI.9.8, M has finite codimension in A . Since A is infinite dimensional, the right annihilator 
of L = A /M is not zero. Then since Q is a simple ring, L ⊗ A Q = 0. This shows that 
M ⊗ A Q = MS−1 = Q , and that t is invertible.  

Lemma VI.9.12. A finitely generated prime algebra A of GK dimension 1 satisfies a polynomial 
identity.  

Lemma VI.9.13. Let A be a k-algebra, and let γ1, ..., γr ∈ A be regular central elements which 
generate the unit ideal in A. If A[γ−1

i ] is finitely generated for each i = 1, ..., r, then A is finitely 
generated. 

Proof. If γi generate the unit ideal, then for each n ≥ 1, γn 
1 , ..., γ

n 
r also generate A. This is seen 

by raising the equation a1γ1 + · · · + arγr = 1 to a sufficiently large power. Thus for every n, there 
is an equation a1γ

n 
1 + · · · + arγ

n 
r = 1 with ai ∈ A. 

We choose elements x1, ..., xm ∈ A such that A[γ−1
i ] is generated by { x1, ..., xm; γ−1

i } and such 
that the subalgebra B of A generated by x1, ..., xm contains γi, for each i. If α ∈ A, then α ∈ 
A[γ−1

i ], hence αγn 
i ∈ B for some n, which we may choose independently of i. Then the equation 

a1γ
n 
1 + · · · + arγ

n 
r = 1 shows that α ∈ B.  

Lemma VI.9.14. Let A be an Azumaya algebra over a commutative ring Z. If A is finitely 
generated, so is Z. 

Proof. If A is a finitely generated k-algebra, then the ring Ao ⊗ Z A = EndZ A is also a finitely 
generated k-algebra, and its center is Z. This reduces us to the case that A = EndZ V for some 
locally free Z-module V . The previous lemma reduces us to the case that V is a free module, i.e., 
that A is a matrix algebra over Z. When A is a matrix algebra, Z = e11Ae11, and if { xi} generate 
A, {e11xie11} generate Z.  

Lemma VI.9.15. Let K be a function field in one variable over k, let R ⊂ R be subrings of K 
with field of fractions K. If R is a finitely generated k-algebra, so is R. 

Proof. Let R be a Dedekind domain with field of fractions K. An element x ∈ K lies in R if and 
only if it has no pole at any prime ideal p ∈ S = Spec R. Thus R is determined by its spectrum. If 
R ⊂ R are two finitely generated Dedekind domains, the map Spec R = S −→ S identifies S as 



102 

the complement of a finite set of primes in S. So there are finitely many possibilities for a spectrum 
in between, hence finitely many intermediate Dedekind domains. (Actually every intermediate ring 
is a Dedekind domain, but never mind.) 

The assertion to be proved is equivalent with the following one: Given a finitely generated algebra 
R with field of fractions K, the set of finitely generated subrings R of R with field of fractions K 
has the ascending chain condition. We may assume that R is a Dedekind domain. Given a chain 
of subrings B1 ⊂ B2 ⊂ · · · ⊂ R , the normalizations Ri of Bi form a chain of subrings which are 
Dedekind domains. So by what has been shown, this chain stabilizes, and we may assume that the 
normalizations Ri are all equal, say to R. Then because R is a finite module over B1 and Bi ⊂ R 
for all i, the chain stabilizes again.  

Lemma VI.9.16. Let A be a finitely generated prime PI algebra of GK dimension 1. The center 
Z of A is a finitely generated k-algebra of Krull dimension 1. 

Proof. The fact that A is prime implies that its center is a domain. Let γ be a nonzero evaluation 
of a central polynomial in A. Then A = A[γ−1] is an Azumaya algebra over its center Z (REP, 
9.3), and Z = Z[γ−1]. By Lemma VI.9.15, Z is finitely generated. By Lemma VI.1.9, gk(A ) = 
gk(A) = 1. Therefore gk(Z ) ≤ 1, and since A is not a finite k-module, neither is Z , so gk(Z ) = 1. 
This implies that Z is a finitely generated domain of Krull dimension 1. Lemma VI.9.15 shows 
that Z is finitely generated.  

Lemma VI.9.17. Let Z be a noetherian domain whose integral closure R is a Dedekind domain 
and a finite Z-module, and let K be the field of fractions of Z. Let AK be a central simple K-
algebra and let A be a subring which generates AK over K and which contains Z. Then A is a 
finite Z-module if and only if trace(a) ∈ R for every a ∈ A. 

Proof. Let A = AR be the ring generated by A and R. If A is a finite Z-module, then A is an 
R-order, and trace(a) ∈ R for every a ∈ A (MO, 2.2). We must show the converse, so we suppose 
that trace(a) ∈ R for every a ∈ A, and we show that A is a finite Z-module. The hypothesis 
tells us that the trace pairing a, b → trace(ab) takes its values in R. We restrict this pairing to an 
arbitrary Z-lattice V ⊂ A, obtaining a map V ⊗ A −→ R, hence a map A −→ HomZ (V, R), which 
is injective because AK is a simple ring. Since HomR(V, R) is a finite module, so is A.  

Lemma VI.9.18. With the notation of (VI.9.17), suppose that Z is the center of A. Then A is 
a finite Z-module. 

Proof. This is hack work. We first reduce to the case that Z = R, i.e., that Z is a Dedekind 
domain. Let A = AR as above. For this reduction, it It suffices to show that the center R of A 
is equal to R. Then if the lemma is proved when the center is R, A will be a finite R-module. 
Hence A and A will be finite Z-modules. 

Suppose that R  = R . Then there is a prime p ∈ S = Spec R which is not in S = Spec R , and 
there are elements x ∈ R with arbitrarily large pole at p. We may write x = Σ airi, with ai ∈ A 
and ri ∈ R. Let c be a nonzero element of the conductor of R in Z. Then xc ∈ A, hence xc ∈ Z. 
But if the pole of x at p is large enough, then xc ∈ R, which is a contradiction. 

It remains to treat the case that the center of A is a Dedekind domain R. We choose a finite field 
extension K of K which splits the central simple algebra AK , and we let R be the integral closure 
of R in K . The extension R −→ R is faithfully flat because R is a Dedekind domain. So R is 



103 

the center of A = A ⊗R R , A is a subring of AK , and A is a finite R -module if and only if A is 
a finite R-module. This reduces us to the case that AK is a matrix algebra. Moreover, a further 
finite field extension is permissible. 

It suffices to show that trace(a) ∈ R for all a ∈ A. Suppose not. We choose a with trace(a) ∈ R. 
So trace(a) has a pole at some point p ∈ Spec R. We replace R by the local ring at p, a discrete 
valuation ring. If the ground field k is infinite, then inspecting the characteristic polynomial shows 
that there is a c ∈ k such that det(c + a) ∈ R. In any case, we can achieve this at the cost of 
making a finite field extension of k and K. So we obtain an element a such that det (a) ∈ R. 

Let t be a generator for the maximal ideal of R. Since A generates AK , there is an integer r such 
that treij ∈ A for all i, j. Since det(a) ∈ R, at least one of its matrix entries is not in R. Replacing 
a by a power, we may assume that some matrix entry aij has a pole of order > 2r. Then t−1eii ∈ A 
for every i, which shows that t−1 ∈ R, contrary to hypothesis.  

Theorem VI.9.1 follows from Lemmas VI.9.12, VI.9.16 and VI.9.18. 
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